A Simple Extension of Answer Set Programs to Embrace
Neural Networks (Extended Abstract)

Zhun Yang!, Adam Ishay!, Joohyung Lee! 2

I Arizona State University, USA
2 Samsung Research, S. Korea

{zyang90, aishay, Jjoolee}@asu.edu

This is a brief report on NeurASP [2], a simple extension of answer set programs by embracing
neural networks. By treating the neural network output as the probability distribution over atomic
facts in answer set programs, NeurASP provides a simple and effective way to integrate sub-symbolic
and symbolic computation. NeurASP can make use of a pre-trained neural network in symbolic
computation and can improve the neural network’s perception result by applying symbolic reasoning
in answer set programming. Also, NeurASP can make use of ASP rules to train a neural network
better so that a neural network not only learns from implicit correlations from the data but also from
the explicit complex semantic constraints expressed by the rules.

The integration of low-level perception with high-level reasoning is one of the oldest problems in
Artificial Intelligence. Today, the topic is revisited with the recent rise of deep neural networks. However,
it is still not clear how complex and high-level reasoning, such as default reasoning, ontology reasoning,
and causal reasoning, can be successfully computed by these approaches. The latter subject has been
well-studied in the area of knowledge representation (KR), but many KR formalisms, including answer
set programming (ASP), are logic-oriented and do not incorporate high-dimensional feature space as in
deep learning, which limits the applicability of KR in many practical applications.

In [2], we present a simple extension of answer set programs by embracing neural networks. Fol-
lowing the idea of DeepProbLog [1], by treating the neural network output as the probability distribution
over atomic facts in answer set programs, the proposed formalism called NeurASP provides a simple and
effective way to integrate sub-symbolic and symbolic computation.

In NeurASP, a neural network M is represented by a neural atom of the form

nn(m(e,t),[vi,...,va]), (1)

where (i) nn is a reserved keyword to denote a neural atom; (ii) m is an identifier (symbolic name) of the
neural network M; (iii) ¢ is a list of terms that serves as a “pointer” to an input tensor; related to it, there
is a mapping D (implemented by an external Python code) that turns ¢ into an input tensor; (iv) vy,...,v,
represent all n possible outcomes of each of the e random events.

Each neural atom (1) introduces propositional atoms of the form ¢=v, where ¢ € {m;(¢),...,m.(t)}
and v € {vy,...,v,}. The output of the neural network provides the probabilities of the introduced atoms.

Example 1 Let M;gi; be a neural network that classifies an MNIST digit image. The input of My;gi; is (a
tensor representation of) an image and the output is a matrix in R"19. This neural network can be rep-
resented by the neural atom “nn(digit(1,d), [0,1,2,3,4,5,6,7,8,9]),” which introduces propositional
atoms digit) (d) =0, “digit;(d)=1, ..., digit;(d)=9.”

© Yang, Ishay & Lee
Submitted to: This work is licensed under the
Creative Commons Attribution License.


http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Simple Extension of ASP to Embrace NNs

A NeurASP program I1 is the union of II*? and IT"", where I1*? is a set of propositional ASP rules
and IT"" is a set of neural atoms. Let 6" be the set of all atoms m;(¢) =v; that is obtained from the neural
atoms in IT" as described above. We require that, in each rule Head <— Body in I1%?, no atoms in ¢™"
appear in Head.

The semantics of NeurASP defines a stable model and its associated probability originating from the
neural network output. For any NeurASP program I1, we first obtain its ASP counterpart IT" where each
neural atom (1) is replaced with the set of “choice” rules

{mi(t)=vy; ... ;mi(t)=v,} =1 forie{l,...e}.
The stable models of 1 are defined as the stable models of IT'.

To define the probability of a stable model, we first define the probability P(m;(t) = v;) of an atom
m;(t)=v; in " as the probability of the j-th outcome of the i-th event outputted by the neural network
M upon the input tensor pointed by ¢. Based on this, the probability of an interpretation / is defined as

follows. Pr(mi(t) =v;)

i,j: m,‘(f):VjEI‘O-nn

PH( [) = Nuam{i o 10 if I is a stable model of IT;

0 otherwise

where I|s= denotes the projection of  onto 6™ and Num(I|s=,IT) denotes the number of stable models
of IT that agree with I|sm on ¢™.

The paper [2] illustrates how NeurASP can be useful for some tasks where both perception and rea-
soning are required. Reasoning can help identify perception mistakes that violate semantic constraints,
which in turn can make perception more robust. For example, a neural network for object detection may
return a bounding box and its classification “car,” but it may not be clear whether it is a real car or a toy
car. The distinction can be made by applying reasoning about the relations with the surrounding objects
and using commonsense knowledge. In the case of a neural network that recognizes digits in a given
Sudoku board, the neural network may get confused if a digit next to 1 in the same row is 1 or 2, but
NeurASP could conclude that it cannot be 1 by applying the constraints for Sudoku.

NeurASP also alleviates the burden of neural networks when the constraints/knowledge are already
given. Instead of building a large end-to-end neural network that learns to solve a Sudoku puzzle given
as an image, we can let a neural network only do digit recognition and use ASP to find the solution of the
recognized board. This makes the design of the neural network simpler and the required training dataset
much smaller. Also, when we need to solve some variation of Sudoku, such as Anti-knight or Offset
Sudoku, the modification is simpler than training another large neural network from scratch to solve the
new puzzle.

Since NeurASP is a simple integration of ASP with neural networks, it retains each of ASP and
neural networks in individual forms, and can directly utilize the advances in each of them. The current
implementation is a prototype and not highly scalable due to a naive computation of enumerating stable
models. The future work is to improve computational methods.

References

[1] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester & Luc De Raedt (2018):
Deepproblog: Neural probabilistic logic programming. In: Proceedings of Advances in Neural Information
Processing Systems, pp. 3749-3759.

[2] Zhun Yang, Adam Ishay & Joohyung Lee (2020): NeurASP: Embracing Neural Networks into Answer Set
Programming. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1755—
1762, doi:10.24963/ijcai.2020/243.


http://dx.doi.org/10.24963/ijcai.2020/243

