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Spatial Mode Correction of Single Photons Using Machine
Learning

Narayan Bhusal,* Sanjaya Lohani, Chenglong You,* Mingyuan Hong, Joshua Fabre,
Pengcheng Zhao, Erin M. Knutson, Ryan T. Glasser, and Omar S. Magaña-Loaiza

Spatial modes of light constitute valuable resources for a variety of quantum
technologies ranging from quantum communication and quantum imaging to
remote sensing. Nevertheless, their vulnerabilities to phase distortions,
induced by random media, impose significant limitations on the realistic
implementation of numerous quantum-photonic technologies. Unfortunately,
this problem is exacerbated at the single-photon level. Over the last two
decades, this challenging problem has been tackled through conventional
schemes that utilize optical nonlinearities, quantum correlations, and
adaptive optics. In this article, the self-learning and self-evolving features of
artificial neural networks are exploited to correct the complex spatial profile of
distorted Laguerre–Gaussian modes at the single-photon level. Furthermore,
the potential of this technique is used to improve the channel capacity of an
optical communication protocol that relies on structured single photons. The
results have important implications for real-time turbulence correction of
structured photons and single-photon images.

1. Introduction

Spatially structured beams of light have been extensively used
over the last two decades for multiple applications ranging from
3D surface imaging to quantum cryptography.[1–3] In this regard,
Laguerre–Gaussian (LG)modes represent an important family of
spatial modes possessing orbital angular momentum (OAM).[4]
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The OAM of photons is due to a helical
phase front given by an azimuthal phase de-
pendence of the form ei𝓁𝜙, where 𝓁 repre-
sents the OAM number and 𝜙 represents
the azimuthal angle. These beams have en-
abled the encoding of many bits of informa-
tion in a single photon, a possibility that has
enabled new communication and encryp-
tion protocols.[5–11] In the past, these opti-
cal modes have been exploited to demon-
strate high-speed communication in fiber,
free space, and underwater.[12,13] Further-
more, structured light beams have enabled
increased levels of security against eaves-
droppers, a crucial feature for secure com-
munication applications.[6,14–17] Last but not
least, structured spatial profiles of single
photons have been proven to be extremely
useful for remote sensing technologies and
correlated imaging.[18–28]

Unfortunately, the spatial profile of photons can be easily
distorted in realistic environments.[29] Indeed, random phase
distortions and scattering effects can destroy information en-
coded in structured beams of light.[30–32] Consequently, these
spatial distortions severely degrade the performance of protocols
for communication, cryptography, and remote sensing.[7,17]

These problems are exacerbated at the single-photon level, im-
posing important limitations on the realistic implementation of
quantum-photonic technologies. Hitherto, these limitations have
been alleviated through conventional schemes that use adaptive
optics, quantum correlations, and nonlinear optics.[30,33–35]

However, an efficient and fast protocol to overcome undesirable
turbulence effects, at the single-photon level, has not yet been
experimentally demonstrated.
Recently, artificial intelligence has gained popularity in optics

due to its unique potential for handling complex classification
and optimization tasks.[36–43] Indeed, machine learning has been
used to engineer quantum states of light,[44,45] and to identify
their properties in different degrees of freedom.[46,47] The use
of machine learning is rapidly growing in multiple areas like
quantum state tomography, quantum metrology, and optical
communication.[48–51] Moreover, convolutional neural networks
(CNNs) have been demonstrated to be efficient in learning and
characterizing the topographical features of images.[52] An im-
portant number of recent articles have demonstrated the poten-
tial of artificial neural networks for efficient pattern recognition
and identification of spatial modes.[53,54] In addition to mode
classification, artificial intelligence has enabled spatial mode

Adv. Quantum Technol. 2021, 4, 2000103 2000103 (1 of 7) © 2021 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

http://www.advquantumtech.com
mailto:nbhusa1@lsu.edu
mailto:cyou2@lsu.edu
https://doi.org/10.1002/qute.202000103
http://creativecommons.org/licenses/by-nc/4.0/


www.advancedsciencenews.com www.advquantumtech.com

Figure 1. a) The schematic diagram of the setup used to demonstrate turbulence correction. The experiment is performed using a He-Ne laser and
heralded single photons produced through a process of spontaneous parametric down-conversion (SPDC). The sources are switched using a dichroic
mirror (DM). The spatial profile of photons is shaped by Alice using a spatial light modulator (SLM). The prepared photons are sent to Bob through a
turbulent channel. Bob then performs correction and quantum state tomography on the structured photons. In order to do this, Bob collects multiple
classical and single-photon images to train an artificial neural network. The high-light-level images are obtained with a CCD camera, whereas single-
photon images are formed on a gated ICCD camera. b) The neural network for turbulence correction comprises a five-layer convolutional neural network
(CNN), and a feedback loop with a gradient descent optimization (GDO) algorithm.

de-multiplexing, which is important for harnessing multiple bits
of information per photon.[55,56] Furthermore, the self-evolving
and self-learning features of artificial neural networks have
been exploited to prepare, classify, and characterize quantum
optical systems. Remarkably, for these particular tasks, ma-
chine learning techniques have outperformed conventional
approaches.[57–60]

Here, we experimentally demonstrate a smart communica-
tion protocol that exploits the self-learning features of CNNs to
correct the spatial profile of single photons. The robustness and
efficiency of our scheme is tested in a communication protocol
that utilizes LG modes. Our results dramatically outperform
previous protocols that rely on conventional adaptive optics.[30–33]

Furthermore, we demonstrate near-unity corrected fidelity in
time periods that are comparable to the fluctuation of atmo-
spheric turbulence. Our results have significant implications for
various technologies that exploit single photons with complex
spatial profiles.[5–7,61] In addition, our work shows an enor-
mous potential to enable the possibility of overcoming phase
distortions induced by thick atmospheric turbulence in real time.

2. Experimental and Computational Methods

The schematic diagram of our communication protocol and
the computational model of our artificial neural network are
depicted in Figure 1. Here, Alice prepares spatial modes that
are transmitted to Bob through a turbulent communication
channel. The atmospheric turbulence in the communication
channel induces aberrations in the optical beams that degrade
the quality of the information encoded in their phase. This unde-
sirable effect compromises Bob’s ability to correctly decode and
make measurements on the spatial modes. Bob overcomes this
problem by training an artificial neural network with multiple
turbulence-distorted beams that allow him to correct the spatial
profile of photons.
In our experiment, we use a spatial light modulator (SLM) and

computer-generated holograms to produce LG modes.[62] This

technique allows us to generate any arbitrary spatial mode in
the first-diffraction order of the SLM. The generated modes are
filtered and collimated using a 4f-optical system and then pro-
jected onto a second SLM. We use this second spatial modulator
to display randomphase screens that simulate turbulence.[30] The
beam reflected by the second SLM is then split into two beams
using a polarizing beam splitter (PBS). The spatial profile of the
beams reflected by the PBS are recorded by a CCD camera. Bob
collects 50 distorted modes for one specific superposition of spa-
tial modes transmitted through a turbulent channel. The com-
munication channel is characterized by a standard refractive in-
dex C2

n. Then, 45 of these images are used as a training set and
the remaining 5 are used as a test set. Each of the experimen-
tal images has a resolution of 400 × 400 pixels, then each im-
age is downsampled to form a matrix of 128 × 128 pixels before
the CNN. Once the neural network is optimized, Bob utilizes the
CNN to predict the turbulence strength and the initial correction
phasemasks. The initial phasemasks are then optimized bymin-
imizing the mean-squared error (MSE) using the gradient de-
scent optimization (GDO) algorithm. Furthermore, Bob utilizes
the same correction masks for the single-photon and high-light-
level implementation of our protocol. This is possible given the
fact that the turbulence of the communication channel is inde-
pendent of the number of transmitted photons. Naturally, turbu-
lence characterization using single photons requires longer inte-
gration times. Furthermore, the beam transmitted by the PBS is
characterized through quantum state tomography.
Over the past two decades, the possibility of performing

image correction at the single-photon level has represented
one of the main goals of the quantum imaging community.[5]

Due to the relevance of single-photon imaging for multiple
applications,[5,25–27,63] we also perform a proof-of-principle ex-
periment using heralded single photons produced by a process
of spontaneous parametric down-conversion (SPDC). This
configuration allows us to demonstrate the potential of our
turbulence correction protocol (TCP) at the single-photon level.
For this purpose, we utilize a dichroic mirror (DM) to ease the
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transition from one source to another as shown in Figure 1a. We
produce SPDC photons by pumping a type-II potassium titanyl
phosphate (ppKTP) crystal with a continuous wave (CW) diode
laser at 405 nm. A PBS is used to separate the correlated photon
pairs at 810 nm. We utilize temporal correlations to acquire
gated images at the single-photon level using an intensified
charged coupled device (ICCD) camera. This is performed by
adding a delay line to our experiment. Gating the ICCD camera
is crucial for the formation of single-photon images.[64]

Figure 1b illustrates our machine learning algorithm for the
correction of structured photons. This is based on a CNN fol-
lowed by a gradient descent optimizer.[59,65] The optimizer con-
sists of a five-layer CNN and a GDO algorithm. The CNN takes
turbulent images of LG beams, and convolves them with a 5 × 5
filter. The step is immediately followed by a 2 × 2 max-pooling
layer before feeding them into 100 fully connected neurons. Fi-
nally, the network contains a softmax output layer. We utilize
hundreds of instances of distorted images for multiple turbu-
lence strengths to train the neural networks. The function of the
trained CNN is to predict the strength of turbulence in terms of
standard refractive index (C2

n) values. The function of the GDO
loop is to optimize the correction phase masks over many real-
izations of randommatrices that simulate turbulence. The phase
masks are then encoded in the second SLM to obtain the cor-
rected spatial modes at the image plane of the SLM.
We prepare symmetric superpositions of LGmodes to demon-

strate smart optical communication. This family of modes are
solutions to the Helmholtz equation in cylindrical coordinates.[5]

Moreover, these modes form a complete orthonormal basis set
with respect to the azimuthal (𝓁) and the radial (p) degrees of
freedom.[66] In our experiment, we distort the communication
modes by using atmospheric turbulence simulated in a SLM.[67]

We use the Kolmogorov model of turbulence to simulate the
turbulent communication channel.[30,59,68] Turbulence induces a
random modulation of the index of refraction that results from
inhomogeneities of temperature and pressure of media. This, in
turn, leads to distortions of the phase front of the spatial profile of
optical modes. The degree of distortion is quantified through the
Fried’s parameter r0, which is defined in terms of the standard
refractive index C2

n

Φ(p, q) = ℝ
{


−1
(
𝕄NN

√
𝜙NN(k)

)}
(1)

with 𝜙NN(k) = 0.023r−5∕30 (k2 + k20)
−11∕6e−k2∕k2m and the Fried’s pa-

rameter r0 = (0.423k2C2
nd)

−3∕5. The mathematical symbol ℝ rep-
resents the real part of the complex field, whereas −1 indicates
the inverse Fourier transform operation. Furthermore, k, d, and
𝕄NN denote the wave number (2𝜋∕𝜆), the propagation distance,
and the encoded random matrix, respectively. Even though the
strength of phase distortion can be varied using d and C2

n, we
choose to vary its strength using C2

n. Furthermore, we perform
the phase mask optimization iteratively using the GDO algo-
rithm

Φj(p, q) = ∠
[


−1
{ 1
H

×  [−1( (G(p, q, w0) × exp(iΘ(𝓁,−𝓁)))

×H) exp (−iΦj
est(p, q))]

}]
(2)

The MSE between the predicted intensity and the correspond-
ing simulated target intensity is used as the cost function. In
this case, the symbol ∠ represents the complex phase defined by
arctan(𝕀∕ℝ), with 𝕀 describing the imaginary part of the complex
field. Moreover,  indicates a Fourier transform operation, and
Φj(p, q) the phase mask at the jth iteration. The Gaussian beam
G(p, q, w0) is characterized by a waist w0, and the transfer func-
tion describing the SLM transformation together with the propa-
gation function of the beam is represented byH. The phasemask
used to generate the original LG superpositionmode is described
by Θ(𝓁,−𝓁) in Equation (2).

3. Results and Discussion

In Figure 2a–c, we present experimental results obtained with a
He-Ne laser. The first column in each of the panels shows the
spatial profile of the undistorted modes prepared by Alice. The
spatial profiles of themodes are distorted due to atmospheric tur-
bulence in the communication channel. The aberratedmodes are
shown in the second column of Figure 2. In the experiment, Bob
collects hundreds of realizations of the aberrated beams to train
the artificial neural network in Figure 1b. The strength of turbu-
lence predicted by our CNN was utilized to perform the phase
mask optimization by means of a feedback GDO loop. Thus, the
CNN in combination with the GDO loop generate the correction
phase masks which are then encoded in the second SLM to al-
leviate turbulence effects. We indicate this process with the blue
box labeled as “TCP” in Figure 2. The CNNwas trained in a high-
performance computing cluster. The pre-trained CNNs are used
to estimate the turbulence strength and initial phase distribution
in fewmilliseconds. The pre-trained CNNs and GDO are run in a
computer with an Intel(R) Core(TM) i7-8750H CPU@ 2.20 GHz
and 16 GB of RAM to generate optimized turbulence correction
phase masks. In order to show the performance of our artificial
neural network, in Figure 3 we plot the MSE as a function of
the iteration number. This plot allows for a qualitative compar-
ison of our protocol with other adaptive optics techniques.[30,69]

Naturally, the number of iterations required for convergence de-
pends on the strength of turbulence. Our protocol shows a sim-
ilar performance to other adaptive optics protocols, see [30, 69].
Nevertheless, the standard refractive index (C2

n) values are orders
of magnitude higher. The MSE starts to converge near 100 iter-
ations for the turbulence strengths used in the experiment, see
Figure 3. This process enables Bob to obtain optimized phase
masks which are used to correct turbulence-induced distortions.
The corrected intensity profiles measured by Bob are depicted in
the last column of each panel in Figure 2. In Figure 2a, we show
the spatial profile of a structured beam corrected by our protocol
for the superposition of LGmodes |𝜓⟩ = 1√

2
(|LG+𝓁,0⟩ + |LG−𝓁,0⟩)

with 𝓁 = 5. In Figure 2b,c, we show experimental results for
complex LG modes, with radial structure, described by |𝜓⟩ =
1√
2
(|LG+𝓁,1⟩ + |LG−𝓁,1⟩) for 𝓁 = 3 and 𝓁 = 5, respectively.

We also demonstrate the robustness of our technique
to correct the spatial profile of heralded single photons.
In Figure 2d–f, we display turbulence correction of sin-
gle photons prepared in LG superpositions with differ-
ent azimuthal and radial quantum numbers, expressed as|𝜓⟩ = 1√

2
(|LG+5,0⟩ + |LG−5,0⟩), |𝜓⟩ = 1√

2
(|LG+3,1⟩ + |LG−3,1⟩),
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Figure 2. Spatial profiles of LG modes at high- and single-photon levels for different turbulence conditions. The first column in each of the panels shows
the states prepared by Alice without distortions. The second columns display the distorted beams measured by Bob. The strength of turbulence is char-
acterized by C2

n (×10
−13mm−2∕3), these numbers are reported in the yellow rectangle. The spatial profiles after our turbulence correction protocol (TCP)

are shown in the third column. a–c) High-light-level demonstrations of our protocol for multiple LG superpositions, |𝜓⟩ = 1√
2
(|LG+5,0⟩ + |LG−5,0⟩),

|𝜓⟩ = 1√
2
(|LG+3,1⟩ + |LG−3,1⟩), and |𝜓⟩ = 1√

2
(|LG+5,1⟩ + |LG−5,1⟩), respectively. d–f) The corresponding single-photon demonstrations of (a), (b), and

(c), respectively.

Figure 3. Mean-squared error (MSE) versus the iteration number in GDO.
The red and blue lines indicate theMSE values for turbulence strengths C2

n
= 60×10−13 and 90×10−13 mm−2∕3, respectively. The number of iterations
needed for the algorithm to achieve convergence depends on the strength
of turbulence. In general, stronger turbulence requires longer times to con-
verge.

and |𝜓⟩ = 1√
2
(|LG+5,1⟩ + |LG−5,1⟩), respectively. These images

were acquired using an ICCD camera. Each of the background-
subtracted images are formed by accumulating photons over a
time period of 20 min. These images demonstrate an excellent
mitigation of the turbulence at the single-photon level. It is
important to note that the implementation of the protocol in real
time is the ultimate goal. However, we would like to emphasize
the fact that speed and collection time in our experiment are lim-
ited by our computational resources and the performance of our
equipment. Thus, the overall reported speed in our manuscript
is not a fundamental constraint nor a problem of our protocol.
Indeed, it is possible to speed-up our scheme by replacing our

commercial ICCD camera with a fast single-photon camera with
nanosecond resolution such as the one described in ref. [70].
We quantify the performance of our correction protocol

through the channel capacity of our optical communication sys-
tem. Figure 4a shows the cross-correlation matrix for different
transmitted modes in the absence of turbulence. In order to gen-
erate this matrix, Bob performs a series of projective measure-
ments on the modes sent by Alice. The cross-correlation ma-
trix represents the conditional probabilities between the modes
sent and detected in the communication protocol. A small spread
around the diagonal elements even in the absence of turbulence
is caused due to diffraction, the finite size of the optical fibers,
and experimentalmisalignment. The cross-correlationmatrix ob-
tained in the presence of atmospheric turbulence is shown in
Figure 4b. In this case, the spatial distortion inducesmodal cross-
talk that degrades the performance of the communication proto-
col. These undesirable effects increase with the strength of tur-
bulence in the communication channel. Indeed, this represents
an important limitation of free-space communication with spa-
tial modes of light.[5] In Figure 4c, we show our experimental
results for the cross-correlation matrix after applying our tur-
bulence correction protocol. In this case, the cross-correlation
matrix is nearly diagonal, showing a dramatic improvement in
the performance of our communication protocol. Furthermore,
we calculate the normalized mutual information to quantify the
channel capacity in terms of bits per photon[30] as shown in
Figure 4d. We used the conditional probabilities of the cross-
correlation matrices to calculate the mutual information for a
high-dimensional Hilbert space according to the following equa-
tion MI = 1

N

∑
d,s P(d ∣ s) log2

( P(d∣s)N∑
s P(d∣s)

)
, where the dimension is

described by the parameter N, and the subscripts d and s rep-
resent the detected and sent modes, respectively. Here, P(d ∣ s)
denotes the conditional probability of detecting the state in spa-
tial mode d, given mode s is sent by Alice. The channel capacity
plot demonstrates the potential of our technique to correct spatial
modes of light.
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Figure 4. The cross-correlationmatrices represent conditional probabilities between sent and detectedmodes in theOAMbasis. a) The cross-correlation
matrix obtained for our communication protocol in the absence of turbulence. b) Plot of the cross-correlation matrix in the presence of turbulence
characterized by C2

n = 90×10−13 mm−2∕3. In this case, it is almost impossible to correctly identify the spatial modes. c) The cross-correlation matrix after
applying our turbulence correction protocol. Our turbulence correction protocol significantly improves the performance of the communication system.
d) Channel capacity in terms of bits per photon.

Figure 5. Real and imaginary parts of the density matrices for the qubits encoded in the OAM basis. In this case, we prepared |𝜓3⟩ = 1√
2
(|LG+3,0⟩ +

|LG−3,0⟩). a) The real and imaginary parts of the density matrix for the undistorted state. b) The density matrix for the aberrated qubit. In this case,
the strength of the simulated turbulence is characterized by C2

n = 80×10−13 mm−2∕3. c) The density matrix for the corrected qubit after applying our
turbulence correction protocol. We measured a fidelity of 99.9% for the prepared state, 81.7% for the distorted state, and 99.8% for the state corrected
through our machine learning protocol.

In order to certify the spatial correction of single photons and
the recovery of spatial coherence, we perform quantum state to-
mography of the spatial modes.[63] For this purpose we use super-
positions of the following form, |𝜓𝓁⟩ = 𝛼 |LG+𝓁,0⟩ + 𝛽 |LG−𝓁,0⟩,
where 𝛼, and 𝛽 represent complex amplitudes.[67,71–73] For sim-
plicity, in our experiment we use the following spatial qubit|𝜓3⟩ = 1√

2
(|LG+3,0⟩ + |LG−3,0⟩). In Figure 5a–c, we show the real

and imaginary parts of the reconstructed density matrices in
the absence of turbulence, with turbulence, and after applying
turbulence correction, respectively. As shown in Figure 5a, in
this case, all the elements of the real part of the density matrix
should be equal to 1/2, and the matrix elements of the imagi-
nary part should be 0. The presence of any deviation from that
is attributed to experimental imperfections. Furthermore, Fig-
ure 5b shows the detrimental effects produced by turbulence. The
strength of turbulence in this case is C2

n = 80×10−13 mm−2∕3. Af-
ter applying our machine learning protocol, we recover the orig-
inal state almost perfectly. The shown density matrices certify
the robustness of our technique. We quantify the fidelity using

ℱ = (Tr
√√

𝜌1𝜌3
√
𝜌1)

2, where 𝜌1 and 𝜌3 represent the density

matrices of the original and turbulence corrected spatial qubits.
The measured fidelity for the prepared state is 99.9%, whereas
that of the distorted state is 81.7%. Remarkably, the fidelity for the
state corrected through our machine learning protocol is 99.8%.

4. Conclusion

Spatial photonic modes have been in the spotlight for the
past few decades due to their enormous potential as quantum

information resources. However, these modes are fragile and
vulnerable to random phase fluctuations induced by turbu-
lence. Unfortunately, these problems are exacerbated at the
single-photon level. The fragility of spatial modes of photons
imposes important limitations on the realistic implementation
of optical technologies in free space. In this work, we have
experimentally demonstrated the first smart communication
protocol that exploits the self-learning features of CNNs to
correct the spatial profile of single photons. This work repre-
sents a significant improvement over conventional schemes for
turbulence correction.[30,33] [69] The high fidelities achieved in the
reconstruction of the spatial profile of single photons make our
technique a robust tool for free-space quantum technologies. We
believe that our work has important implications for the realistic
implementation of photonic quantum technologies.
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