
PHYSICAL REVIEW MATERIALS 4, 114408 (2020)
Editors’ Suggestion

Discovering rare-earth-free magnetic materials through the development of a database

Masahiro Sakurai ,1,* Renhai Wang ,2,3 Timothy Liao,1,4 Chao Zhang ,2 Huaijun Sun,2 Yang Sun ,2 Haidi Wang,2,5

Xin Zhao,2 Songyou Wang,6,7 Balamurugan Balasubramanian,8 Xiaoshan Xu,8 David J. Sellmyer,8 Vladimir Antropov,7

Jianhua Zhang,2 Cai-Zhuang Wang,2,7,† Kai-Ming Ho,2,7 and James R. Chelikowsky1,4,9

1Center for Computational Materials, Oden Institute for Computational Engineering and Sciences,
The University of Texas at Austin, Austin, Texas 78712, USA

2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
3Department of Physics, University of Science and Technology of China, Hefei 230026, China

4Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
5School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230601, China

6Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China
7Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA

8Nebraska Center for Materials and Nanoscience and Department of Physics and Astronomy, University of Nebraska,
Lincoln, Nebraska 68588, USA

9McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA

(Received 7 August 2020; accepted 12 October 2020; published 11 November 2020)

We develop an open-access database that provides a large array of datasets specialized for magnetic com-
pounds as well as magnetic clusters. Our focus is on rare-earth-free magnets. Available datasets include (i)
crystallography, (ii) thermodynamic properties, such as the formation energy, and (iii) magnetic properties
that are essential for magnetic-material design. Our database features a large number of stable and metastable
structures discovered through our adaptive genetic algorithm (AGA) searches. Many of these AGA structures
have better magnetic properties when compared to those of the existing rare-earth-free magnets and the
theoretical structures in other databases. Our database places particular emphasis on site-specific magnetic data,
which are obtained by high-throughput first-principles calculations. Such site-resolved data are indispensable for
machine-learning modeling. We illustrate how our data-intensive methods promote efficiency of the experimental
discovery of new magnetic materials. Our database provides massive datasets that will facilitate an efficient
computational screening, machine-learning-assisted design, and the experimental fabrication of new promising
magnets.
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I. INTRODUCTION

Magnets play an important role in a wide range of de-
vices. They are key materials in modern technologies, such
as cell phones, computers, electrical vehicles, wind turbines,
and medical equipment. A major component of prototypi-
cal permanent magnets or magnetic recording materials is a
3d transition metal (typically iron), which provides a large
amount of saturation magnetization. Most high-performance
permanent magnets contain rare-earth elements, such as
neodymium (Nd) and dysprosium (Dy). These “strategic” el-
ements are of particular importance to improve performance
in permanent-magnet applications [1–5].

The demand for rare-earth-based high-performance perma-
nent magnets continues to grow, putting economical pressure
on the supply of rare-earth elements. Concerns about the ac-
cessibility of rare-earth elements have stimulated theoretical
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and experimental efforts to improve the magnetic properties
without relying on rare earths [6,7]. Similarly, permanent-
magnet materials currently being used or considered as
potential candidates for recording-media applications often
contain expensive elements, such as Pt [8,9]. The search for
new permanent-magnet materials free from critical rare earths
and expensive metals is also important from the viewpoint of
data-storage applications.

The design of a high-performance permanent magnet with-
out rare-earth elements requires key magnetic properties to be
optimized. These properties include (i) the saturation mag-
netic polarization Js, (ii) the magnetic anisotropy energy
(MAE) sufficient to induce high coercivity and a large maxi-
mum energy product, and (iii) the Curie temperature Tc. It is
highly desirable to maximize these three quantities simultane-
ously for permanent-magnet applications. These key magnetic
properties are macroscopic parameters that originate from
the microscopic (“site-specific”) magnetic properties, such as
the local magnetic moments, the on-site spin-orbit anisotropy
energies, and the pairwise magnetic exchange coupling pa-
rameters. Control of these site-specific magnetic properties is
essential for optimizing the performance of permanent mag-
nets.
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With advances in high-throughput first-principles cal-
culations, there have been several efforts to combine
first-principles calculations with data-science approaches,
such as machine learning [10,11]. These efforts include the
construction of an open-access database of materials, such
as AFLOW [12,13], Materials Project [14,15], Open Quan-
tum Materials Database [16,17], and the NOMAD repository
[18]. Materials search can be accelerated by using extensive
electronic-structure data, as demonstrated for new magnetic
materials in Heusler alloys [19]. These databases cover a wide
class of materials and provide basic material properties, such
as elastic properties, thermodynamic properties, and band
gap energies. However, none of them specifically focuses on
magnetic materials. Several open databases [20–22] provide
a small set of magnetic data for selected magnets. There
remains a distinct lack of site-specific magnetic data, which
are essential for the permanent-magnet design. In spite of its
importance, the availability of dataset for magnetic clusters
remains very sparse.

Here, we develop an open-access database of magnetic
materials [23] to facilitate a data-intensive design of new rare-
earth-free magnets. The remainder of the paper is organized
as follows. In Sec. II, we present our theoretical framework
to collect and generate a variety of materials data. In Sec. III,
we give an overview of our database, along with statistics.
In Sec. IV, we describe the details of available datasets, fol-
lowed by notes about the unique features of our database in
Sec. V. We illustrate in Sec. VI how our data-intensive meth-
ods promote efficiency of the experimental discovery of new
magnetic materials. We give a perspective on the applications
of our database in data science in Sec. VII and summarize this
work in Sec. VIII.

II. METHODS FOR DATA GENERATION

A. Collection and generation of magnetic materials

We first collect Fe-based structures listed in the Materials
Project database [15]. These include binary (Fe-X ), ternary
(Fe-X -X ′), and quaternary (Fe-X -X ′-X ′′) compounds, where
X represents nonmagnetic (B, C, N, Al, Si, P, S, Ga, Ge, As,
and Se) and magnetic (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr,
Nb, and Mo) species across the periodic table. Here, we select
abundant nontoxic elements, such as B, C, and N, that can
occupy interstitial sites when doped into Fe-based structures.
Our selection also includes inexpensive metals, such as Ti and
Zr, that can be alloyed with the main component of Fe. In
a similar way, we collect Mn-based, Co-based, and Ni-based
structures from the Materials Project.

We employ an adaptive genetic algorithm (AGA) [24,25]
to discover new stable and metastable structures in a broader
configuration space than contained within the Materials
Project database. Our AGA search consists of a conventional
genetic algorithm (GA) process and an “adaptive” process.
In a conventional GA process, we use auxiliary classical po-
tentials to optimize trial structures in a search pool. In an
adaptive process, we update adaptively the auxiliary potential
by matching it to density-functional theory (DFT) results on
a subset of the optimized structures in the pool [26]. This
strategy allows us to explore broad configuration space very

efficiently with keeping the accuracy of structure prediction.
At every AGA step, trial structures are “filtered” in the spirit
of Darwinian evolution. Structures with lower energies are
reserved for the next step, whereas structures with higher ener-
gies are substituted by new ones that are generated from low-
energy “parent structures.” After dozens of AGA iterations, a
search pool is populated by low-energy off-spring structures.
For further details about AGA methods, see Refs. [7,27].

The formation energies of AGA-discovered structures are
within a reasonable energy range above the convex hull, as
shown for Zr-Co and Fe-Co-N systems [28,29]. Moreover,
our AGA search is a useful method to identify new structures
in experiment, as demonstrated for Co-N [30–32] and Li-Ni-
B [33,34] systems. The latest version of our AGA code is
implemented with an advanced search technique, which we
call “symmetry-AGA,” allowing us to narrow down search
space and to discover new structures with a particular crystal
symmetry.

B. First-principles calculations

We perform first-principles calculations to compute the
thermodynamic and magnetic properties of crystalline mag-
netic materials collected from Materials Project and generated
by the AGA. Our first-principles calculations are based on the
DFT [35,36] combined with the projector-augmented wave
(PAW) method [37]. We adopt a generalized gradient approx-
imation (GGA) [38] for the exchange-correlation functional.
We use a plane-wave basis set with a cutoff energy of 65
Ry to expand the valence wave functions. The Monkhorst-
Pack scheme [39] is used to generate a k-point grid to
perform Brillouin-zone integration. A k-point resolution of
2π × 0.025 Å−1 is used for spin-polarized calculations. All
plane-wave calculations are carried out by using VASP [40,41]
and QUANTUM ESPRESSO [42].

The MAE is defined as the total-energy difference between
ferromagnetic states with different magnetization directions.
The magnetic anisotropy energy, K , is written as

Ka-c = Ea − Ec. (1)

Here, Ea (Ec) is the total energy for the magnetization oriented
along the crystallographic a (c) axis. For uniaxial systems,
positive Ka-c value means that the c axis is the magnetization
direction of the lowest energy, called the magnetic “easy axis.”
When Ka-c is negative, the system has the easy axes in the ab
plane. We incorporate the spin-orbit interactions in MAE cal-
culations, where we use a finer mesh size of 2π × 0.016 Å−1

to achieve better convergence.
We adopt a static linear-response approach using Liecht-

enstein’s formula [43] to compute the magnetic exchange
coupling parameters, Ji j , in the long wavelength approxi-
mation. In this approach, we employ the linear muffin-tin
orbital (LMTO) basis set [44] and the atomic sphere ap-
proximation (ASA) to Green’s function method [45]. The
momentum-space exchange coupling parameters, J (q), are
converted into the real-space ones, J (r), by the fast Fourier
transform technique. We use 41 points on an elliptical contour
in the complex plane to carry out the energy integrals involved
in the exchange parameter calculations. A k-point mesh with
a resolution of 2π × 0.025 Å−1 has been used. We employed
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FIG. 1. A dataflow diagram of our Magnetic Materials Database [23].

the result of the classical Heisenberg model within the mean-
field approximation to estimate the Curie temperature, Tc. We
carefully tested this technique of the exchange coupling cal-
culations for elemental ferromagnets, such as Fe, Co and Ni,
in Ref. [46]. The electronic structure, Tc and Ji j , are calculated
by using QUESTAAL [47].

C. Magnetic clusters

Magnetic clusters are constructed as fragments of bulk
crystals, as has been done for Co3N [48]. We also build icosa-
hedral and cuboctahedral clusters for Fe, Co, and Ni [49–51],
both of which have locally a closed-packed atomic coordi-
nation. Cluster geometry can be characterized by the atomic
arrangement around the cluster core, the atomic coordination
in a “mantle” region, and its surface structure (faceted or not).
We carry out structural relaxations [52–54] for all magnetic
clusters until a residual force is less than 0.01 Ry/a.u.

For magnetic clusters, we solve the Kohn-Sham equa-
tions on a uniform grid in real space as implemented in the
PARSEC code [55–57]. The GGA-PBE functional is adopted
for real-space DFT calculations. The Laplacian operator in
the kinetic-energy term is expanded by using a high-order
finite-differencing scheme. A grid spacing of 0.3 a.u. (ap-
proximately 0.16 Å) is sufficient to achieve the convergence
of the total energy to within 1 meV/atom for 3d transition-
metal systems [48–51,58]. We employ a spherical domain
as a boundary condition to simulate an isolated cluster. The
wave functions are sampled inside the domain and vanish
beyond the domain boundary (typically 10 a.u. away from
the outermost atom of a cluster). A notable feature of our
real-space DFT code, PARSEC, is the use of a subspace filtering
technique that exploits Chebyshev polynomials [59–61]. This
filtering algorithm allows us to avoid explicit diagonalizations
during the self-consistent field cycle.

III. DATABASE OVERVIEW

A. Data organization

Figure 1 illustrates the dataflow of our Magnetic Materi-
als Database [23]. A data entry for an individual magnetic
material is created with two file formats: (i) Crystallographic
Information File (CIF) [62] and (ii) YAML (that stands for
“YAML Ain’t Markup Language” [63]). The CIF is a standard
format in materials science to archive the crystallographic
information. We use YAML, a popular data-serialization
scheme, to store the computational results for the thermody-
namic and magnetic properties. Two data files are processed
with Python [64], an object-oriented programming language,

with the help of the Pymatgen libraries [65]. All the data
are integrated into one location, building an online master
database on the MongoDB cloud [66]. Upon finding new
structures as well as finishing first-principles calculations, we
append new data to the master database.

B. Database statistics

Table I summarizes the number of entries of our Magnetic
Materials Database [23]. For crystal systems, a total of 3826
entries are registered at the time of this submission. These
entries include the crystal structures taken from the Materials
Project database [15] and those generated from our AGA tech-
niques. By cross-checking all of the uploaded structures, we
find a lesser degree of overlap between the two groups. This
is because our AGA search yields not only stable compounds,
but also many metastable structures, which are distributed in a
wide range of chemical compositions. For magnetic clusters,
our database contains a total of 1163 entries. Our magnetic
clusters are elemental, binary, and ternary clusters, with sizes
ranging from 5 to 22 Å in diameter. Our clusters have atomic
sites of 9–490 with various Fe (Co) content.

Statistical data for crystal systems are given in Tables II
and III. Our database contains magnetic materials for all seven
crystal systems. Binary and ternary compounds account for
36% and 62% of the total number of entries, respectively. For
binary (ternary) compounds, we have 114 (611) different com-
binations of two (three) elements. Each system is populated
by dozens of structures with various chemical compositions
(stoichiometry), with Fe-rich and Co-rich structures being in
the majority.

Figures 2(a) and 2(b) compare the population of mag-
netic materials with respect to the stability (the formation
energy above the convex hull) and the magnetic prop-
erty (the saturation magnetic polarization), respectively.

TABLE I. The number of magnetic materials that are collected
from the Materials Project (MP) database, discovered by our adaptive
genetic algorithm (AGA), and from our cluster studies. The number
in the parentheses denotes the overlap between the two groups.

Crystal

System MP AGA (Overlap) Cluster

Mn based 584 0 (0) 0
Fe based 787 290 (7) 929
Co based 714 594 (41) 151
Ni based 832 6 (0) 73
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FIG. 2. Histogram charts that compare the population of two sets of magnetic materials with respect to (a) the formation energy above the
convex hull and (b) the saturation magnetic polarization. The one group is from the Materials Project (MP) database, and the other group is
from our adaptive genetic algorithm (AGA) searches.

Structures from Materials Project are very stable, with a sharp
peak for the formation energies above the convex hull of
0–5 meV/atom. However, such stable structures have a very
small magnetization value, as shown in Fig. 2(b). Most of
our AGA structures have formation energies above the convex
hull of less than 200 meV/atom, with a broad peak centered
around 60 meV/atom. AGA structures in such an energy
range can be accessible in experiment, as we will illustrate in
Sec. VI. It is evident in Fig. 2(b) that our AGA structures have
larger magnetization values than Materials Project structures.

C. Data availability

We provide end users with our data through our portal web
page [23]. Our web server applications are developed with the
Flask framework [67] powered with the Jinja template engine
[68], as shown in the middle of Fig. 1. Our web applica-
tions are deployed on Heroku [69], a cloud-based application
platform, where we use (i) Python scripts to load datasets
from the master database, (ii) numerical libraries to carry out
mathematical operations, and (iii) the Matplotlib utilities [70]
to visualize data. This framework makes it possible to serve an
automated, dynamic web page as well as to draw diagrams on
demand. All the diagrams generated on our web applications
are available in the Portable Network Graphics (png) format.
Page viewers can download individual images.

IV. DESCRIPTION OF DATASET

In this section, we describe dataset details for Magnetic
Materials Database [23]. Available data include crystallo-

TABLE II. The number of entries and its percentage to the total
for seven crystal systems.

Crystal system Entries Percentage

Triclinic 243 6%
Monoclinic 526 14%
Orthorhombic 934 24%
Tetragonal 594 16%
Trigonal 342 9%
Hexagonal 421 11%
Cubic 766 20%

graphic data, the thermodynamic properties, macroscopic and
microscopic (“site-specific”) magnetic properties, computa-
tional details, and references. Our database contains these data
for crystalline phases and nanoclusters.

A. Crystallography

Our database provides crystallographic data for all entries.
Available crystallographic dataset includes crystal system,
space group (the Hermann-Mauguin notation and the inter-
national number [71]), chemical composition in a reduced
formula, unit cell volume, lattice parameters, and atomic posi-
tions (Wyckoff positions and fractional coordinates). Table IV
lists an example dataset of an Fe5CoN2 compound, which is
discovered through our AGA search. We assign an entry ID
of MMD-17 to this compound. On our database, the lattice
parameters and atomic positions are available in various file
formats: CIF, POSCAR (an input file format for VASP), an
input file format for LAMMPS (a classical molecular dynam-
ics code [72]), JSON (JavaScript Object Notation) [73], and
YAML.

B. Thermodynamic properties

The thermodynamic properties, such as the formation
energy, are tabulated and visualized on the web page for an in-
dividual structure. Based on DFT calculations, the formation
energies are calculated with respect to a linear combination of
the total energies of reference elemental phases.

As an example, we show in Fig. 3 the compositional phase
diagram of an Fe-Si system, where the calculated formation
energies are plotted as a function of the atomic fraction of Fe.
In Fig. 3, a set of lines connecting the stable phases forms a

TABLE III. The number of entries and the number of combi-
nation of three elements for elemental system, binary, ternary, and
quaternary compounds.

System Entries Combinations

Elemental 59 15
Binary 1372 114
Ternary 2349 611
Quaternary 46 35
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TABLE IV. The crystallographic data of Fe5CoN2.

Key Value

Entry ID MMD-17
Crystal system orthorhombic
Space group Amm2 (No. 38)
Chemical formula Fe5CoN2

Formula unit(s) 2
Lattice parameters a = 3.834, b = 3.764, c = 11.162 Å

α = 90.0, β = 90.0, γ = 90.0 (deg.)
Volume 161.063 Å3

Density 7.550 g/cm3

Atomic positionsa Fe 2a (0.00000, 0.00000, 0.18331)
Fe 2a (0.00000, 0.00000, 0.49958)
Fe 2b (0.50000, 0.00000, 0.34649)
Fe 2b (0.50000, 0.00000, 0.67654)
Fe 2b (0.50000, 0.00000, 0.99567)
Co 2a (0.00000, 0.00000, 0.83344)
N 2a (0.00000, 0.00000, 0.00000)
N 2b (0.50000, 0.00000, 0.17748)

Source AGA search

aElement symbol, Wyckoff position, and fractional coordinates.

convex hull, which represents a plausible lower limit in the
formation energy of this system. It is evident that the great
majority of our AGA structures are distributed in the vicinity
of the convex hull (within ∼50 meV/atom above the hull)
over a wide range of the Fe concentration. Such low-energy
metastable structures are possible candidate phases, which can
be reached out by using advanced fabrication techniques as we
will illustrate in Sec. VI.

A compositional phase diagram of a ternary system can
be shown as a projection of a three-dimensional energy curve
onto two dimensions. Figure 4(a) shows the triangular phase
diagram of an Fe-Co-N system. A two-dimensional projection
of the minimum-energy surface, indicated by the black solid
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FIG. 3. Phase diagram of a binary Fe-Si system. The formation
energies are plotted as a function of the Fe content. Crystal structures
are taken from Materials Project (MP) and discovered through our
adaptive genetic algorithm (AGA). A set of the solid lines that con-
nect stable phases, called the convex hull, represents the theoretical
lower limit in this compositional phase diagram. The closer it is to
the convex hull, the more likely it is for the material to exist.

TABLE V. Example dataset for the thermodynamic and magnetic
properties of Fe5CoN2 (MMD-17).

Key Value

Thermodynamic properties
Formation energy (vs elemental phases) −14.7 meV/atom
Formation energy above convex hull +77.1 meV/atom

Magnetic properties
Total magnetic moment 23.88 μB/cell
Magnetic saturation polarization Js 1.73 T
Magnetic easy axis c
Magnetic anisotropy constant Ka-c 1.47 MJ/m3

Magnetic anisotropy constant Kb-c 2.56 MJ/m3

Magnetic anisotropy constant Kb-a 1.09 MJ/m3

Magnetic hardness parameter κa 0.79
Curie temperature Tc 1534 K

aSee text for definition.

lines in Fig. 4(a), divides the compositional space into the
Gibbs triangles. The formation energies above the convex hull
of the structures from Materials Project (13 entries) are in
the range of 0.1–0.4 eV/atom, whereas those of our AGA-
discovered Fe- and Co-rich structures (258 out of 259 entries)
are less than 0.1 eV/atom. The MMD-17 Fe5CoN2 phase is
among such AGA structures, and its formation energy is listed
in Table V.

In addition to a ternary phase diagram of the formation
energy, we provide a ternary contour map of the magnetic
saturation polarization as shown in Fig. 4(b). Contour lines
and color gradation aid in the analysis of the landscape of
the magnetic saturation polarization in a ternary system, along
with the stability.

C. Macroscopic magnetic properties

Our database focuses on three macroscopic magnetic prop-
erties as key parameters for permanent-magnet design: (i) the
magnetic saturation polarization Js, in units of Tesla, (ii) the
magnetic anisotropy constant K , in units of MJ/m3, and (iii)
the Curie temperature Tc, in units of Kelvin. The magnetic
saturation polarization is related to the saturation magnetiza-
tion Ms, through Js = μ0Ms, with μ0 being the permeability
of free space. These magnetic properties, along with related
magnetic properties, are tabulated on an individual web page.
An example dataset is given in Table V.

The magnetic saturation polarization and the total magnetic
moment (Bohr magneton, μB, per unit cell, neglecting the
orbital magnetic moments) are available for all structures.
For structures with large magnetization (Js � 1 T), we deter-
mine the magnetic anisotropy constant Ka-c and the magnetic
easy axis. In particular, our database provides multiple K
values (Ka-c, Kb-c, and Kb-a) for orthorhombic, monoclinic,
and triclinic crystal systems, as listed in Table V for the or-
thorhombic Fe5CoN2 phase (MMD-17). Our magnetic dataset
also includes a dimensionless parameter,

κ =
√

|K|/(μ0M2
s ), (2)

called the “magnetic hardness parameter.” The parameter κ

has been recognized as a useful measure to assess the potential
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(b)

FIG. 4. (a) Compositional phase diagram of a ternary Fe-Co-N system. Crystal structures are taken from Materials Project (MP) and
discovered through our adaptive genetic algorithm (AGA). The solid lines indicate the convex hull, a two-dimensional projection of the
minimum-energy surface. (b) A contour plot of the magnetic saturation polarization in an Fe-Co-N system.

of magnetic materials for use as a permanent magnet [3,74].
The Curie temperature Tc is estimated for structures with Js �
1 T and K � 1 MJ/m3.

Figures 5(a) shows the comparison of the theoretical and
experimental values of the saturation magnetic polarization
Js. The calculated Js values agree well with the experimental
values in a wide range of Js. In particular, there is an excellent
agreement for materials with Js > 1 T, making it possible to
capture the Js behavior of Fe-based and Co-based systems on
an equal footing.

In Fig. 5(b), we plot our theoretical values of the mag-
netic anisotropy constant K for several existing rare-earth-free
magnets. Overall, there is a good agreement between theory
and experiment. We find a significant underestimation of K
by about a factor of 2 for some exceptional systems with a
large K , such as YCo5. Still, our DFT results agree with the
earlier work that reports a similar level of underestimation by
the DFT framework [75].

Figure 5(c) shows the Curie temperature Tc, calculated for
prototypical magnets. A percentage error between experimen-
tal values and our theoretical values is less than 20% for
most of systems. We confirm that our LMTO-ASA approach
combined with the mean-field approximation works well for
estimating the Tc for various kinds of Fe-based and Co-based
alloys.

D. Site-specific magnetic properties

Our database places a strong emphasis on the site-specific
magnetic properties: (i) the local magnetic moments, (ii)
the site-resolved spin-orbit coupling anisotropy energies, and
(iii) the pairwise magnetic exchange coupling parameters.
These microscopic quantities are key parameters for con-
trolling the macroscopic magnetic properties, as well as for
building machine-learning models for permanent-magnet de-
sign.
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tively. (b) The site-resolved spin-orbit coupling anisotropy energies
of Fe5CoN2 (MMD-17) for the spin moments along the [100] and
[001] directions.

Figure 6(a) shows the local magnetic moments of the
Fe5CoN2 phase tagged with MMD-17 (Table IV). The local
magnetic moment at site i is defined as

mi =
∫

�i

[
ρ↑(�r ) − ρ↓(�r )

]
d3r. (3)

Here, ρ↑(↓) denotes the electron density of the majority (mi-
nority) spin and �i is a spherical domain centered on site i.

Figure 6(b) shows the site-resolved spin-orbit coupling
anisotropy energies of the Fe5CoN2. The atomic spin-orbit
coupling anisotropy energy at site i can be defined as

ESO
a-c (i) = ESO

a (i) − ESO
c (i). (4)

Here, ESO
a (i) and ESO

c (i) are the local spin-orbit coupling
energies at site i with the spin moments aligned to the a and c
axis, respectively. It has been shown [76] that this difference
is directly related to the total magnetic anisotropy being twice
larger in general:

Ka−c = 1

2

∑
i

ESO
a−c(i). (5)

It is evident that these microscopic magnetic parameters
vary from site to site. The site-resolved magnetic data is indis-
pensable for the detailed analysis of the macroscopic magnetic
properties as well as data-intensive design of new permanent
magnets.

-8

 0

 8

 16

 24

 32

 0  1  2  3

(b)

J ij
 (m

eV
)

Neighbor distance (in units of the lattice constant)

Fe-Fe (bcc Fe)
Co-Co (hcp Co)
Fe-Fe
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FIG. 7. Examples of pairwise magnetic properties available on
our Magnetic Materials Database [23]. (a) The magnetic exchange
coupling parameters Ji j , between two atomic sites in Fe5CoN2

(MMD-17). (b) Individual Ji j values as a function of the neighbor
distance scaled with the lattice constant of Fe5CoN2 (a = 3.834 Å).
The Ji j values in bcc Fe and hcp Co are also shown for comparison.

In Fig. 7(a), we visualize the pair-resolved magnetic ex-
change coupling parameters Ji j in a two-dimensional heat
map. The magnitude of the exchange coupling between site
i and j is shown on each colored cell. We take the Fe5CoN2

phase (entry ID of MMD-17) as an example. The plot is
helpful to understand which pair is responsible for a large
magnetic coupling.

Figure 7(b) shows the spatial dependence of Ji j in Fe5CoN2

(MMD-17). We plot the Ji j values in bcc Fe and hcp Co for
comparison. It is evident that magnetic interactions between
different types of atomic sites have different spatial behavior.
Large magnetic couplings occur between Fe-Fe and Fe-Co
pairs in Fe5CoN2, whereas the Co-Co couplings of this sys-
tem are highly suppressed in comparison to those in hcp Co.
The coupling parameters practically vanish when the neighbor
distance goes beyond two lattice constants (∼8 Å).

E. Cluster data

In addition to datasets for crystalline systems, our database
provides a large amount of data for magnetic nanoclusters. In
spite of their importance, cluster data is extremely sparse as
most of the open-access databases focus only on crystalline
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FIG. 8. Evolution of the local magnetic moments in Co clusters
with different sizes and local atomic coordinations. The dotted line
indicates the value of Co bulk (hcp).

magnetic materials. Our datasets include (i) structural infor-
mation, such as chemical species and their atomic position in
the Cartesian coordinates, (ii) stability, such as the binding
energy, and (iii) the magnetic properties, such as the total
and local magnetic moments. For magnetic clusters, a total
of 1153 entries have been registered so far (Table I).

Figure 8 shows the spatial variation of the local magnetic
moments in Co clusters with three different atomic coordina-
tions [hcp, bcc, and iscosahedral (fcc-like)]. Overall, the local
magnetic moments grow steadily as going from the interior
toward the surface. The local magnetic moments in a core
region are a bulklike value (∼1.7 μB), whereas those near the
surface are greatly enhanced because surface atom has fewer
neighbors, resulting in stronger spin polarization [49–51].

F. Computational details and references

In addition to the structural and magnetic properties, the
computational details and references are given on our database
web pages. Computational details include notes about the
methodology and numerical parameters, such as convergence
criteria and k-point grids. Reference entries are original re-
search papers and/or a uniform resource locator (URL) link
to external databases.

V. UNIQUE FEATURES

A. Friendliness to data science

Our magnetic materials database is specifically designed
for the state-of-the-art applications in data science and infor-
matics, such as machine-learning algorithms. A whole set of
the above-mentioned data is stored in an online storage at the
MongoDB database cloud [66], where all the data items are
indexed in a “machine-readable” format (Python Dictionary).
The datasets of our database are open to the public through
our portal web page [23]. As illustrated in Fig. 1, end users
can communicate directly to our online database. End users
can request a dataset by sending a query string to the database
server using the standard MongoDB scheme. Upon user re-
quest, the database server will make a response to return a
dataset in a user-friendly format, being suitable for building
(or “training”) a machine-learning model.
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FIG. 9. Histogram charts that compare the population of Fe-
based binary structures with respect to (a) the formation energy
above the convex hull, (b) the saturation magnetic polarization, and
(c) the magnetic anisotropy constant (absolute value). Two sets of
structures are from either Materials Project (MP) or our adaptive
genetic algorithm (AGA).

Our database server is implemented with data-filtering
methods so that the server can handle various search keys:
element(s), chemical formula, space group number, and the
magnetic easy axis. With these search filters, end users can
narrow down search results and look up specific structures
very easily.

B. Promising novel structures from AGA searches

Our database provides many rare-earth-free structures that
are discovered through AGA searches. We note that some
of our AGA structures have better magnetic properties and
are lower in the formation energy (namely, more stable) than
the structures on other open databases. In Figs. 9(a)–9(c), we
compare the population of Fe-based structures with respect to
the stability and magnetic properties. Here, we prepare two
sets of binary Fe-X structures (with X being B, C, N, Si, P, S,
and Ge): one from our AGA search (85 entries) and another
from Materials Project (110 entries). The majority of the AGA
structures have the formation energies above the convex hull
of less than 200 meV/atom. In particular, the AGA group has
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a high population below 60 meV/atom. In contrast, the MP
structures are widely distributed. Figure 9(b) shows that the
AGA group is populated with structures with a larger satura-
tion magnetic polarization (1.3 � Js � 2.2 T) in comparison
to the MP group. As shown in Fig. 9(c), the two groups
are similar in distribution regarding the magnetic anisotropy
constant. These analyses mean that the AGA structures are
advantageous to exhibit a higher maximum energy product.

We illustrate another strong point of our AGA methodol-
ogy in Fig. 10, where we plot K versus Js for AGA structures
enriched with Fe and/or Co. We also plot the experimen-
tal data of popular magnets for comparison. In terms of
the saturation magnetic polarization, the Fe-based and FeCo-
based AGA structures are distributed mostly in the range of
1.5–2.2 T, whereas the Co-based and ZrCo-based AGA struc-
tures are distributed in a region between 0.5 and 1.5 T. In
terms of the magnetic anisotropy, one third of the AGA struc-
tures exhibit a decent magnitude of K (� 1 MJ/m3) without
relying on the critical elements. Moreover, about 10% of
the AGA structures are identified as “hard” magnetic phases.
Their magnetic hardness parameters κ are greater than 1.0,
a recommended value for the use as permanent magnets. In
fact, Nd2Fe14B, the strongest permanent magnet to date, takes
a κ value of 1.54. Several AGA structures of Fe-Co-N, Co-X
(X = N, Si, Ge), and Zr-Co-X (X = B, C, N) are predicted to
have a decent κ value comparable to that of Nd2Fe14B. These
AGA structures are promising candidate phases that yield a
sufficient maximum energy product.

VI. GUIDANCE FOR EXPERIMENTAL DISCOVERY

Our AGA searches and advanced electronic-structure cal-
culations guide efficiently the discovery of new magnetic
materials, where experimentalists use nonequilibrium fabri-
cation methods, such as high-pressure sputtering (or cluster
deposition) and rapid quenching from the melt (or melt spin-
ning) [7]. Here, we illustrate several examples from our

FIG. 11. (a) Schematic of a rhombohedral crystal structure of a
Co3N compound predicted by the AGA search [31]. (b) The experi-
mental x-ray diffraction (XRD) pattern of the cluster-deposited Co3N
nanoparticles on a Si (111) substrate (black curve) is fit with the
predicted rhombohedral structure using Rietveld analysis (red curve)
[32].

synergistic computational and experimental efforts to discover
new rare-earth-free magnetic materials.

A. Screening methods and its application

Our search process consists of three steps. In the first
step, we use our AGA methods to explore structures across
a wide range of chemical compositions. We predict numerous
new stable and metastable intermetallic compounds enriched
with Fe and/or Co as possible phases. In the second step,
the electronic-structure calculations are performed to evaluate
their intrinsic magnetic properties, with focus on finding ma-
terials that have the potential to exhibit high Js, large K1 (the
MAE constant in the lowest order), and high Tc. In the third
step, the screened materials with predicted compositions are
fabricated using nonequilibrium fabrication methods and sub-
sequently characterized using various structural and magnetic
measurements. Our computational screening process helps to
accelerate the optimization process during experiments, mak-
ing it possible to avoid unnecessary experimental steps and
reduce the combined search cost.

This scheme has been applied to a cobalt-nitride system
[31]. Several metastable Co-N compounds are predicted using
the AGA. Their intrinsic magnetic properties are estimated
using DFT calculations. Figure 11(a) shows the schematic
of a rhombohedral crystal structure of a Co3N compound
predicted by the AGA search. The DFT calculations yield
K1 = 1.39 MJ/m3, Js = 0.83 T, and Tc = 336 K for this struc-
ture.

These theoretical findings have assisted the synthesis of a
set of new Co3N compounds with desired magnetic proper-
ties in the form of nanoparticles using the cluster deposition
method [32]. The cluster deposition method enables us to
deposit a single phase of rhombohedral Co3N in the form of
nanoparticles on Si (111) substrates. As shown in Fig. 11(b),
the experimental x-ray diffraction pattern for the nanoparticles
shows the diffraction peaks corresponding to the Co3N phase
and additional peaks from the substrate. Excellent agree-
ment exists between the experimental x-ray spectrum and
the simulated spectrum using a Rietveld refinement analysis
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based on the rhombohedral structure. The experimental lat-
tice parameters, a = 4.61 Å and c = 13.06 Å, match with
the theoretically predicted values, a = 4.53 Å and c = 13.06
Å. With magnetic measurements, we find K1 = 1.04 MJ/m3,
Js = 0.73 T, and Tc ∼ 450 K for the rhombohedral Co3N [32].
These numbers agree reasonably with the values predicted
from first-principles calculations [31].

In our theoretical search, the AGA method enables us to
explore a broad range of the compositional and structural
space very efficiently. AGA searches yield dozens of stable
and metastable structures, which we register as new can-
didate structures in our database. Our experimental search
using nonequilibrium synthesis methods is confined to the
compounds that can exhibit high Js, large K1, and high Tc.
and often produced several compounds with high magnetic
anisotropy predicted by the theoretical calculations. Still, the
experimental synthesis of a desired compound is challenging
in some cases. Our database has entries of not only the lowest
formation-energy compounds (that are very likely to exist)
but also several other compounds with the same or nearby
stoichiometry that have the formation energies comparable to
those of the most likely candidates.

In our AGA search and first-principles calculations, we find
two Co3N compounds with high magnetic anisotropy. The
one crystallizes in the rhombohedral structure (space group
of R3c, lattice constants of a = 4.53 and c = 13.06 Å, and the
formation energy above the hull of +71.0 meV/atom), and the
other one in the orthorhombic structure (space group of cmcm,
lattice constants of a = 3.70, b = 11.29, and c = 3.77 Å, and
the formation energy above the hull of +116.5 meV/atom)
[32]. Note that the above-mentioned formation energies of
the Co3N structures are calculated using hcp Co and N2 as
references and by following the equation,

	E (Co3N) = [E (Co3N) − 0.5E (N2) − 3E (Co)]/4. (6)

In this situation, our experimental synthesis only yielded the
rhombohedral structure as schematically shown in Fig. 11(a),
which has a lower formation energy above the hull.

Similarly, we carry out AGA searches for compounds with
a nearby stoichiometry and discover two promising Co4N
phases that crystallize in a tetragonal structure with high K1,
Js, and Tc [31]. The formation energies above the hull of the
two Co4N phases are comparable to but higher than that of the
rhombohedral Co3N structure. In this case, our experimental
attempts to synthesize the Co4N compounds only led to a
mixture of Co plus Co4N phases or Co3N plus Co4N phases.

B. AGA-assisted crystal structure determination

In experiment, various types of magnetic compounds have
been synthesized so far. Some of them possess complex struc-
ture. For such compounds, it remains a challenging and time
consuming task to determine the crystal structure and atomic
arrangements (Wyckoff positions) using the experimental
diffraction patterns. Precise atomic positions are essential to
understand the magnetism in new compounds, especially for
calculating their intrinsic magnetic properties.

A typical example is the intermetallic compound Zr2Co11,
which has been fabricated in various ways [30,77–80].
Figure 12(a) shows a high-resolution transmission electron

FIG. 12. (a) A high-resolution transmission electron microscope
(HRTEM) image of the Zr2Co11 compound measured along the [010]
zone axis. The red arrow indicates the repeated distance along the
c axis. (b) Atomic structure for the rhombohedral Zr2Co11 phase
solved by the AGA search. Inset within the red box in (a) is the
simulated HREM image based on the structural model, and the
structure model along the c axis is also laid on top of the experimental
HRTEM image [28].

microscope (HRTEM) image of melt-spun Zr2Co11 [28]. Al-
though 2:11 stoichiometry has been determined, it has been
difficult to identify the crystal structure of Zr2Co11 using
available experimental x-ray and electron diffraction patterns.
Several complex crystal structures, including orthorhombic,
rhombohedral, and hexagonal polymorphs, have been pre-
dicted to form near the Zr2Co11 stoichiometry [77–80].

Our AGA search is an efficient method to determine the
crystal structure of a new compound. The structural determi-
nation is based solely on chemical composition. It does not
require any assumptions on the Bravais lattice, atom basis, or
unit-cell dimensions.

Recently, the AGA search solved the atomic structure of
the rhombohedral Zr2Co11 phase [28]. Its space group is found
to be R32 (space group No. 155). Its lattice constants are
predicted to be a = 4.69 Å and c = 24.0 Å. The predicted
lattice parameter c agrees well with the repeated distance
along the c axis (∼24.2 Å) measured from the HRTEM image
of a melt-spun Zr2Co11 sample, shown in Fig. 12(a). In the
red box of Fig. 12(a), we draw the structural projection and
simulated atomic arrangements corresponding to the predicted
rhombohedral phase [Fig. 12(b)]. The simulated structural
model explains well the measured HRTEM image.

DFT calculations are carried out for Zr2Co11 in the pre-
dicted R32 structure, yielding the magnetic properties of
K1 = 14.2 Mergs/cm3, Js = 10.1 kG, and Tc = 709 K. These
are in good agreement with the measured values (K1 =
13.5 Mergs/cm3, Js = 9.7 kG, and Tc = 783 K) [30]. We
confirm the consistency between the experimental observa-
tions and the theoretical findings. Our joint efforts on Zr2Co11

demonstrate the efficacy of our combined approach.

C. New magnets with high magnetic anisotropy

Our combined efforts have uncovered a series of novel
Fe-, Co-, and Mn-rich magnetic compounds that are alloyed
with magnetic or nonmagnetic element X (X = N, Si, Sn,
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FIG. 13. Room-temperature magnetic properties of rare-earth-free magnetic materials. (a) Magnetocrystalline anisotropy constant K1

versus saturation magnetic polarization Js = μ0Ms (solid circles). Values of K1 and Js for Co, Nd2Fe14B, and L10-FePt are included for
comparison (open circles). The parabolic curves correspond to the magnetic hardness parameters, κ = 1 and 2 are also shown. (b) Energy
products of the rare-earth-free nanostructured magnetic materials are compared with those of traditional bulk magnets (gray-patterned bar
graphs).

Zr, Hf, Y, C, S, Ti, or Bi). In these efforts, our main focus
is on noncubic crystal structures to induce high magnetic
anisotropy. Notable materials include (i) hexagonal struc-
tures of Fe3Co3Ti2, Fe3Co3Nb2, Fe3+xCo3−xTi2 (0 � x � 3),
Co3N, and Co3Si, (ii) rhombohedral structures of Co3N and
Zr2Co11, (iii) a tetragonal structure of Fe8Co8N2, and (iv)
orthorhombic structures of HfCo7 and Fe2CoC [7]. These
compounds are free from critical rare-earth elements and
expensive Pt. Most of them exhibit appreciable magnetic
anisotropy (K1 � 1 MJ/m3), large magnetization (Js � 1 T),
and high Curie temperature (Tc � 300 K).

The magnetocrystalline anisotropy is a key intrinsic prop-
erty of a magnet. It plays an important role in permanent
magnets and data storage. In particular, a large K1 is desirable
to develop high coercivity. The coercivity Hc is ideally equiv-
alent to the anisotropy field Ha and is inversely proportional
to Ms, namely,

Hc = Ha = 2K1/Ms. (7)

A permanent-magnet material should have not only a large
Ms but also a sufficiently large Ha to exhibit high Hc. As
mentioned in Sec. V B, magnetic materials with κ � 1 are
promising for permanent-magnet applications. Most of the
Fe-, Co-, and Mn-rich compounds found by our experimental
search fall in this category, as shown in Fig. 13(a).

The energy product (BH )max is a key figure of merit in per-
manent magnets. It is defined as the maximum of the product
of B and H in the second quadrant of the B-H curve, where
B = μ0(H + M ) is the flux density or magnetic-field induc-
tion. The maximum theoretical energy product achievable for
a magnetic material is

(BH )th
max = J2

s /4. (8)

Figure 13(a) shows that our new compounds have Js

of 0.75–1.25 T. These materials have the potential to ex-
hibit room-temperature energy products of 111–318 kJ/m3

(equivalent to 14–40 MGOe), which are higher than those
of the traditional rare-earth-free magnets, such as ferrites
(∼30 kJ/m3) and “alnico (∼72 kJ/m3),” a family of al-
loys made of iron, aluminium, nickel, and cobalt. Moreover,
these values are comparable to those of rare-earth-based
Sm-Co alloys (∼239 kJ/m3). Practically, maximum room-
temperature energy products of 41–162 kJ/m3 are achieved in
the nanostructured films of the new rare-earth-free materials
[32,81–85], as shown in Fig. 13(b). If appropriate scale-up
methods for bulk production of these new compounds are
developed, these materials can be used for applications, where
cost-effective magnets with the intermediate performance
between alnico and rare-earth-based magnets are highly ex-
pected [74].

D. New magnets for data-storage applications

High uniaxial anisotropy is essential to improve the ther-
mal stability of written bits (grains) in high-density recording
media [8,9]. The MAE constant for uniaxial anisotropy, Ku,
can be expanded in terms of spherical polar coordinates. The
MAE constant of the lowest order, which is given by Eq. (1),
is a leading term of Ku. The potential of a magnetic material
as recording media can be assessed by using the stability
criterion ξ , written as

ξ = KuV/kBT � 50, (9)

where V and kB are the volume of the grains and the Boltz-
mann constant, respectively. The areal density can be deduced
from the thermally stable minimal grain size Dp of a magnetic
material. In a perpendicular recording media, the grain size
can be written as

Dp =
[

2kξkBT

HaMs(1 − 4πMs/Ha)2

]n

, (10)

where k = 6/π and n = 1/3 for spherical grains [9].
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FIG. 14. Magnetic anisotropy field μ0Ha versus estimated min-
imal stable spherical grain diameter Dp at room temperature for
the rare-earth- and Pt-free magnetic materials (solid circles). Those
values for some of the traditional Pt-based alloys are also given for
comparison (open circles).

In order to explore the prospect of new magnetic com-
pounds, we evaluate the spherical grain size Dp at room
temperature using ξ = 50. Figure 14 shows the magnetic
anisotropy field μ0Ha as a function of the estimated Dp values.
The estimated Dp values of our new compounds are com-
parable with those of Pt-based materials. Note that the Dp

values of our Pt-free compounds can be further decreased if
these materials are fabricated in the form of cylindrical grains
or elongated cubes. Significant research efforts have to be
initiated, with the help of the combined screening methods,
towards the discovery of new cost-effective materials for prac-
tical data-storage applications.

VII. PERSPECTIVE

The number of known structures of binary, ternary, and
quaternary compounds available for making magnets is much
less than that of possible structures and compounds. There
is great possibility for the discovery of new magnetic ma-
terials. Yet, it is a difficult task to predict a new structure
that is viable and has desired magnetic properties. There are
numerous candidate compounds owing to a myriad of possible
combinations of available elements across the periodic table.
Even for a particular chemical composition (stoichiometry),
several polymorphs can exist.

The use of artificial intelligence (AI) methods, such as
machine-learning algorithms and neural network models, is
setting the trend for the design of new advanced materials
[10,11]. The basic idea behind the AI-based approach is to
make an instant assessment of materials properties in the
hope of speeding up a whole search process. For example,
researchers develop machine-learning models to find the rela-
tionship between material and its Curie temperature [86,87].
AI-based computational screening may offer a tool to seek
out promising structures from a large number of candidate
structures.

In traditional computational approaches, it is essential to
solve the basic equations to understand (“deduce”) material
properties from first principles. In contrast, AI-assisted ma-
terial discovery is a data-driven inductive approach. Sample

data, called training data, is used as input for building a
predictive AI model. Such training data can be a collection
of representative data from experiments and calculations. In
a machine-learning approach, learning on database space is a
very important step to help close the gap between known and
predicted properties.

Basic material properties can be extracted from several
open-access databases [12–17]. However, these database pro-
vide little information about the magnetic properties. In par-
ticular, a serious drawback is the sparsity of the microscopic
magnetic properties. Our database provides both macroscopic
(“lattice-wide”) and microscopic (“site-resolved”) magnetic
data for crystalline magnetic materials. Our database also
provides magnetic properties of transition-metal-based nan-
oclusters on an equal footing. Such a dataset is scarce in
other databases to date. There is a great advantage to using
our detailed data as training data for AI-based design of rare-
earth-free magnetic materials.

Our database contains many stable and metastable com-
pounds discovered from our AGA searches. Our AGA
structures are enriched with Fe and Co. They are free from
rare earths and expensive metals. As illustrated in Sec. VI,
our AGA-based screening scheme assisted the experimental
discoveries of new rare-earth-free magnetic materials. Sub-
sequent experimental characterization confirmed the potential
of new magnetic materials as permanent magnets and record-
ing media. These results indicate that our combined search
techniques can be applied to a broader class of magnetic mate-
rials. The combination of our extensive datasets and advanced
data-mining techniques makes it possible to better identify
synthesizable candidate magnets that are free from critical and
expensive elements.

Our database will be expanded by employing the AGA
method to possible combinations of two or more elements,
with focus on Fe-based and Co-based systems doped with
2p and 3p elements or 3d metals. Computational efforts with
AGA will bring many possible compounds that can hardly be
found in other databases. Increasing of the number of data
points in compositional and structural space will reinforce
the efficiency of computational screening. Subsequent high-
throughput first-principles calculations will make it possible
to assess the stability of new structures, update the phase
diagram, and possibly revise the convex hull (the composi-
tional dependence of the lower limit in the formation energy).
Increasing the amount of data for site-resolved magnetic prop-
erties will also be highly beneficial to materials design using
data-mining techniques. A feedback loop of predictions and
experiments will certainly accelerate the experimental discov-
ery of new magnetic materials, as illustrated in the previous
section.

VIII. SUMMARY

We developed an open-access database specialized for
magnetic materials. Our database possesses a number of
unique features: (i) new stable and metastable structures
discovered through our AGA searches, (ii) the site-specific
magnetic data from high-throughput first-principles calcula-
tions, (iii) massive datasets for crystals and clusters, and (iv)
the automated web applications in close cooperation with the
online database. We illustrated that our data-intensive meth-
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ods improve efficiency of the experimental fabrication of new
rare-earth-free and Pt-free magnetic materials. The fabricated
materials show promising magnetic properties for permanent-
magnet and data-storage applications. Our database provides
a solid platform that guides the theoretical and experimental
design of new rare-earth-free magnetic materials, especially
when coupled with AI methods.
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