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ABSTRACT

A spectral-energy distribution (SED) model for Type Ia supernovae (SNe Ia) is a critical tool for

measuring precise and accurate distances across a large redshift range and constraining cosmological

parameters. We present an improved model framework, SALT3, which has several advantages over

current models including the leading SALT2 model (SALT2.4). While SALT3 has a similar philosophy,

it differs from SALT2 by having improved estimation of uncertainties, better separation of color and

light-curve stretch, and a publicly available training code. We present the application of our training

method on a cross-calibrated compilation of 1083 SNe with 1207 spectra. Our compilation is 2.5×
larger than the SALT2 training sample and has greatly reduced calibration uncertainties. The re-

sulting trained SALT3.K21 model has an extended wavelength range 2000-11000 Å (1800 Å redder)

and reduced uncertainties compared to SALT2, enabling accurate use of low-z I and iz photometric

bands. Including these previously discarded bands, SALT3.K21 reduces the Hubble scatter of the

low-z Foundation and CfA3 samples by 15% and 10%, respectively. To check for potential systematic

uncertainties we compare distances of low (0.01 < z < 0.2) and high (0.4 < z < 0.6) redshift SNe in

the training compilation, finding an insignificant 2±14 mmag shift between SALT2.4 and SALT3.K21.

While the SALT3.K21 model was trained on optical data, our method can be used to build a model

for rest-frame NIR samples from the Roman Space Telescope. Our open-source training code, public

training data, model, and documentation are available at https://saltshaker.readthedocs.io/en/latest/,

and the model is integrated into the sncosmo and SNANA software packages.

1. INTRODUCTION

Type Ia supernovae (SNe Ia) have been used as cos-

mological distance indicators for more than two decades,

providing early evidence of the accelerating expansion

of the Universe (Riess et al. 1998; Perlmutter et al.

1999). Today, SN Ia distances are used at low red-
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shift (z ≤ 0.15) for distance ladder measurements of

the Hubble constant (H0; Riess et al. 2021; Freedman

et al. 2019), currently the subject of a 4 − 6σ tension

(see Verde et al. 2019 for a review), as well as measure-

ments of the dark energy equation-of-state parameter,

w which incorporate SNe at z ≤ 2.2 (currently consis-

tent with w = −1; Scolnic et al. 2018; Abbott et al.

2019; Jones et al. 2019). Recent measurements of H0

(Riess et al. 2016), as well as most large studies of SNe

across the observed redshift range for the last decade

(Guy et al. 2010; Conley et al. 2011; Sako et al. 2018;

Betoule et al. 2014; Riess et al. 2018; Scolnic et al. 2018;

Brout et al. 2019a; Jones et al. 2019), have relied upon

the SALT2 light-curve model (Guy et al. 2007, 2010) for
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the brightness standardization of SNe Ia in their analy-

sis.

SN Ia distances are typically estimated by fitting their

light curves with a model to determine an overall flux,

a color, and one (or more) light-curve shape parame-

ters. The apparent magnitude (as computed from the

flux) is standardized with a linear combination of color

and light-curve parameters (referred to as the Tripp es-

timator; Tripp 1998) to produce a standardized appar-

ent magnitude relative to a fiducial SN Ia. The SALT2

( Spectral Adaptive Light-curve Template) model de-

scribes SN Ia light curves as a combination of com-

ponent spectral energy distributions (flux surfaces de-

fined in wavelength and time), multiplied by a color-

dependent term described by a color law that is similar

to that of the Milky Way. These components are de-

termined through a “model training” process; the last

trained model to be used in a published cosmological

analysis was SALT2.4 (which we hereafter refer to as

SALT2.JLA1 ), presented in Betoule et al. (2014) and

Mosher et al. (2014), although a retrained model has

recently been presented in Taylor et al. (2021). The

ubiquity of the SALT2 model in cosmology analyses of

the last decade can be attributed to:

1. The spectrophotometric model can be integrated

over filter bands using the appropriate rest-frame

wavelengths, which removes the need for explicit

k-corrections.

2. The training process is cosmology independent, as

the overall normalization of a light curve is a fitted

parameter.

3. The training set incorporates photometric data

from multiple surveys, reducing the sensitivity of

the model to the calibration of any one survey.

4. The training sample incorporates high redshift

photometric data, allowing the use of well-

calibrated observer-frame optical data to extend

the model into the rest-frame ultra-violet (UV).

5. Publicly available analysis tools such as SNANA

(Kessler et al. 2009b) and sncosmo. (Barbary

et al. 2015, 2016) include infrastructure to fit

lightcurves and generate simulated data using the

SALT2 model.

1 JLA refers to ”Joint Lightcurve Analysis” that included the
SDSS-SN and SNLS teams, and produced cosmology results in
Betoule et al. (2014)

6. The model has been tested by many independent

groups as a consequence of its use in cosmology

analyses.

Despite these advantages, Scolnic et al. (2018) found

that the calibration of the training sample used to cre-

ate the SALT2.JLA model was the largest single system-

atic uncertainty in their measurement of w (σw = 0.014,

30% of the total systematic uncertainty), though a new

analysis methodology could somewhat reduce this uncer-

tainty (Brout et al. 2020). Achieving the science goals

of the Vera C. Rubin Observatory’s Legacy Survey of

Space and Time (LSST) will require that systematic un-

certainty in the calibration of the light-curve model be

decreased by a factor of 5 for the year-one analysis (The

LSST Dark Energy Science Collaboration et al. 2018).

The SALT2.JLA model does not fully reproduce ob-

served spectral features such as varying absorption line

velocities (Foley & Kasen 2011; Siebert et al. 2020).

Similarly, studies have found evidence that standard-

ized distances based on SALT2 with the Tripp estima-

tor (SALT2+Tripp) are dependent on SN Ia host galaxy

properties (Kelly et al. 2010; Sullivan et al. 2010), al-

though the best way to characterize this effect is still in

question (Rigault et al. 2013; Betoule et al. 2014; Jones

et al. 2018; Rigault et al. 2018; Brout & Scolnic 2020;

Smith et al. 2020b). Since these astrophysical effects

are not explicitly included in the training process, differ-

ences between the training sample and cosmology sam-

ples can lead to subtle biases in the cosmology results.

To characterize and correct for such untrained effects,

it is essential to perform training studies on simulated

data that incorporates a broad range of physical effects.

Therefore, in parallel with the the SALT3 development

our team has developed a more general SED-simulation

framework described in Pierel et al. (2020).

Extending the wavelength range of the SALT model

shows promise in the reduction of statistical uncertainty.

Distance standardization based on SALT2+Tripp re-

sults in scatter about the Hubble diagram that is ∼
0.1 mag larger than expected from photometric uncer-

tainties (which we refer to as “intrinsic scatter”). Nu-

merous studies over the last two decades have found

that NIR peak magnitudes show smaller Hubble residu-

als than SALT2+Tripp distances (Krisciunas et al. 2004,

2007; Wood-Vasey et al. 2008; Burns et al. 2011; Man-

del et al. 2011; Dhawan et al. 2018; Avelino et al. 2019;

Mandel et al. 2020). However, the SALT2.JLA SED

model extends only to 9200 Å (extrapolated further for

use in simulations in Pierel et al. 2018) with substantial

model uncertainties past ∼ 7000 Å that preclude the use

of existing low-redshift optical data. By extending the

wavelength range to reliably include existing rest-frame
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i and z band photometry we can improve on cosmology

constraints on current data sets. Further extension of

the model into the NIR would allow future SN Ia cos-

mology programs to make use of a wavelength range in

which SNe Ia are intrinsically more precise.

As a step toward these goals, we have defined a

SALT3 spectrophotometric model formalism and devel-

oped SALTshaker, a flexible and open source Python-

based code for training a SALT3 model, accepting both

spectra and photometry in the training process. The

SALT3 formalism has been defined similarly to SALT2

to retain the compatibility of our model with existing

analysis frameworks. As part of an overall testing and

validation framework (Dai et al. in prep), SALTshaker

enables new SN Ia light-curve models to be quickly

trained for new samples of cosmological SNe, allowing

uncertainties from the modeling process to improve as

larger and more accurately calibrated samples are col-

lected. In Section 2 we define our SALT3 model, and

describe the procedure of our training code. In Section

3 we apply SALTshaker on training data similar to that

of the SALT2.JLA model, allowing a direct comparison

of our training process to that of SALT2. Next we add

recalibrated data from past and recent SN Ia surveys to

our training sample, described in Section 4, to increase

the size of the training sample by a factor of ∼ 2.5. Fi-

nally, we build the SALT3.K21 model and present our

results in Section 5.

2. THE SALT3 MODEL AND SALTSHAKER

Using the framework of SALT, the SALT3 model de-

fines the spectral flux of a SN Ia as a function of rest-

frame wavelength λ and phase p. Given three light-curve

parameters for a given SN x0 (the overall flux normal-

ization), x1 (associated with the light-curve “stretch” ),

and c (a fitted color parameter), the spectral flux2 (in

energy units) is

F (p, λ) =x0[M0(p, λ;m0) + x1M1(p, λ;m1)]

· exp(c · CL(λ; cl)), (1)

where M0(p, λ;m0) and M1(p, λ;m1) are flux surfaces

similar to principal components, representing respec-

tively the SED of a fiducial SN Ia and a first order cor-

rection. The two flux surfaces are defined on a basis

of second-order B-splines, with NPhase ×Nλ basis func-

tions for each surface, with coefficients m0,m1 that are

model parameters. The number of basis functions along

each axis are determined based on the desired wave-

2 In all cases we use F to refer to a spectral flux and f to refer
to a flux integrated over an appropriate bandpass

3000 4000 5000 6000 7000 8000 9000
(Å)

a)

Initial M0 Component

3000 4000 5000 6000 7000 8000 9000
(Å)

b)

Add M1 scaled by x1

3000 4000 5000 6000 7000 8000 9000
(Å)

c)

Multiply by exp(c CL( ))

3000 4000 5000 6000 7000 8000 9000
(Å)

d)

Redshift and multiply by bandpass transmission
B
V
R

15 10 5 0 5 10 15 20 25 30
Phase (Days)

e)

Integrate across wavelength at every phase
B
V
R

15 10 5 0 5 10 15 20 25 30
Phase (Days)

f)

Realize model covariance
B
V
R

Figure 1. Construction of a SALT light curve for a given
SN Ia, here shown using the SALT2.JLA model. In panels
a-c, we apply the M1 component and the color law to the
base M0 spectral flux at a phase of +10 days. In panel d,
the spectrum is redshifted, and integrated across a bandpass
transmission. In panel e, this process is repeated at every
phase to produce a lightcurve. Panel f) shows realizations
of the model uncertainties. Color scatter can be seen as the
coherent offset within each band, clearly seen at the peak of
V band. At later phases in V the uncorrelated uncertainties
dominate the realizations.
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length and phase resolution; in our work we have cho-

sen wavelength resolution 70 Å and phase resolution of

3 days. CL(λ; cl) is a single color law which combines

the effects of intrinsic color variation and host galaxy

dust extinction. The color law is polynomial with NCL
coefficients cl within a specified wavelength range λ−
to λ+ and linearly extrapolated for the rest of the SED

wavelength range of the model. Thus the color law is

defined as

CLp(λ) =

NCL∑
i=0

cliλ
i,

λ < λ−

CL(λ) =


CL′p(λ−)(λ− λ−) + CLp(λ−)

CL′p(λ+)(λ− λ+) + CLp(λ+)

CLp(λ)

λ > λ+

otherwise

The object of the model training process is to deter-

mine the model parameters {m0,m1, cl} and estimate

un-modeled variability in the flux surfaces; the model

training is detailed in Section 2.5.

For a given photometric observation of a SN Ia at he-

liocentric redshift zHel in a filter X with observer-frame

transmission function TX(λ) in photon units, the broad-

band flux as a function of phase is

fX(p) =

∫
TX(λ/(1 + zHel))F (p, λ;x0, x1, c)λdλ (2)

We illustrate this procedure for modeling a light curve

in Figure 1. The fixed configuration parameters used to

specify the model are listed in Table 1, while the fitted

model parameters ( {m0,m1, cl}) are listed in Table 2.

2.1. Model Definitions

The specification of the model given above is degen-

erate; for example, the scale of the flux surfaces may

be changed by reducing M0 and M1 and increasing x0

by the same factor. To remove degeneracies we apply

further model definitions, which are used as constraints

during the training process. These definitions are arbi-

trary, and have been chosen to define a “fiducial” su-

pernova whose SED is the M0 flux surface at the mean

of the observed distributions of lightcurve parameters.

The definitions are:

1. The rest-frame synthetic B-band flux of the M0

component at peak is fixed such that mpeak
B = 10.5

when x0 = 1

2. The rest-frame synthetic B-band flux of the M1

component at peak is defined to be 0

3. The distribution of the light-curve parameter x1

in the training sample is defined to have 0 mean

4. The distribution of x1 has standard deviation 1

5. The distribution of the light-curve parameter c in

the training sample is defined to have 0 mean

6. The color law is defined such that CL(4300 Å) = 0

and CL(5430 Å) = −1 , corresponding to central

wavelengths for B and V bandpasses

7. The distributions of x1 and c have no correlation

in the training sample

The location and scale of the x1 distribution in-

ferred for any cosmological sample are thus relative to

the demographics of the training sample for a partic-

ular model, while c is fixed to correspond to a phase-

independent inferred B−V color relative to the mean of

the training sample. Our model definitions and SALT2

differ only in the last definition, intended to separate

the phase-independent color from the phase-dependent

M1 component. The SALT2 training code does not con-

strain the correlation between x1 and c, and instead fixes

the V -band flux (and B-band flux following definition 2)

of the M1 component to be 0 at peak brightness, imply-

ing that SALT2 x1 has no effect on observed B−V color

at peak. For SALT3, removing the correlation between

the parameters x1 and c has a physically intuitive mean-

ing; the dust-like color term does not depend on the pro-

cesses associated with light-curve stretch. Further, it is

easier to make inferences about the latent populations

when the stretch and color parameters are uncorrelated,

as correlated parameters imply that there is redundant

information in the two parameters.

2.2. Photometric model uncertainties

As Rubin (2020) and Rose et al. (2020) suggest that

SN Ia SEDs are determined by 3-5 SED parameters and

a color, a model with a single SED parameter (x1 in our

case) will not capture the full diversity of the population.

We refer to the variation unexplained by our model as

“in-sample variance”. This variation can be contrasted

with the uncertainty in the model parameters due to

training with a finite sample of SNe with finite signal-

to-noise photometry, which we refer to as “out-of-sample

variance”. For a photometric observation in a filter with

central wavelength λc and phase p, in-sample variance is

addressed by a “model variance” composed of two terms.

The first is a diagonal uncertainty defined as

σ2
f (p, λc) =

[
x0 exp(c · CL(λc))

∫
T

(
λ

1 + zHel

)
λdλ

]2

×
[
σ2
M0

(p, λc) + x2
1σ

2
M1

(p, λc)+

2x1CM0M1
(p, λc)σM0

(p, λc)σM1
(p, λc)] (3)
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where σM0
(p, λc;σM0) and σM1

(p, λc;σM1) represent

variability in the flux surfaces and CM0M1
(p, λc;CM0,M1)

is the correlation between flux surfaces. These variance

terms are described by zeroth order B-splines (equiva-

lent to binning the data by phase and wavelength) with

8 basis functions in wavelength and 12 basis functions in

phase. As detailed in Section 2.5 we use a maximum like-

lihood estimator to determine the B-spline coefficients

σM0 ,σM1 ,CM0,M1 . This is distinct from the approach

of SALT2, which took the in-sample variance to have

the same form as that of the out-of-sample variance,

scaling the latter (evaluated by leave-one-out tests) us-

ing a smooth function or “error snake” to fix the χ2
ν of

the photometry of the training sample to 1. Because

the in-sample variance is determined by variability of

the underlying population of SNe light curves while the

out-of-sample variance is determined by the distribution

of available training data, we consider our approach to

be a better account of the remaining variance of the SN

Ia population.

The second term of the in-sample variance is a covari-

ant “color scatter” that allows light curves of the same

supernova in different bands to be coherently offset rel-

ative to one another. The color scatter term between

photometric measurements using the same bandpass is

correlated, with no correlation between measurements

in different bandpasses. This model is similar to chro-

matic models of intrinsic scatter like those of Guy et al.

(2010) and the diagonal terms of the covariance ma-

trix from Chotard et al. (2011). The relative covariance

k2(λc;a) is described by the exponential of a fourth or-

der polynomial in wavelength, where the polynomial co-

efficients a are fitted parameters. Thus, the model co-

variance matrix for two photometric observations i and

j in broadband filters Xi,Xj of a given supernova with

model fluxes ~fModel is

(ΣModel)ij =δijσ
2
f (pi, λc(i))

+

k2([λc])(~fModel)i(~fModel)j Xi = Xj

0 otherwise

(4)

2.3. Modeling of Spectral Data

Although the SALT3 model is intended for use as a

photometric light-curve model, spectral data is included

in the training process to better constrain the shape

of spectral features. However, given that spectral data

have larger calibration uncertainties compared to broad-

band fluxes, we follow the SALT2 training code in “re-

calibrating” spectral data, modulating the model by a

smooth function to match the continuum of the observed

spectrum. We modify the spectral flux equation (Equa-

tion 1) for use with spectra during the training by re-

moving the color term and replacing it with a recalibra-

tion term of similar form,

Fspec(p, λ) = x0[M0(p, λ) + x1M1(p, λ)] exp(

n∑
i

yiλ
i/i!),

(5)

where the spectral recalibration nuisance parameters yi
are fitted during the training procedure. In the limit

of perfectly calibrated spectra, the fitted recalibration

term will reproduce the effect of the color parameter on

the spectrum; by removing the color law entirely from

the spectral flux equation, we mitigate the impact of

mis-calibrated spectra on the color law. The quantity n

controls how many recalibration parameters are allowed

for each spectrum, and is determined based on the wave-

length extent of the spectrum and the number of filter

bands available for that SN (additional filter bands bet-

ter constrain the recalibration term, allowing for more

free parameters). The model variances are defined simi-

larly to the photometry, without the contribution of the

color scatter:

σ2
F (p, λ) =

[
x0 exp(

n∑
i

yiλ
i/i!))

]2

×

[σ2
M0

(p, λ) + x2
1σ

2
M1

(p, λ)

+2x1CM0M1
(p, λ)σM0

(p, λ)σM1
(p, λ)]. (6)

2.4. Regularization

In regions of phase-wavelength space that are poorly

constrained by spectra, the M0 and M1 components

can acquire artifacts such as high-frequency ringing,

or deconvolution noise. To reduce these artifacts, we

use a “regularization” procedure that penalizes large

derivatives in the model where there is an absence of

spectroscopic data, as parameterized by a binned spec-

tral density function Neff(p, λ), with every spectrum as-

signed equal weight. We implement three kinds of reg-

ularization: phase gradient, wave gradient, and dyadic.

These are applied to the two flux surfaces M0(p, λ) and

M1(p, λ). For a flux surface S(p, λ) the regularization

terms are defined as

1. Phase gradient regularization penalizes large

derivatives with respect to phase in less-constrained
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Table 1. Fixed Model Parameters

Parameter Description JLA Training SALT3 Training

ASpec Spectral Suppression · · · 0.75

NPhase Number of phase basis functions for flux surfaces 11 20

Nλ Number of basis functions on wavelength axis for flux surfaces 97 127

Nσ,Phase Number of phase basis functions for flux uncertainty surfaces · · · 9

Nσ,λ Number of basis functions on wavelength axis for flux uncertainty surfaces · · · 5

APhase Phase gradient regularization weight 0 1000

Aλ Wave gradient regularization weight 10 10000

ADyadic Dyadic regularization weight 1000 1000

Model parameters for SALT2.JLA training and SALT3.K21 training. We note that given our adjusted regularization scheme,
regularization weights are not directly comparable. We were unable to determine the exact spectral suppression in the JLA
training, but from Mosher et al. (2014) we expect that this is fine-tuned for a given training sample.

Inputs Model and Error Fitting Validation

Initialization

Input Data
Light curves

Spectra
Metadata:  z, 

MW E(B-V), ...

Model Config
Phase/wavelength 

Range and Resolution
Regularization strength

Color Law Order
Spectral Suppression

Model ?2 Fitting
Levenberg-Marquardt

M0, M1, cl
x0,x1,c

y

Lphot. err.  Fitting
iMinuit

?M0, ?M1, CM0,M1

Fit has 
converged?

No

Yes
Color 

Scatter 
Fitting

cl, a
Light curve 
fitting and 
cosmology

W
rite O

utputs

Diagnostic 
Figures
Model 

visualizations, 
fits to light 
curves and 

spectra

Phot. Errs. Fittingℒ

Figure 2. Activity diagram of the SALTshaker training process, with variable names in the model and model error fitting
sections corresponding to the descriptions in Table 2.

regions

χ2
Phase[S(p, λ)] = APhase

2NPhase∑
i

2Nλ∑
j

(
∂S
∂p

∣∣∣p=pi
λ=λj

)2

Neff(pi, λj)

(7)

2. Wave gradient regularization similarly penalizes

large derivatives with respect to wavelength in

less-constrained regions

χ2
Phase[S(p, λ)] = AWave

2NPhase∑
i

2Nλ∑
j

(
∂S
∂λ

∣∣p=pi
λ=λj

)2

Neff(pi, λj)

(8)

3. Dyadic regularization encourages the flux surfaces

to be separable in phase and wavelength, and is

0 when a flux surface takes the form S(p, λ) =

g(p)× h(λ)

χ2
Dyadic[S(p, λ)] = ADyadic

2NPhase∑
i

2Nλ∑
j

1

Neff(pi, λj)

×
[ ∂S
∂p

∣∣∣∣p=pi
λ=λj

∂S

∂λ

∣∣∣∣p=pi
λ=λj

− S(pi, λj)
∂2S

∂p∂λ

∣∣∣∣p=pi
λ=λj

]2
(9)

The relative strength of the three regularization terms

is determined by the weights {APhase, AWave, ADyadic},
which are inputs to the SALTshaker code. The sum-

mations over phase and wavelength points are evenly
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Table 2. Model and Model Uncertainty Parameters

Parameter Category Number Description

m0 Flux Model NPhase ×Nλ M0 B-spline coefficients

m1 Flux Model NPhase ×Nλ M1 B-spline coefficients

cl Flux Model NCL Color law

x0 Nuisance NSN Overall flux normalization for each SN

x1 Nuisance NSN Stretch of each SN

c Nuisance NSN Color for each SN

y Nuisance ∝ Nspec Spectral recalibration

σM0 Uncertainty 72 Uncertainty in M0

σM1 Uncertainty 72 Uncertainty in M1

CM0,M1 Uncertainty 72 Correlation between M0 and M1

a Color Scatter 4 Color scatter

spaced over the model phase and wavelength ranges,

with twice as many points as basis functions along each

axis. As regularization can bias the model surfaces by

over-smoothing them (Mosher et al. 2014), we tune the

weights to ensure that the regularization terms do not

contribute significantly to the total χ2. Further work

to determine how this regularization scheme affects the

model and to choose optimal model configurations will

require applying our training and analysis framework to

simulations (Dai et al. in prep; Pierel et al. 2020).

2.5. Training Procedure

Based on the model definitions above, we construct

the training χ2 for the model as

χ2
Total =χ2

Phot +ASpecχ
2
Spec + χ2

Constraints + χ2
Reg. (10)

The photometric χ2 term is

χ2
Phot =

NSN∑
n

(~f
(n)
obs − ~f

(n)
Model)

T (Σ
(n)
Total)

−1(~f
(n)
obs − ~f

(n)
Model)

Σ
(n)
Total = diag((σ

(n)
Phot)

2) + Σ
(n)
Model (11)

where for the nth supernova ~f
(n)
obs is the vector of ob-

served photometric fluxes, and ~f
(n)
Model is the vector of the

model fluxes integrated over the photometric bandpass.

The covariance Σ
(n)
Total combines photometric uncertain-

ties and the model uncertainty covariance described in

Equation 4. The factor ASpec is a constant “spectral

suppression” term that downweights the contribution of

spectra to the training χ2 to reduce the sensitivity of

the training to unknown systematic errors in the spec-

tral data (Guy et al. 2007). We set this term such that

the spectral and photometric data have roughly equal

contributions to the total training χ2. The spectral χ2

term is then defined

χ2
Spec =

NSN∑
n

Nspec∑
i

Npoints∑
j

[Fspec(p(n,i), λ
(n,i)
j )− (~f

(n,i)
obs )j ]

2

(σobs)2
j + σModel(p(n,i), λ

(n,i)
j )2

,

(12)

where for the nth supernova, Fspec(p(n,i), λ
(n,i)
j ) is the

model spectral flux at the jth wavelength bin of the ith

spectrum, (~f
(n,i)
obs )j is the observed spectral flux, (σobs)j

is the photometric uncertainty, and σModel(p
(n,i), λ

(n,i)
j )

is the model uncertainty in Equation 6. In χ2
phot and

χ2
spec, we redden the model to account for the Milky Way

E(B−V ) along the line of sight to each SN, but do not

include this term in the equations above for simplicity.

The χ2
Constraints is composed of penalty terms used to

enforce the model definitions described in Section 2.1,

and the regularization term is defined as

χ2
Reg =

{M0,M1}∑
S(p,λ)

χ2
Phase[S(p, λ)] + χ2

Wave[S(p, λ)]

+ χ2
Dyadic[S(p, λ)]. (13)

The SALTshaker code is initialized with the configura-

tion parameters shown in Table 1. SALTshaker then de-

termines best-fit values of the model parameters. These

parameters are shown in Table 2. We define flux model

parameters as those which control the flux surfaces and

color law, uncertainty model parameters as those which

control the output model uncertainties, and nuisance pa-

rameters as those which describe individual supernovae.

SALTshaker alternates between simultaneously fitting

the nuisance parameters and model flux parameters

while keeping uncertainties fixed and fitting the model

uncertainty parameters while keeping model fluxes fixed.

The color scatter is kept fixed at k(λc) = 0 during
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this stage of the training process, as we find that al-

lowing nonzero color scatter results in biased flux sur-

faces due to the regularization procedure. The flux and

nuisance parameters are fit using an iterative Levenberg-

Marquardt algorithm. To reduce the number of (compu-

tationally expensive) Jacobian evaluations of the model

residuals required, we use Schubert’s method to perform

a rank one update on the Jacobian after each iteration

while maintaining its sparsity structure (Marwil 1979;

Schubert 1970). However this technique is unsuitable

for determining the model uncertainties.

To fit the model uncertainty parameters defined in

Equation 4 we define a log-likelihood (LPhot. Errs. given

as

−2 log(LPhot. Errs.) =χ2
Phot −

NSN∑
n

log(|Σ(n)
Total|). (14)

The model uncertainty parameters are chosen to maxi-

mize the log-likelihood using the optimizer iMinuit while

the flux model and nuisance parameters are kept fixed

(James & Roos 1975; Dembinski et al. 2020). After the

training has converged with k fixed to 0, we use iMi-

nuit to fit the parameters controlling the color scatter;

during this final fit, the color law is allowed to vary (hav-

ing previously been fit as a flux model parameter). The

out-of-sample variance is then estimated by inverting

the Hessian matrix of the flux parameters obtained from

the model fitting process, with the regularization terms

suppressed by a factor of 100, and propagating those pa-

rameter uncertainties into the flux surfaces. The model

uncertainties and out-of-sample variance are added to-

gether as the total model uncertainty surface.

The computation time required for the SALT3.JLA

training sample with SALTshaker is approximately three

minutes per iteration, with ∼25 iterations required for
convergence. On the larger SALT3.K21 sample, itera-

tions are significantly longer, with ∼25 minutes required

per iteration. We note that 29-Å spectral binning, which

was used in the SALT2.JLA training, improves speeds

substantially by reducing the amount of data by up to

an order of magnitude. We include this as an option in

SALTshaker but the models in this work use the native

binning of the input spectra. Finally, the slowest com-

ponent of the code is the iterative fitting of the error

model, which for SALT3.K21 requires approximately 4

hours to perform 80 iterations and reach convergence

through iMinuit. Error model iterations are performed

every five iterations by default but could likely be per-

formed less often without adversely affecting the final

model. Faster methods of error model fitting will be an

important avenue for future improvement and should

improve speeds considerably.

An overview of the SALTshaker training procedure is

given in Figure 2.

3. SALTSHAKER VALIDATION

Here, we show that our method is capable of produc-

ing a trained model that reproduces inferred distances

from SALT2 by comparing trained SALT3 models with

SALT2.JLA. We show comparisons between synthetic

photometry in multiple rest-frame filters as well as the

spectral models, and compare distances between the

models.We describe our metrics in Section 3.1, the JLA

training sample of Betoule et al. (2014) and Mosher et al.

(2014) in 3.2, a simulated sample that mimics the de-

mographics of JLA in 3.3, then train on these samples

in 3.4, 3.5.

3.1. Validation Procedure and Metrics

To distinguish between models trained on different in-

put data, we define “SALT3.X ” as the SALT3 model

created with SALTshaker using training sample X. We

refer to the samples used to evaluate the performance

of a given SALT3 model as “validation” samples, as it

will be expedient to evaluate the trained model in some

cases on data that was not used in the model training.

We use the SNANA light curve fitting program to fit val-

idation samples with both SALT2.JLA and SALT3.X.

Given fitted SALT parameters mB , x1, c and their un-

certainties, the Tripp estimator for distance modulus is

µ = mB + α · x1 − β · c−M (15)

with distance uncertainties

σµ =σ2
int + σ2

µ,z + σ2
lens + σ2

mB + (ασx1
)2 + (βσc)

2

+ 2αβσc,x1 + 2ασmB ,x1 + 2βσmB ,c (16)

where σint, α, β and M are nuisance parameters, σµ,z
is computed from a peculiar velocity uncertainty of

250 km s−1, and σlens = 0.055z. We use the SALT2mu

method (Marriner et al. 2011; Kessler & Scolnic 2017)

implemented in SNANA to estimate the nuisance parame-

ters as well as distances in 5 redshift bins. Allowing for a

shift in location and scale of the light-curve parameters,

the observed distributions are similar as compared to

SALT2.JLA (see Section 5.2.2). We thus expect selec-

tion biases to be common between the two models, and

therefore we do not use SALT2mu to correct for selection

biases.

Given estimated distance moduli µ and Hubble resid-

uals relative to a nominal ΛCDM cosmology (∆µ) for

both models we define two metrics. First RMS(∆µ)

across the validation sample and the relative distance
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difference between models defined as

Diff(∆zµ) =
[
µ(0.40 < z < 0.6|SALT3.X )

− µ(0.40 < z < 0.6|SALT2.JLA)
]

−
[
µ(0.01 < z < 0.2|SALT3.X )

− µ(0.01 < z < 0.2|SALT2.JLA)
]
, (17)

where µ(Z|M) indicates a weighted average distance

across a redshift range Z given a model M . Addition-

ally we will show binned Hubble residuals across the

redshift range. We discuss differences in the nuisance

parameter β, as this has physical implications for dust

properties, however α depends on both the demograph-

ics of the training sample and our revised separation

of stretch and color, and thus has no useful compari-

son across models (see Section 2.1). Similarly we com-

pare synthetic photometry, but these comparisons are

most relevant for simulated data when the truth model

is known. We train on multiple simulated and real data

samples to assess how our models perform; in Table 3

we summarize the abbreviations used for these training

samples.

3.2. JLA Training Sample

The JLA data used to train the SALT2.JLA model

consist of 420 SNe with light curves, 83 of which in-

clude spectroscopy, from a compilation of low-z samples

(see Table 4 for details and citations), the Sloan Digital

Sky Survey (SDSS; Holtzman et al. 2008; Kessler et al.

2009a; Sako et al. 2018), and the Supernova Legacy Sur-

vey (Astier et al. 2006, with spectra from Walker et al.

2011; Balland et al. 2018 and private communication

with M. Betoule, C. Balland). These data are summa-

rized in Table 4, along with the new training data dis-

cussed in Section 4, and are included in the data release

at http://saltshaker.readthedocs.io/.

We use the “Supercal” procedure (Scolnic et al. 2015)

to update the calibration of the JLA training sample.

Supercal uses the 3π sky coverage of the PS1 system

and its observations of secondary standard stars to pre-

cisely determine the offsets between different photomet-

ric systems. Scolnic et al. (2015) found that applying

these calibration corrections to the sample of SN Ia used

to measure the Hubble flow without updating the train-

ing calibration could shift w by 0.026. While we do not

study the impact of the calibration on the trained model,

Taylor et al. (2021) examines this with a full reanalysis

of the DES-SNIa cosmology results using a retrained

SALT2 model. We also use the Schlafly & Finkbeiner

(2011) corrections to the Schlegel et al. (1998) Milky

Way dust maps.

3.3. Simulated JLA Training Sample

To test SALTshaker with a known input model and

cosmology, we first simulate the SALT2.JLA training

data to produce our “simJLA” training sample. Train-

ing on the actual JLA training sample is also a useful

test (Section 3.5), but it does not provide a known truth

model to validate the training outputs. For this simJLA

test, every simulated SN that goes into the training sam-

ple has SALT2.JLA as the “truth” model, allowing us

to test the consistency of input and output models.

We use the SNANA software (Kessler et al. 2009c) to

generate Monte Carlo realizations of SN photometry and

spectroscopy mimicking the demographics of the JLA

training sample of 420 SNe. SNANA simulations are fre-

quently used to simulate a random realization for a sam-

ple, in order to explore SN distance biases as a function

of redshift.Our goal here is different: we aim to accu-

rately simulate every individual event in the JLA sam-

ple, including cadence and signal-to-noise for both pho-

tometric and spectroscopic observations. We therefore

use the cadence, redshift, and best fit c and x1 from each

JLA light curve as input to the simulation. Each set of

measured SN properties (z, t0, x1,c) is used to simulate

a rest-frame SED with the SALT2.JLA model. Spectral

variations (intrinsic scatter) are added to the rest-frame

SED using the method in K13 and the covariance model

from the Chotard et al. (2011, hereafter C11) scatter

model3. We do not use the default Guy et al. (2010,

hereafter G10), as the G10 model has non-physical scat-

ter at extremely red wavelengths that does not match

observations. As described in Kessler et al. (2019) the

simulation applies cosmological dimming, lensing, pecu-

liar velocity, galactic extinction, and redshifting to pro-

duce a redshifted SED at the top of the atmosphere.

The filter transmissions and cadence are used to deter-
mine measured fluxes and uncertainties. Finally, the

noise properties of each measured spectrum are applied

to the simulated SED.

This simulation does not exactly reproduce the data

set because of random fluctuations in photometric noise

and intrinsic scatter, and also because the underlying

SALT2 model formalism is an approximation as dis-

cussed in Pierel et al. (2020). Nonetheless the simu-

lation is very similar to the data and is therefore suffi-

cient for testing SALTshaker, as illustrated in Figure 3

for a representative low-z SN Ia. Comparisons between

the parameters of simulations and data after fitting with

3 We simulate α = 0.14 and β = 3.5. Note that the fit value
of β will be lower than the simulated value by ∼0.6 due to the
characteristics of the C11 scatter model (Scolnic & Kessler 2016).

http://saltshaker.readthedocs.io/
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Table 3. Data Abbreviations

Abbreviation Size Description Data Trained Model

JLA 420 Mixture of low-redshift SNe from many surveys and
high-redshift SNe from SNLS and SDSS; see Mosher
et al. (2014)

3.2 3.5

simJLA 420 Simulated data that emulates the JLA training sample 3.3 3.4

K21 1083 Compilation of the JLA training sample combined
with new SNe from Foundation, Pan-STARRS, the
Dark Energy Survey, CfA4, and CSP, with additional
spectra from kaepora

4 5.2

K21train 541 Half of the SNe from the K21 compilation chosen at
random for use as a training sample

4 5.1

K21valid 541 The other half of the K21 SNe, used as a validation
sample to see how the SALT3 model performs on data
that was not part of the training

4 · · ·

Abbreviations we use to refer to compilations of cosmological SNe Ia in this work, number of SNe in each,
a brief description, the section in which we discuss the data itself, and the section in which we discuss a
SALT3 model trained on each

Figure 3. SN 1992A light curves (left) and spectra (right) for real data (black) and SNANA simulation (orange) generated
with best-fit x1, c, z, and time of maximum light. Photometric data are shown on the left and spectroscopic data on the
right. Random offsets between data and simulations are expected due to the C11 scatter model and spectral recalibration. The
simulated spectra at red wavelengths have better SNR than the data because we model the average spectral SNR rather than
its wavelength dependence.
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Figure 4. Distributions of parameters for the simulated (red
lines) versus real (black dots) SALT2.JLA training samples.
Comparisons are shown for redshift (A), mB (B), uncertainty
on mB (C), x1 (D), c (E), and the maximum S/N in each SN
light curve (F). All distributions are well-matched except for
the uncertainty on mB , which is slightly higher in the real
data, perhaps due to the C11 model resulting in fainter SNe
than the data in some bandpasses.

the SALT2.JLA model are shown in Figure 4, with only

slight observed differences in average mB uncertainty.

3.4. Training on a Simulated SALT2.JLA Training Set

We use SALTshaker to train a model using our

simulated JLA sample, producing a model we call

SALT3.simJLA. In Figure 5 we show the relative dif-

ference between the input SALT2.JLA synthetic pho-

tometry and the corresponding synthetic photometry

recovered from the SALT3.simJLA model. There is sig-

nificant discrepancy in the ultraviolet where regulariza-

tion strongly impacts the recovered model spectra, but

at central passband wavelengths 4000 Å < λ < 7000 Å

and −10 days < p < 30 days the other three light curves

(B, V , and R) are consistent with the truth model at a

level better than 1%. To illustrate the impact of changes

in the color law on a “typical” light curve in units of

magnitudes, we use the quantity σc ·∆CL(λ), where the

standard deviation of the distribution of the SALT color

parameter c is ∼ 0.1. As can be seen from Figure 6, the

5.0%
0.0%
5.0%

M
0/M

0

Simulated Model Training

U (3500 Å)
B (4500 Å)

V (5500 Å)
R (6500 Å)
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5.0%

M
1/M

0

Figure 5. Relative difference between integrated model sur-
faces of the input SALT2.JLA truth model and SALTshaker

model trained on simulated data. Grey shading shows ±1%.
Lightcurves are integrated over square UBV R-like band-
passes 1000 Å wide, centered at 1000 Å intervals from 3500 Å
to 6500 Å. Significant discrepancies are seen in the ultravi-
olet where there is sparse data and regularization schemes
have largest impact.

2000 4400 6800 9200
(Å)

0.05

0.00

0.05

c
CL

(
)

Simulated Model Training

Figure 6. Change between color law of input truth model
and model trained on simulated data, multiplied by σc =
0.1 to show the impact on a typical SN Ia light curve in
magnitudes. Dashed lines show ±0.01 mag. Grey shaded
regions indicate the wavelengths for which the color law is
linear. The slopes of the color law match closely at > 7000
Å, leading to very small differences across the wavelength
range where the color law is linear.

color law difference is > 0.05 mag when λ < 3000 Å, the

regime where the color law is least constrained.
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We find that the RMS of σc∆CL(λ) is 0.01 mag be-

tween wavelengths 3500Å < λ < 7000 Å, central filter

wavelengths for which the SALT2.JLA model is con-

sidered reliable. We conclude that because few SNe

constrain the SED at λ < 3000 Å, the limited set of

lightcurve parameters c,x1 in this wavelength region

poorly constrain the color law and the spectral com-

ponents. In Sections 4 and 5 we substantially expand

the training data to address this issue.

Next we compare distances from the two models. To

avoid the statistics of the training sample limiting the

precision of our validation, we simulate a “large” JLA

simulation for validation, with summary statistics for

the Hubble diagram fits shown in Table 5, row 1. Instead

of simulating exact x1 and c values for an “apples-to-

apples” comparison with the SALT2.JLA training sam-

ple, we generate ∼3000 SNe mimicking a combination of

CfA3 (Hicken et al. 2009a), SDSS, and SNLS by using x1

and c distributions from Scolnic & Kessler (2016). We

show an example of Hubble residuals in Figure 7. We

observe consistent measurements of β and RMS(∆µ),

with σint higher by 0.005 mag due to our treatment of

uncertainties. We also observe a slightly higher value of

α, which is attributed to the x1/M1 degeneracy. The

distance difference between the models (Eq. 17) is con-

sistent (Diff(∆zµ) = 7(11) mmag) despite the U-band

discrepancies in the light curves seen in Figures 5 and 6.

As the validation sample here has similar demograph-

ics to the training sample, the same sparsity of data

that allows the observed ultraviolet divergences causes

those same divergences to have little effect on the in-

ferred distances. We conclude that for a SALT model

to be reliable at these wavelengths, the density of data

in this region must be increased to match the density

of data where we recover the input model to ∼ 1%, at

least a factor of two increase (see Section 4, where we

discuss the density of photometric data across the JLA

wavelength range).

3.5. Training on the JLA Training Set

Next, we run SALTshaker on the real JLA training

sample; we refer to this trained model as SALT3.JLA.

We follow the validation procedure of Section 3.1 us-

ing the JLA training set for our validation sample. As

shown in row 2 of Table 5, we find a similar α, a

slightly lower β, and consistent RMS(∆µ). We find

that Diff(∆zµ) = 32(28) mmag is consistent with zero.

σint is slightly higher for SALT3.JLA, attributable to

greatly decreased model uncertainties. Given the equiv-

alent RMS scatter, this σint difference does not result

in reduced distance precision. The distance moduli are

consistent at the 1-σ level between SALT2.JLA and

the SALT3.JLA, and the model surfaces are consistent

within the uncertainties. We show the Hubble residu-

als of this model in Figure 8 (along with our extended

SALT3 models discussed in Section 5).

4. EXPANDED TRAINING DATA: THE K21

COMPILATION

To create a next-generation SALT model with ex-

tended wavelength range and reduced uncertainties, we

add high-quality data from the Dark Energy Survey

(Brout et al. 2019b), the Foundation Supernova Sur-

vey (Foley et al. 2018), and the Pan-STARRS Medium

Deep Survey (Scolnic et al. 2018). For SNe with pho-

tometric data in the training sample, we add 693 low-z

spectra from the Kaepora database (Siebert et al. 2019),

the majority of which originate from the Berkeley SN Ia

Program (BSNIP; Silverman et al. 2012a; Stahl et al.

2020). We show the density of photometric and spectral

data in phase and wavelength space with the original

JLA training sample and the additional data included

in the K21 compilation in Figure 10. Our final training

sample adds data across the phase space, but is most

impactful in the red and blue regions of our wavelength

range, where the JLA training data were limited. Wave-

lengths < 3500 Å are on average covered by 1.8× more

light curves, while wavelengths > 7500 Å are covered

by an average of 2.1× as many light curves and 5.7× as

many spectra. Additional photometric data makes the

distribution across phase space more uniform, where the

JLA data has comparatively little data in the gap be-

tween low-redshift B and V bandpasses.

We initially characterize our performance with the

extended set of data using separate samples for train-

ing and validation. We define the “K21valid” and

“K21train” compilations by randomly assigning half of

the supernovae to each. Finally, to produce our best

model, we combine all available data to create the “K21”

compilation, and summarize the data included below

and in Table 4. The redshift distributions of these data

are shown in Figure 9. Trained models using these com-

pilations as training samples are discussed in Section 5.

4.1. The Pan-STARRS Medium Deep Survey

The Pan-STARRS medium deep survey covered 70

square degrees of sky over four years, discovering ap-

proximately 5200 SNe (Jones et al. 2017; Villar et al.

2020) and spectroscopically classifying ∼10% of these at

a median redshift of ∼0.35 (Rest et al. 2014). The Pan-

theon analysis, which combined these data with JLA,

includes 279 PS1-observed SNe Ia with an average of ap-

proximately 6 observations per 10 days in griz (Scolnic

et al. 2018). We use these SNe Ia in our training data.
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Figure 7. Hubble residual comparison with SALT2.JLA and SALT3.simJLA fits to simulated data. Each point represents
a simulated SN light curve from the simJLA sample, which has been fit with either the SALT2.JLA model (blue) or the
SALT3.simJLA model (red) with larger points showing the binned distances from each model. We do not expect SALT3 to
outperform SALT2 here because SALT2 is the “truth” model, but we find consistent results.
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Figure 8. Comparison of the SALT2.JLA (blue) versus SALT3.K21 (red) Hubble residuals for the full K21 compilation, with
results from SALT3.JLA and SALT3.K21train shown in orange and teal, respectively. The same number of 3σ outliers are seen
when using either SALT2.JLA and SALT3.K21a. A small change in beta can be attributed to a modified separation of color and
stretch, along with improved parameter constraints on color. Additional details regarding the nuisance parameters in different
training sets are shown in Table 5.

a SALT3 3σ outliers are the SNe 1998ab, 05D2ci, 1995ac, 5635, 40166, 160214, and 370369. SALT2 outliers are the SNe
05D2ci, 40166, 90037, 160214, and 2002hu.

4.2. The Foundation Supernova Survey

The Foundation Supernova Survey (Foley et al. 2018)

followed SNe using the Pan-STARRS1 telescope, and

measured well-calibrated SN light curves in griz filters

with a five-day cadence near maximum light and an ap-

proximately 8-day cadence beginning at +10 days af-

ter maximum light. To achieve reduced selection effects

compared to previous surveys that targeted bright, pre-

selected low-z galaxies, Foundation primarily followed

SNe discovered by untargeted surveys such as the All-

Sky Automated Survey for Supernovae (Shappee et al.

2014), the Asteroid Terrestrial-impact Last Alert Sys-

tem (Tonry et al. 2018), Gaia (Gaia Collaboration et al.

2016), and the Pan-STARRS Survey for Transients (Hu-

ber et al. 2015) .



14

Figure 9. Redshift distribution of the JLA training data
for SALT2.JLA (black dashed) and our training data for
SALT3.K21 (red solid), which adds Foundation (blue), PS1
(green) and DES (orange) to the JLA training sample as
well as small samples from CSP and CfA4. At the top, we
label the rest-frame central filter wavelengths of each added
dataset, with the full filter widths in conjunction with spec-
troscopy constraining the full SALT3.K21 wavelength range.
The combined dataset contains approximately three times
as many spectra as the previous SALT2 training sample and
contains approximately 2.5 times as many SNe.

The Foundation first data release in Foley et al. (2018)

contains 225 SNe Ia, 180 of which are cosmologically use-

ful. These data have been used to measure cosmological

parameters in Jones et al. (2019) and the correlation of

host galaxy properties with SN distances in Jones et al.

(2018). The iz band coverage of Foundation is particu-

larly critical to creating a SALT3 model that is trained

to redder wavelengths than enabled by the JLA data

alone. We include spectra for 114 Foundation SNe from

the Dettman et al. (2021) data release.

4.3. The Dark Energy Survey

The Dark Energy Survey (DES) three-year spectro-

scopically classified SN sample contains 207 SNe Ia at

a median redshift of 0.36 (Abbott et al. 2019). These

SNe were discovered by imaging eight 2.7 deg2 “shal-

low” fields (depth ≈ 23.5 mag) and two 2.7 deg2 “deep”

fields (depth ≈ 24.5 mag) approximately once per week

(Smith et al. 2020a). Transients were discovered using a

difference-imaging pipeline (Kessler et al. 2015) and fi-

nal photometry was performed with a “scene modeling”

pipeline described in Brout et al. (2019b). See Abbott

et al. (2019) and Brout et al. (2019a) for additional de-

tails regarding the DES SN Ia data and analyses. These

data have a maximum redshift of ∼0.85 and complement

SNLS in probing rest-frame near-UV wavelengths with

well-calibrated (sub-percent) photometric data (Burke

et al. 2018).

4.4. Sample Selection Cuts

To ensure that SNe are suitable for inclusion in a train-

ing sample, we first require that every SN in the com-

pilation is a spectroscopically classified, Branch-normal

SN Ia (Branch et al. 1993; we include 1991T-like SNe Ia

following the original SALT2 training procedure; Guy

et al. 2007). For the SN light curves, we make the fol-

lowing selection requirements (cuts):

• At least four epochs at phases between −10 < p <

35 days, where p is the rest-frame phase relative

to time of B-band peak.

• At least one measurement after peak brightness

(5 < p < 20), to constrain the shape.

• At least one measurement in each of at least two

filters at −8 < p < 20 to constrain the color of the

SN.

• At least one measurement prior to peak brightness

(−10 < p < −1) to ensure a well-measured time

of maximum light. This is the only cut that was

not included in the original SALT2 training4.

For the spectra, we include the original SALT2.JLA

training spectra in addition to spectra taken from the

kaepora database and spectra taken as part of the Foun-

dation Supernova Survey. A number of these spectra

were taken by the Foundation team, but most have been

published on the Transient Name Server5 as classifica-

tion spectra.

To ensure minimal host galaxy contamination in the

high-z SN spectra used for model training, Guy et al.

(2007) fit the spectra with a combined model includ-

ing the predicted SN spectrum, the spectral recalibra-

tion parameters, and a galaxy model (elliptical, S0, Sa,

Sb, and Sc templates). They removed spectra for which

there was evidence for host galaxy contamination at the

68% confidence level.

For Foundation and the additional low-z SN spec-

tra included here, low-z SNe are much brighter rela-

tive to their host galaxies than at the redshifts probed

by SNLS and SDSS. We clip host galaxy lines, mask

regions with uncorrected telluric features, and remove

excessively noisy or poorly calibrated regions of each

spectrum, but do not attempt to subtract a host galaxy

continuum. We remove a handful of spectra with poor

quality from visual inspection. After cuts there are 114

spectra from Foundation and 693 from Kaepora, a sub-

set of which are shown in Section 5. All but five Foun-

dation SNe have redshifts measured from host galaxy

4 5 of 420 SNe from the JLA sample are removed with this cut.
5 https://wis-tns.org/

https://wis-tns.org/


15

-20

-2

15

32

50

Ph
as

e 
(d

ay
s)

JLA

+

K21 add.

=

K21 Full

2000
5000

8000
11000

-20

-2

15

32

50

+

2000
5000

8000
11000

Wavelength (Å)

=

2000
5000

8000
11000

0

50

100

Nu
m

be
r o

f
 sp

ec
tra

0

1000

2000

Nu
m

be
r o

f
 li

gh
t c

ur
ve

s

Figure 10. Number of light curves or spectra constraining each bin in our phase/wavelength space. Panels show coverage
of photometric data (upper panels) and spectral data (lower panels) in the JLA training sample (left panels), the PS1, DES,
and Foundation data added in the K21 compilation (middle panels), and the complete K21 compilation (right panels). A bin
is considered “covered” by a given light curve if it is within the FWHM of the rest-frame bandpass. Foundation photometry
provides much more extensive photometric coverage of red wavelengths, while PS1 and DES photometry provides additional
rest-frame blue photometry, and the new photometric data covers the phase space more uniformly than JLA alone. Similarly,
spectra from kaepora are immensely impactful at wavelengths λ > 7500 Å, greatly assisting the deconvolution of z band data.

features. The complete training data are available at

https://saltshaker.readthedocs.io.

5. THE SALT3 MODEL: EXTENDING THE

WAVELENGTH RANGE AND TRAINING ON

PANTHEON, FOUNDATION, AND DES DATA

Having demonstrated the effectiveness of SALTshaker

on the original JLA training data, we now train a SALT3

model using additional data, extending the free model

parameters in SALTshaker in three ways. First, we

extend the SED wavelength range to 11000 Å so that

rest frame filters centered at wavelengths up to ∼ 8500

angstroms, such as the Foundation z-band, can be fit

with the model. Secondly, we extend the SED wave-

length range over which the color law is fit with a poly-

nomial (Eq. 2) to 8000 Å , just below the central wave-

length of the PS1 z band. We use a fourth-order poly-

nomial, rather than the third-order polynomial used for

SALT2.JLA, to model the color law over the increased

wavelength range with ×2.5 more training data. Third,

the color scatter model is changed from a third to a

fourth-order polynomial to allow additional flexibility

over the increased wavelength range.

5.1. Validation on Extended Wavelength Range

Before presenting our model trained on all data

in Section 5.2, we check the performance on sepa-

rate training and validation samples. We take the

“K21valid” compilation as our cosmology sample us-

ing our “SALT3.K21train” model as described in Sec-

tion 3.1, and show the resulting Hubble residuals in

Figure 8 and in row 3 of Table 5. We find that nui-

sance parameters are similar between SALT2.JLA and

the SALT3.K21train model, with σint slightly higher by

0.01 mag but with a consistent RMS(∆µ) (the SALT3

https://saltshaker.readthedocs.io
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Table 4. The K21 Compilation

Survey NSN Na
spectra Na

spectra zmin zmed zmax Filters Ref.

(JLA) (Total)

Calan-Tololo 5 0 0 0.015 0.020 0.051 BV RIb Hamuy et al. (1996)

CfA1 8 46 66 0.004 0.011 0.050 UBV RIb Riess et al. (1999)

CfA2 13 108 166 0.008 0.014 0.031 UBV RIb Jha et al. (2006)

CfA3c 51 31 534 0.004 0.023 0.041 UBV RIri Hicken et al. (2009b)

SDSSc 202 0 12 0.037 0.166 0.250 ugriz Holtzman et al. (2008)

SNLS 111 63 63 0.149 0.499 0.700 griz Astier et al. (2006)

Misc. low-zc 25 152 216 0.001 0.009 0.077 UBV RIb Jha et al. (2007)

SALT2.JLA Total 415 400 1057 0.001 0.172 0.700 · · · · · ·
CfA4c 30 0 0 0.009 0.029 0.070 BV ri Hicken et al. (2012)

CSP 13 0 36 0.011 0.029 0.058 uBV gri Krisciunas et al. (2017)

Foundation 153 0 114 0.005 0.034 0.111 griz Foley et al. (2018)

PS1 MDSc 266 0 0 0.026 0.297 0.630 griz Scolnic et al. (2018)

DES-spec 206 0 0 0.078 0.362 0.850 griz Abbott et al. (2019)

New Data Total 668 0 150 0.005 0.244 0.850 · · · · · ·

SALT3 Total 1083 400 1207 0.001 0.201 0.850 · · · · · ·

Note. SNe Ia in the K21 compilation, after cuts: the original JLA training sample is reduced to 415 SNe
(originally 420) and the new data adds 668 SNe, for a total of 1083 SNe.
a Total number of spectra, rather than number of SNe with spectra, which is 83 for the JLA sample and an
additional 297 from the new data included here. Spectra are from Filippenko et al. (1992); Wells et al. (1994);
Patat et al. (1996); NAT (1997); Li et al. (2001); Salvo et al. (2001); Valentini et al. (2003); Anupama et al.
(2005); Benetti et al. (2004); Kotak et al. (2005); Leonard et al. (2005); Garavini et al. (2007); Stanishev
et al. (2007); Thomas et al. (2007); Foley et al. (2008); Pignata et al. (2008); Wang et al. (2009); Foley et al.
(2010); Östman et al. (2011); Walker et al. (2011); Blondin et al. (2012); Silverman et al. (2012b); Folatelli
et al. (2013); Balland et al. (2018) and from private communication with M. Betoule and C. Balland.
b We note that these filter transmission curves were not provided for these samples.
c 11 SNe in these samples have additional data from the CSP (Contreras et al. 2010; Krisciunas et al. 2017),
while SDSS SNe 2006oa, 2006ob, 2006on, and 2006nz also have data from CfA3 (Hicken et al. 2009b).
c See also Rest et al. (2014) and Jones et al. (2018).

RMS is negligibly smaller). Diff(∆zµ) is consistent with

zero at the mmag level.

5.2. Training on Complete K21 Compilation

Finally, we train our best SALT3 model, which we

call SALT3.K21, using all of the data described in pre-

vious sections as a training sample. The sample includes

1083 SNe, a factor of 2.5 more SNe than the JLA train-

ing sample, and 1207 spectra, a factor of three increase

in the number of spectra. Synthetic light curves from

SALT3.K21 and SALT2.JLA are compared in Figure

12 and the model uncertainties are compared in Fig-

ure 13. We see good consistency between SALT2.JLA

and SALT3.K21, with modest differences in the u-band

and some additional differences in redder bands; at both

wavelength ranges we have substantially increased the

training sample (see Figure 10). Similarly, as shown

in Figure 14, the color law is consistent with that of

SALT2.JLA to within 1% across the entire wavelength

range.

We compare Hubble residuals of the SALT3.K21 and

SALT2.JLA models in Figure 8. Individual standard-

ized distances are consistent to 0.05 mag between the

two models, and the effects on the Hubble diagram are

found in row 4 of Table 5. Diff(∆zµ) is consistent with

zero at 2(14) mmag. Finally, row 4 of Table 5 shows nui-

sance parameters and Hubble diagram metrics, demon-

strating that SALTshaker produces a new SALT3 model

with slightly lower total dispersion, consistent σint, and

consistent distances. We note that the β parameter is

lower by 0.24 in the SALT3 model, likely due to a re-

considered separation of color and stretch.

5.2.1. Model Uncertainties and Hubble Scatter of
SALT3.K21

The uncertainties in Figure 13 show that both the

color scatter and light-curve uncertainties in redder
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Figure 11. RMS of Hubble residuals (panel a) and quadratic means of uncertainties in distances and light-curve parameters
(panels b-e) of our compilation using two SALT models in four logarithmically spaced redshift bins from 0.015 < z < 1.
SALT3.K21 improves measured RMS Hubble scatter across our entire redshift range. The smallest improvements appear to be
in the intermediate redshift range z ∼ 0.2, with larger improvements at both lower and higher redshifts where improvements to
the red and blue regions of the rest-frame model are most important.

bands are much lower in SALT3.K21 than SALT2.JLA.

The SALT2 color scatter was effectively unconstrained

by the JLA data past mean passband wavelengths ∼
8000 Å, and we find that while the color scatter is sig-

nificant at these wavelengths, it is much smaller than

implied by the SALT2.JLA model. Our additional data

constrains this region up to ∼ 8500 Å, and redder data

will be required to see how this effect carries into the

NIR. We also note lower color scatter by ∼ 1% in the

blue, which we attribute to improved relative calibration

of the training sample.

Fitting the light curves using the SALT3.K21 model,

we compare the uncertainties in distances and light-

curve parameters to those found using SALT2.JLA. In

Figure 11 we compare performance across the redshift

range. Our model shows reduced Hubble scatter and

distance uncertainties over the SALT2.JLA model at

nearly every redshift, with the least improvement at

moderate redshifts z ∼ 0.2, where signal to noise is

high and the SALT2.JLA model is already perform-

ing well. Light-curve parameters from SALT3.K21train

have smaller uncertainties across the redshift range, with

the exception of x1 uncertainties. Our largest improve-
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Figure 12. Comparisons of synthetic light curves. Upper two panels show light curves from both SALT2.JLA and SALT3.K21
in arbitrary units of flux. Differences are most prominent in Bessell I band. Lower panels show a family of SALT3 lightcurves
created by varying the x1 parameter.

Figure 13. Color scatter as a function of central filter wavelength (left) and example light curves (right) with model uncer-
tainties from SALT2.JLA (blue) and SALT3.K21 (red). SALT3 has comparable errors in the u and g bands but much smaller
uncertainties in the r and i bands due to training data with much better coverage at those wavelengths, especially at large or
small x1 (with errors in both models blowing up at very early phases). Only the SALT3 model covers the z band (right-most
panel). On the left, dashed lines illustrate the wavelengths where the color scatter is unconstrained by data from the JLA
sample (blue) or the K21 compilation (red; grey shading).
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Figure 14. Comparison of SALT2.JLA versus SALT3.K21
color law, along with the extinction curves of Cardelli et al.
(1989) and Fitzpatrick (1999) for comparison. For all four
curves RV is fixed to 3.1.

ments, particularly in color uncertainty, are found at low

redshift, where the improved red wavelength coverage of

our model allows the use of additional light curve bands

in fitting these SNe, providing stronger constraints.

There is a slight improvement in RMS Hubble residu-

als, largely attributable to decreased color uncertainties

in the low redshift sample. Breaking this down further,

Figure 15 shows the Hubble scatter binned by the num-

ber of additional filters used in the SALT3.K21 light-

curve fit as compared to the SALT2.JLA light-curve fit

in Figure 15. Where two additional filters are available,

RMS(∆µ) improves by ∼ 10%. We conclude improve-

ment in the SALT3 model is most noticeable when it

allows us to fit SNe with existing light curves in filters

out of the SALT2.JLA wavelength range. At high red-

shift, SALT3’s improved constraints on the NUV model

reduce Hubble scatter by ∼ 0.01 mag, although there

is typically not sufficiently red data to take full advan-

tage of the extended wavelength range at these redshifts.

Similarly, when breaking down results by survey, as we

show in Figure 15, the greatest improvement is in the

low-z CFA3 and Foundation samples where we can make

use of I and iz band observations (respectively) previ-

ously unused in SALT2.JLA-based analyses at low red-

shift. We are able to reduce the RMS(∆µ) of the Foun-

dation sample from 0.144± 0.001 mag to 0.125 mag, an

improvement of 15%.

5.2.2. Comparison of SALT3.K21 and SALT2.JLA
Light-curve Parameters

The SALTshaker training procedure results in differ-

ent distributions of light-curve parameters compared to

SALT2.JLA. Some differences are due to changes in how

012
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Figure 15. Upper panel: RMS(∆µ) versus the number of
additional filters used in SALT3.K21 (red) light-curve fits as
compared to fits made using SALT2.JLA (blue). The num-
ber of SNe and median redshift are printed above each bin.
Lower panel: RMS(∆µ) versus sample for SALT3.K21 (red)
and SALT2.JLA (blue), for all samples which have more than
30 SNe Ia in our compilation. As we move to surveys dedi-
cated to searches at higher redshift, fewer SNe have data that
could not be fit with SALT2, and the advantage of SALT3’s
wavelength range becomes less important.

the SALT3 model is defined, while others are from the

demographics of the training sample. For example, a

x1/M1 degeneracy is broken by setting a constraint on

the standard deviation σx1 = 1, both in our proce-

dure and in the original training procedure; therefore

including additional data with higher stretch increases

the scale of the M1 component.

In Figure 16 we compare the distributions of the x1

and c parameters from both models. We note a slight

rotation, shift, and scale change of the color/stretch dis-

tribution relative to SALT2.JLA. These linear transfor-

mations cancel in the Tripp standardization of distance,

absorbed into the nuisance parameters α, β,M. The
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offset in color in particular is from including bluer high

redshift SNe from PS1 and DES in the training sam-

ple. The rotation is due to the distinct procedures for

separating stretch and color between the SALT2 train-

ing code and SALTshaker. SALT3.K21 x1 and c values

can be approximated from the SALT2.JLA values by the

transformations

x
(SALT3)
1 ≈1.028x

(SALT2)
1 + 0.138c(SALT2) + 0.005 (18)

c(SALT3) ≈0.002x
(SALT2)
1 + 0.985c(SALT2) + 0.013.

(19)

To test the similarity of the shape of the distribu-

tions, we use the two dimensional Kolmogorov-Smirnov

-like test statistic of Press & Teukolsky (1988). We mod-

ify the procedure by linearly transforming both sets of

light-curve parameters to have the same mean, standard

deviation, and x1-c correlation before calculating the

statistic. We find the test statistic for the SALT2.JLA

and SALT3.K21 x1 and c parameters, then bootstrap

resample the data and calculate the test statistic with

the resampled data. We derive a p-value= 0.895, and

conclude that we cannot distinguish the shape of the

underlying distributions.
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Figure 16. Scatterplot of the x1 and c light-curve param-
eters measured with SALT2.JLA and SALT3.K21. We ob-
serve a linear transformation of the parameters, as expected
from changes in the demographics of the training sample and
our procedure for separating stretch and color. Best fit c-x1
lines and correlation coefficients r are shown to illustrate the
rotation of the distribution as SALT3 forces the indepen-
dence of x1 and c.

6. CONCLUSIONS

We have presented SALTshaker, a new Python-

based training code to train a phenomenologically

motivated light-curve model using the SALT frame-

work, in addition to a retrained SALT model we call

SALT3. SALTshaker is publicly available at https:

//github.com/djones1040/SALTShaker with documen-

tation at https://saltshaker.readthedocs.io/en/latest/.

The SALTshaker documentation includes links to the

training data and the SALT3.K21 model, and the

SALT3.K21 model is compatible with and included in

the latest versions of SNANA and sncosmo.

The SALT3.K21 model itself includes updated calibra-

tion with Supercal, a training sample with 1083 SNe −
2.5 times larger than previous training samples − and

extends to the rest-frame iz bands. Due to its larger

wavelength range, we find that SALT3.K21 distances

for both legacy low-z data and Foundation data are ap-

proximately 15% more precise, equivalent to increasing

the low-z sample size by 30%. The SALT3.K21 model

is based on updated calibration with Supercal (Scolnic

et al. 2015) and revised MW E(B-V) estimates from

Schlafly & Finkbeiner (2011). As part of an upcom-

ing cosmology analysis we have employed SALT3.K21

within the PIPPIN (Hinton & Brout 2020) framework,

generating simulations and performing bias corrections

following the methodologies of Kessler et al. (2019) and

Kessler & Scolnic (2017). Although this work is pre-

liminary, we find that cosmological parameters found

using a larger light-curve dataset of ∼ 2000 SNe Ia (to

be released in Brout+ in prep) are consistent between

SALT3.K21 and SALT2.JLA. Looking to future mis-

sions, we find that for the forecast SN Ia survey of the

Roman Space Telescope, assuming the ALLz strategy

(Hounsell et al. 2018), the extended wavelength range

in SALT3.K21 makes use of ∼ 20% more observations

compared to SALT2.JLA; this increase is about a fac-

tor of 2 for redshifts z < 0.5, and falls to about a 10%

increase at z = 1.5.

Several light-curve models have been developed for

cosmological supernovae, including MLCS (Riess et al.

1996), MLCS2k2 (Jha et al. 2007), SiFTO (Conley et al.

2008), SNooPy (Burns et al. 2011), SNEMO (Saunders

et al. 2018), SUGAR (Léget et al. 2019), and BayesSN

(Mandel et al. 2011; Mandel et al. 2020). In the con-

text of other modern light-curve models, SALT3 offers

an approach to model design and training process that

prioritizes the use of heterogeneous spectral and photo-

metric data to provide extensive phase and wavelength

coverage and native k-corrections through cosmology-

independent training. The model framework is mini-

mally changed from SALT2, so SNANA simulations, bias

https://github.com/djones1040/SALTShaker
https://github.com/djones1040/SALTShaker
https://saltshaker.readthedocs.io/en/latest/
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Table 5. Summary of SALT Model Nuisance Parameters and Relative Distance Difference for Different Training Sets

Sample Nuisance Parameters Hubble Flow Dist.

Model NTrainingValidation Sample α β σintRMS(∆µ) Diff(∆zµ)

SALT2.JLA 420 large sim. JLAb 0.151± 0.003 3.101± 0.031 0.098 0.173 · · ·
1 SALT3.simJLA 420 large sim. JLAb 0.165± 0.003 2.854± 0.028 0.103 0.182 −0.007± 0.011

SALT2.JLA 420 JLA 0.131± 0.009 3.230± 0.114 0.128 0.153 · · ·
2 SALT3.JLA 420 JLA 0.142± 0.011 2.952± 0.124 0.145 0.155 0.032± 0.028

SALT2.JLA 420 K21 Valid 0.151± 0.008 3.064± 0.086 0.103 0.148 · · ·
3 SALT3.K21train 541 K21 Valid 0.115± 0.008 2.967± 0.091 0.118 0.152 0.013± 0.020

SALT2.JLA 420 K21 Full 0.139± 0.005 3.011± 0.060 0.103 0.146 · · ·
4 SALT3.K21 1083 K21 Full 0.140± 0.005 2.833± 0.057 0.110 0.143 −0.002± 0.014

Cosmological results from light-curve fits using SALT3 models created with different training sets, compared to results
when using the SALT2.JLA model. Training sets include a simulated JLA training sample (simJLA, Row 1), the real
JLA training sample (JLA, Row 2), an expanded training sample using the full JLA training sample but including
only half the additional data we use, with the remainder used for validation (K21train, Row 3), and the full K21
compilation (highlighted in Row 4), which is the training sample used to create the SALT3 model published in this
work. Our best model using the complete K21 compilation results in nuisance parameters and distances statistically
consistent but slightly lower Hubble scatter as compared to SALT2.
a Relative to the equivalent SALT2 fitting results, the distance between average Hubble residual at 0.01 < z < 0.2
and the average Hubble residual at 0.4 < z < 0.6.
b Large, combined simulations of CfA3, SDSS, and SNLS with a total of ∼3000 SNe to measure distance biases more
precisely than is possible from a sample with the size of the JLA training sample

corrections, and other analysis products are expected to

require little revision.

Over the coming years, we expect SALTshaker will

continue to be developed and improved as additional

SN data becomes available and additional SN standard-

ization parameters (e.g., host mass) are discovered and

explored. Further development work could focus on

the error model, which is currently based on central fil-

ter wavelengths rather than integrated quantities. This

is a potential source of systematic uncertainty because

observer-frame filter functions are contracted in the rest

frame. Additionally, SALTshaker enables a more rigor-

ous evaluation of systematic uncertainties such as those

arising from limited training data, photometric calibra-

tion uncertainties, or treatment of SN spectra. These

can be evaluated in a straightforward and rigorous way

by re-training the SALT3 model surfaces on simulated

data. Although we have demonstrated that SALTshaker

can faithfully recover a truth model at the ∼1% level,

future work will also be able to fully validate the model

training process using an entire analysis chain that in-

cludes training, bias corrections, and cosmology fitting

(Dai et al in prep). Similarly, while the SALT3 model

surfaces presented in this work have been trained on

data recalibrated to the level of 1% via the Supercal

procedure (Scolnic et al. 2015, 2018), we have left quan-

tifying the reduced calibration uncertainties as a topic

for further work.

The BYOSED code (Pierel et al. 2020) implements a

range of simulated effects to a base SED template, such

as perturbations to line velocity, multiple sources of red-

dening with distinct effects, and correlations of host

galaxy properties with the SN Ia SED. Future work

could perform the SALTshaker method on a BYOSED-

produced training sample with such underlying effects.

By propagating any biases introduced by the training

code into cosmology, we may quantify the potential im-
pact of currently unmodeled supernova phenomenology

on cosmology.

Samples of SN Ia light curves will increase by orders

of magnitude with the Vera Rubin Telescope’s LSST

(Ivezić et al. 2019) and the Roman Space Telescope

(Hounsell et al. 2018). For error budgets to continue

improvement, light-curve models should not be tied to

outdated calibration standards, and it is essential that

the model training process be regarded as a key com-

ponent of an integrated cosmology analysis, as has been

done in Betoule et al. (2014) and Mosher et al. (2014).

Software: AstroPy (Astropy Collaboration et al.

2013, 2018),Astroquery (Ginsburg et al. 2019),extinc-

tion(Barbary2016),iMinuit(James&Roos1975;Dembin-

ski et al. 2020), Matplotlib (Hunter 2007), NumPy (Harris
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etal.2020),SciPy(Virtanenetal.2020),sncosmo(Barbary

et al. 2015, 2016), tqdm (da Costa-Luis et al. 2021)
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