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A CNN Based Vision-Proprioception Fusion Method
for Robust UGV Terrain Classification

Yu Chen , Chirag Rastogi, and William R. Norris, Member, IEEE

Abstract—The ability for ground vehicles to identify terrain
types and characteristics can help provide more accurate local-
ization and information-rich mapping solutions. Previous studies
have shown the possibility of classifying terrain types based on
proprioceptive sensors that monitor wheel-terrain interactions.
However, most methods only work well when very strict motion
restrictions are imposed including driving in a straight path with
constant speed, making them difficult to be deployed on real-world
field robotic missions. To lift this restriction, this letter proposes
a fast, compact, and motion-robust, proprioception-based terrain
classification method. This method uses common on-board UGV
sensors and a 1D Convolutional Neural Network (CNN) model.
The accuracy of this model was further improved by fusing it
with a vision-based CNN that made classification based on the
appearance of terrain. Experimental results indicated the final
fusion models were highly robust with strong performance, with
over 93% accuracy, under various lighting conditions and motion
maneuvers.

Index Terms—Deep learning, field robots, machine learning,
robot sensing systems, sensor fusion.

I. INTRODUCTION

THE development of precision agriculture has been greatly
enhanced due to advances in sensors, robotics, and artificial

intelligence. For instance, automatic inspection robots can make
assessments of the soil (terrain) quality of farmland and use
that information to optimize the scheduling of farming tasks
including plowing, watering, and fertilization. Similarly, scout
and surveillance robots can be used to explore the site of interest
remotely to identify hazardous terrain that might sink and trap
or damage heavy machinery. They can provide reference data
for excavation in construction and mining operations. These
robotics applications all rely on the robot’s ability to perceive
and characterize terrain. Additional benefits of terrain classifi-
cation include the development of terrain-aware traction control
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and motion planning that minimizes fuel consumption for field
robots. The knowledge of site-specific terrain characteristics
can improve localization accuracy, provide reliable landmarks,
and contribute terrain-related information to a high-definition
map.

Previous efforts to address robotic terrain classification (RTC)
have explored the use of exteroceptive sensors such as cameras
[1], [2], 2D and 3D laser scanners [3], [4], ultrasonic and
infrared sensors [5], as well as microphones [6]. In other stud-
ies, proprioceptive sensors such as Inertial Measurement Units
(IMUs) [7] and acceleration or vibration sensors [8], [9] were
used to characterize terrain properties. In terms of the classifier,
prior studies have investigated both traditional machine learning
techniques (i.e., SVM [10]–[12], kNN [13], and Bayes model
[7], etc.) and artificial neural networks (i.e., LSTM [6], RNN [9],
CNN [14], FCN [8], etc.), which have led to immense successes
in solving RTC problems.

The key to a robust RTC solution is to extract terrain charac-
teristics that are invariant to vehicle motions and environmental
factors such as noise and unstable illumination. Vision-based
methods are well-studied and relatively more accurate but are
also susceptible to influences from environmental illumination
[15], and motion blur caused by strong vibrations. Propriocep-
tive solutions are robust to environmental factors and require
only common sensors used on most modern robots. However, the
solutions are less accurate and highly dependent on the vehicle’s
motion. Many previous studies [11]–[14], [16], [17] tested their
methods when the UGV moved on a straight path with constant
speed, while others did not clearly reveal their testing conditions.
These restrictions occurred because the vehicles used in these
studies were primarily skid-steer drive, which induced additional
slippage and vibration to the system while turning. Also, the
vehicle’s driving speed is proportional to the driving effort
and the frequency of the vibrational response [8], [18]. Resul-
tantly, these motion-dependent interferences cloud the judgment
of the proprioception classifiers. To overcome the shortcom-
ings in different sensing modalities, previous studies considered
leveraging data from multiple sensor sources. For example, [2]
used the visual and texture features gathered by a stereo camera,
vibration sensors, and a belly-mounted camera to improve the
classification performance between three terrain classes. [11]
fused the classification decisions made by an image-based SVM
and a vibration-based SVM on a 14-class terrain classification
problem. And more recently, [12] combined color and three
different proprioceptive features to assess terrain in an agri-
culture setting. While the aforementioned work demonstrated
improved performances using multi-model classifiers, they did
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not fully address the problem of motion-dependent interference
of the UGV nor quantify the robustness of their models under
challenging lighting conditions.

In this article, a fast, compact, and motion-robust
proprioception-based classifier using common on-board UGV
sensors and a 1D CNN model was developed. Previous work
like [7], tackled the motion-dependent interference problem
using a hierarchical classifier and performing feature selection
on hand-crafted features. In contrast to this approach, the CNN
model in this study learns the most effective features from
the input data directly. Using this unified pipeline, over 89%
accuracy was achieved on data sets recorded under arbitrary and
continuous vehicle motions with minimum knowledge in the
signal processing and proprioception domains. Furthermore, this
study showed that by adopting and fusing an image-classifying
CNN module pre-trained on a different data set, the classification
accuracy was over 98% under appropriate illumination. The
same approach maintained a robust performance of over 93%
accuracy under challenging lighting conditions.

The following paper is organized as follows: Section II.
provides implementation details of a novel terrain classification
approach, including the data set collection and feature generation
process, as well as the construction and training of the neural
network models. Section III. presents the experimental results,
and the performance of the neural network models under realistic
and challenging conditions are demonstrated and discussed.
Section IV. analyzes the efficacy of the use of the proposed
derived features. Section V. concludes the study and provides
insights towards future work.

II. METHODOLOGY

A. Overview

Our proprioception model uses similar procedures from [12]
to generate proprioceptive signal inputs. As opposed to the
model in [12], which had no knowledge of the vehicle’s motion,
wheel encoder readings were fed to the model to serve as motion
cues. Also, instead of fully relying on the proprioceptive signals
of the vehicle body, this study utilized the signals from the
left and right sides of the vehicle to help the classifier reject
motion-dependent interference. The approach used in this study
retained the input signals in their raw form. So that the neural
network model can learn the temporal correspondences between
the vehicle’s motion and proprioceptive feedback. An ablation
study was included to further assess the effectiveness of the
proposed derived features and provide future research oppor-
tunities. A vision-based classifier was built using a pre-trained
module and was later fused with the proprioception-based clas-
sifier. This study investigated two different fusion mechanics
and demonstrated that visual and proprioceptive signals were
complementary. In combining their modalities, the classification
performance and robustness can be improved. The model’s abil-
ity to function across different motion and lighting conditions
makes it more suitable for real-world field robotic missions,
which often require obstacle avoidance maneuvers. All the
data used in this study were collected using a mobile robotic
platform and processed offline. Once trained, the classifiers can
be deployed on the robot. And they can report a terrain label
every second during normal operations (0.2–1 m/s).

Fig. 1. (a) The Jackal robot platform used for data collection; b) The data
collection pipeline.

Fig. 2. Sample images of the different terrain classes used in this study.

B. Data Collection

The Jackal UGV, from Clearpath Robotics, was used as the
data collecting platform. This skid-steer four-wheel-drive vehi-
cle, shown in Fig. 1a, comes with an onboard IMU, two DC
motors with encoders that measure wheel angular speeds, and
current sensors that measure motor current outputs. On each side
of the robot, the front wheel and back wheel are jointed with a
gearbox and so spin together at the same rate and direction.
The IMU provided vehicle attitude measurements in terms of
Euler angles, as well as linear acceleration and angular rate of
the vehicle body in three Euclidean axes. Camera systems such
as the RS D435i and RS T265 were mounted to an aluminum
frame attached to the top of the robot platform, as shown in
Fig. 1a. While the tracking camera T265, faced forward, the
D435i depth camera was positioned and tilted in a way that
the camera had a clear visual of the terrain patch. The patch
size was 680 mm × 340 mm with a look ahead distance of
150 mm relative to the chassis of the vehicle. The D435i served
as a regular RGB camera for this study and the depth images
reconstructed by the D435i were not included in any of the data
sets. The T265 camera was used as a Visual-Inertia Odometry
(VIO) solution that provided ego-motion estimations of the
vehicle.

For this study, six different sensor signals were used: 1)
current feedback, 2) wheel encoder readings from each side of
the vehicle, 3) 6 DoF VIO measurements from the T265, 4)
three-axis linear acceleration, 5) attitude measurement from the
IMU, and 6) RGB images taken by the D435i. In addition to the
RGB images, all other sensor signals were used as proprioceptive
features.

Seven terrain classes were investigated, including asphalt,
brick road, grass, gravel, pavement, sand, and coated floors.
Fig. 2 shows sample images of these terrain classes.
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Training and development data were collected by driving the
Jackal robot on each terrain class across different days to account
for variance in lighting conditions. Data collection occurred
during sunny days from Nov. 2020 to Feb. 2021 in Champaign,
Illinois. The average temperatures ranged from 6 to 27 °C. An
experienced human operator (one of the authors) was designated
for remote control of the Jackal robot during data collection. For
each terrain class, multiple independent trials were taken for at
least 6 minutes for the Straight Driving sessions and at least 10
minutes for the Remote Control sessions. The protocols of these
sessions were defined as follows:
� Straight Driving: the robot was programmed to follow a

straight path at the speed of 0.5 m/s and 1 m/s with no re-
verse driving, stopping, or turning. This session was added
to help the neural network understand the proprioceptive
baseline for each terrain surface without the interferences
induced by aggressive vehicle movements.

� Remote Control: the robot arbitrarily drove around the test
site to simulate normal robot operations, controlled by a
human operator remotely. The operator was instructed to
take each path as randomly as possible to reduce the motion
bias in the data set. The session conditions included no
reverse driving, stopping only if necessary, with a top speed
limited to 1 m/s out of safety concerns.

Finally, 600 sec of data from the Straight Driving sessions
and 1800 sec of data from the Remote Control sessions were
randomly chosen to form the data set for each terrain class. In
total, a data set that contained 7 terrain classes × (600 s + 1800
s) = 16800 s (4.67 hours) of image-signal data was gathered for
training the neural network models. This data set was divided
into a training set and a development set with a ratio of [4:1]. The
split between the training and development set was a uniform
random selection from the shuffled data set. And for both data
sets, the number of samples in each class was kept equal to
prevent uneven training.

C. Data Processing

1) Proprioceptive Signals: Raw sensor signals were sorted
and stored in the form of 1-second data segments as conducted
in many previous studies [2], [7]–[11], [13], [17].

Resampling Zero-Order-Hold (ZOH) interpolation and sub-
sampling were used to make sure signals from different sources
shared the same sampling frequency (100Hz). After the resam-
pling, one sample of the proprioceptive signal was a 100 × n
vector, where n was the number of signal channels. The use of
the ZOH ensured easy transfer when being deployed online.

Data Cleaning All the data segments that contained stop-
ping motions, where vehicle linear velocity < 0.2 m/s were
removed, as the proprioception-based method was not effective
under this condition.

Feature Generation The following proprioceptive features
were selected/derived from raw signals: wheel angular speed,
motion resistance coefficient, and percentage slip for each side
of the vehicle. Also, the linear acceleration of the vehicle body
in three Euclidean axes. A total of 2×(1 + 1 + 1)+3 = 9
proprioceptive features were used as input to the Propriocep-
tion Net. The details of the feature derivation are provided in
Section II.D.

Fig. 3. Motion resistance that arises from wheel-terrain interaction.

2) RGB Images: RGB images were recorded at 25 Hz by the
D435i. There were 25 images for each second of proprioceptive
signals.

Data Association The approximation was made such that
only the first image of a second was used to represent the
appearance of the terrain patch that the robot was about to
traverse, as shown in Fig. 1b. Since the robot primarily operated
with a speed between 0.5 to 1.0 m/s, and each data collection
site contained only one terrain class, the assumption was that the
fixed frame approximation was sufficient. The correspondence
between image and proprioceptive signals did not need to be
exact for this application. Ideally, techniques like Simultaneous
Localization and Mapping (SLAM) would be applied to pro-
vide more accurate image-signal data association to account for
misalignments due to differences in speed and steering.

Inverse Perspective Mapping (IPM) IPM was applied
to the selected RGB images to transform them into clear
and homogeneous bird’s-eye view terrain patch visualizations
(500 × 250 pixels). The transformed images were resized to
224 × 224 pixels to fit the input size of the Vision Net.

3) HDF5 File1: The processed image-signal pairs were
stored in the HDF5 format for fast retrieval. The data pairs were
organized by their unique timestamps.

D. Proprioception Net

1) Feature Derivation: Among the proprioceptive features
used in this study, the wheel angular speed (rad/s) and the three-
axis vehicle linear accelerations (m/s2) were taken in their raw
forms. The derivation and definition of the motion resistance
coefficient was adopted from [12]: The motion resistance caused
by the deformation of the wheel-terrain interface shifts Fz , the
vertical load experienced by the wheel forward with respect to
the wheel’s geometric center, as shown in Fig. 3. Assuming
all the torque generated by the motor is used to overcome the
resistance moment, the required driving torque is τ = fr r Fz,

1The HDF5 data files used in this study are open-source and available
at IEEE DataPort: https://ieee-dataport.org/open-access/jackal-robot-7-class-
terrain-dataset-vision-and-proprioception-sensors
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Fig. 4. Free-body diagram of the vehicle system (top-view).

where fr is the motion resistance coefficient on a local terrain
patch, and r is the radius of the wheel.

From the motor’s perspective, the output torque can be
roughly estimated by the amount of current, I , drawn by the
DC motor: τ = ε kt I. ε is the gear ratio and kt is the torque
constant of the DC motor. Therefore, the motion resistance
coefficient can be estimated using current feedback and wheel
vertical load:

fr =
εkt
r

I

Fz
(1)

The wheel vertical load is not a variable that can be di-
rectly measured or easily calculated without additional sensors.
However, the variable can be approximated using a quasi-static
dynamic model, proposed by [12], to neglect complex inertial
effects caused by vehicle motion. This approximation is valid as
the Jackal robot only operates at a relatively low speed with a
maximum of 1 m/s. Applying Newtonian mechanics, the vertical
forces in the vehicle coordinate can be expressed. As this study
was only concerned with the motion resistance coefficient on
each side of the vehicle, as shown in Fig. 4, the vertical forces
for the left and right sets of the wheels are:

Fz,l =
W

2
cos (φ) cos (θ) − Wcos (θ) sin(φ)

h

D
(2)

Fz,r =
W

2
cos (φ) cos (θ) + Wcos (θ) sin(φ)

h

D
(3)

φ and θ are the vehicle’s roll and pitch angles measured by the
onboard IMU. h is the height of the vehicle’s center of gravity,
and D is the track width. Additional detail on the derivation of
(2) and (3) can be found in [12].

The above method is a rough approximation of the motion
resistance that the vehicle experiences over a local terrain patch,
as the noise in current feedback, the friction loss in the gearboxes,
and inertial effects are not accounted for. However, the results
showed this estimation was sufficient for use as an indicator of
the terrain hardness level.

The percentage slip of the left and right sides of the vehicle
are defined as follows:

%slipl = 1− ωvio,l

ωenc,l
(4)

%slipr = 1− ωvio,r

ωenc,r
(5)

While ωenc,l and ωenc,r are the left and right wheels’ angular
speeds measured by the encoders, ωvio,l and ωvio,r are the
left and right wheels’ angular speeds calculated from the VIO

Fig. 5. The Proprioception Net model structure.

estimations and skid-steer vehicle kinematics:

ωvio,l =

(
vvio,x − D

2
wvio,z

)/
r (6)

ωvio,r =

(
vvio,x +

D

2
wvio,z

)/
r (7)

vvio,x and wvio,z are the vehicle linear speed on the x-axis and
vehicle angular rate on the z-axis, both estimated by the T265.

As opposed to [12], which took the average of the motion
resistance coefficient and percentage slip of the whole vehicle
to form their proprioceptive features, this study retained the
values across the data segment window. To form the desired
motion-robustness, the model needed to learn how to distinguish
and eliminate motion-dependent interference from noisy propri-
oceptive features. As a result, the model was given the temporal
correspondence between the robot’s motions and proprioceptive
feedback. This is the reason why this study did not use a Fast
Fourier Transform (FFT) when handling acceleration data like
many previous studies [8], [10], [11], [13], [17], [18]. Doing so
would essentially destroy the underlying temporal information
within the data segment.

Finally, at each time step k, a vector pk (1× 9) that contained
nine proprioceptive features {ωenc,l, ωenc,r, accelx, accely,
accelz, %slipl, %slipr, fr,l, fr,r} was drawn, where accelx ,
accely, and accelz were the three-axis vehicle linear acceler-
ations. And fr,l, fr,r were the motion resistance coefficients for
the left and right sides of the vehicle. These proprioceptive
features informed the model about the vehicle motion, as well as
the evenness, slipperiness, and motion resistance of the terrain.
Finally, the input to the Proprioception Net was a 2D vector p
(100× 9), where there were 100 time steps in a one-second data
segment and with 9 feature channels.

2) Model Building: This study explored using 1D CNN,
Multi-branch CNN, CNN with skip-connections, Gated Recur-
rent Unit (GRU), Long Short-Term Memory (LSTM), CNN-
LSTM [19], and ConvLSTM2D [20] as building blocks of the
Proprioception Net. For a similar number of parameters with the
same order of magnitude, the 1D CNN provided the best results.
The best model was a simple two-layer 1D CNN (with 32967
parameters). The detail of the network structure is demonstrated
in Fig. 5.

This 1D CNN model performed convolution along the tem-
poral axis, and a Rectified Linear Unit (ReLU) was used at
each convolution layer as the activation function. Many previous
Natural Language Processing (NLP) studies applied similar
practices and achieved great success. Recurrent neural networks
like LSTM and GRU were also heavily used in NLP [21]. For
this task, while keeping the number of parameters within the
same order of magnitude as the 1D CNN model, increasing the
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Fig. 6. The Vision Net model structure.

number of recurrent units per layer, and the depth of the network
did not result in an obvious improvement in accuracy. A similar
result was observed in [22] when using LSTM to process haptic
signals.

For other hybrid models, the difficulties of structural ar-
rangement and hyper-parameter tuning increased proportionally
with their model complexities. Since a simple 1D CNN model
achieved a high level of accuracy, the implication is that the
features used in this study were very effective for extracting
motion-independent terrain characteristics. As a result, there are
marginal benefits in using a “deeper” model.

E. Vision Net

To further improve the accuracy of the classification, a Vision
Net model for capturing the visual characteristics of terrains
was constructed. Generally, the training of an image-classifying
CNN requires a large amount of data to ensure generalizability
and prevent overfitting. To get high performance with a limited
amount of data, the MobileNet v2 module [23] that was pre-
trained on ImageNet was adopted. MobileNet v2, a compact and
efficient CNN architecture developed by Google, was designed
for image classification on a device with limited computational
power like single-board computers or mobile phones. ImageNet
is a large image database that contains multi-millions of image
samples.

The weights of this pre-trained CNN module were frozen to
reduce the number of trainable parameters (41223) and save
training time. Numerous data augmentation techniques were
applied, such as horizontal and vertical flipping as well as
random rotation, and random brightness on the training data.
Using the model shown in Fig. 6, the Vision Net achieved over
98% accuracy on both training and development sets.

F. Fusion Net

The hypothesis was made that by fusing the proprioception-
and vision-based model, higher levels of performance would be
achieved due to their complementarity. To better understand the
fusion mechanics, two different fusion schemes were explored,
namely the feature map-level and decision-level fusion.

1) Fusion at the Feature Map-Level: First, the Softmax (the
last) layer of the trained Proprioception Net was removed. As
a result, the output of this module was a 1× 1024 feature
vector. This module was denoted as a Proprioception CNN.
The pre-trained MobileNet v2 module was used and denoted
as a Vision CNN. The weights of these two modules were
frozen, and they were used as feature extractors to process the
image-signal hybrid input. The activations (ReLu) from these
two CNN modules were concatenated. The complete pipeline
of feature map level fusion can be found in Fig. 7.

To simulate the possible illumination conditions in test time,
additional and aggressive data augmentation techniques were

Fig. 7. The feature map-level fusion model pipeline.

Fig. 8. The decision-level fusion model pipeline.

applied on images during training, including random channel
shift, motion blur, and blackout.

2) Fusion at the Decision-Level: In this model, the learned
weights of the Vision Net and the Proprioception Net were
directly transferred. These two networks ran in parallel and made
independent predictions (decisions) at their Softmax layers. The
prediction outcomes were received by a fusion operator, denoted
as a DST, which output the final classification, as shown in Fig. 8.

DST is the acronym for the Dempster–Shafer Theory [24].
It was used in this model to solve the problem of combining
multiple belief functions. DST was used in a previous fusion
model [25] for classifying sound signals with great results.

In this study, two distinct sets of evidence, appearance and
proprioceptive feedback were used to estimate the belief about
an event. The belief was the likelihood that a certain terrain
type was detected. For this application, Dempster’s rule of
combination was an appropriate fusion operator. Specifically,
the operator was defined as follows:

m1,2 (A) = (m1 ⊕m2) (A)

=
1

1−K

∑
B∩C = A�=∅

m1(B)m2(C) (8)

m1(B) and m2(C) were the mass functions of the Vision Net
and the Proprioception Net, the outputs of Softmax layers. And
m1,2(A) was the jointed mass function that encoded the belief
distribution of the class labels, and it satisfied the constraint
m1,2 (∅) = 0. K =

∑
B∩C = ∅

m1(B)m2(C) indicated the level

of conflict between the two mass functions, and it was used for
normalizing the mass functions.

Since all the transferred weights were frozen and the DST
layer did not contain any parameters, this fusion model did not
require training.
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Fig. 9. The probability density histograms of vehicle linear and angular speed
for the Training / Development Set; the Test Set; and the Dark Set.

III. VALIDATION RESULTS

1) Data Set: To validate the performance and robustness of
the method, two independent sets of testing data were gathered.
First, a test set was collected using the same protocol described
in section II.B. For all testing data, only the Remote Control
sessions were included. This data set, denoted as the Test Set, had
4020 samples (1.1 hours) from seven terrain classes collected
under lighting conditions similar to the training set. The other
data set, denoted as the Dark Set, had 3912 samples (1.09 hours)
and was also collected using the same protocol, only in this case
the data were recorded under natural twilight conditions.

Fig. 9 provides a visualization of the vehicle linear and angular
speeds collected for each data set. The probability density distri-
butions were similar across all data sets, except that the training
and development sets contained more samples at 0.5 m/s and 1
m/s due to the addition of the Straight Driving sessions. This
meant the data collected in the Remote Control sessions were
sufficiently random (uniform). It can be observed that the human
operator tended to have a preferred range of driving and turning
speeds when requested to drive the robot with arbitrary motions.

Moreover, as data augmentation techniques such as random
brightness were used during training, darker images were not
completely unfamiliar to the two Fusion Net models. It is
possible that the Fusion Net models may have been successful
with the Dark Set by simply trusting only the Proprioception
CNN whenever the brightness of the image was below a certain
threshold. To exclude this possible workaround and test how well
the models generalized to illumination conditions that were not
accounted for during training, the images in the Test Set were
augmented under different conditions, and two simulated data
sets were created: the Sun Set and the Fog Set. A library called
albumentations was used to generate realistic overexposed and
foggy images. Samples of these test sets can be found in Fig. 10.

Note that the inclusion of the synthetic test sets was not to
suggest the models tested had the exact performance under these
illumination conditions in the real world. The test results on
synthetic sets served as indicators of model robustness outside
of the training conditions.

2) Experiment Analysis: Fig. 11 demonstrates the confusion
matrices of four models tested under the two testing sets. It
was expected that the Proprioception Net struggled to tell the

Fig. 10. Sample images of gravel in a) the Test Set, b) the Dark Set, c) the Sun
Set, and d) the Fog Set.

Fig. 11. The confusion matrix of Orange: the Proprioception Net; Blue: the
Vision Net; Green: the Fusion Net at feature map-level; and Yellow: the Fusion
Net at decision-level, tested under the Test Set and the Dark Set.

differences between asphalt, pavement, and coated floor since
they are all relatively flat and solid [8]. Most of the confusion
between these three classes occurred when the robot was moving
straight, where the terrain characteristics of these classes were
difficult to distinguish. Additionally, if the robot turned (skidded)
on asphalt or pavement, the robot induced strong vibrations due
to high friction. The difference between asphalt and pavement
was more subtle in the eyes of the Proprioception Net. The
darker lighting condition in the Dark Set did not hinder the
accuracy of the Proprioception Net since it did not rely on visual
information. However, the Vision Net failed with the Dark Set
and tended to guess all input samples to be either pavement
or a coated floor. This follows from the general knowledge
that image CNNs are sensitive to lighting conditions. The two
Fusion Net models had higher levels of overall accuracy (up
to 99.38%) on the Test Set and the Dark Set as shown in
Fig. 11. Leveraging two complementary modalities, the feature
map-level fusion model demonstrated strong performance on
the two testing sets. The decision-level fusion model was able
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Fig. 12. The classification accuracy comparison table, where Blue: models
from this study; Orange: [11]; Green: [12]. “PSVM”, “VSVM”, and “FSVM”
stand for proprioception SVM, vision SVM, and fusion SVM respectively. The
term accuracy refers to weighted overall accuracy, and the bold numbers are the
highest accuracy in each column.

to strategically shift its belief between the two CNN models and
achieved a similar level of performance. Some samples which
were indistinguishable by the Proprioception Net and the Vision
Net were correctly classified with both fusion models. For the
Dark Set, even when almost no visual information was available
for classification, both fusion models maintained a higher level
of performance compared to the Proprioception Net and the
Vision Net. These results confirm the earlier hypothesis that by
fusing the proprioception- and vision-based models, higher lev-
els of performance can be achieved due to their complementarity.

This complementarity also implies the addition of a vision-
based model may be used to extend the classification range of
this pipeline to slower vehicle motions (<0.2 m/s). As men-
tioned earlier, the Proprioception Net was not effective when
the vehicle’s linear velocity was too small, as not enough dis-
tinguishable proprioceptive excitations were generated under
this condition. However, as the vehicle motion gets closer to
a complete stop, a vision-based model is expected to perform
better with the absence of velocity-induced motion blur under
appropriate illumination conditions. One can force the pipeline
to only use the Vision Net when the vehicle’s linear velocity is
below a certain threshold via a simple “if” statement.

Fig. 12 provides an accuracy comparison between the models
developed in this study as well as the models from [11] and
[12]. The methods in [11] and [12] were recreated with the best
effort and trained using the same training set. The test results of
[11] and [12] are presented as baselines. As the Sun Set and the
Fog Set were synthesized using the Test Set, the test accuracies
for all the proprioceptive-based models were the same as the
Test Set. Fig. 12 demonstrates that the fusion models developed
in this study have consistently high performance (over 93%)
even in illumination conditions that were not accounted for
during training, namely the Sun Set and the Fog Set. It can
also be observed that even though [11] and [12] did improve
the classification accuracy in the Test Set by fusing the SVM
models, this trend did not generalize well to other test sets. In
some cases, the accuracy of the proprioception SVM was much
higher (up to a 29% difference) than the fusion SVM, which
implies the fusion mechanics used in [11] and [12] could not
effectively shift their beliefs between the proprioception and the
vision models according to the illumination conditions.

Fig. 13 provides information on the inference time and storage
size of the models in this study. The Proprioception Net was
very fast and compact, while the other models required over 6

Fig. 13. The Time profiling and storage comparison table; tests were per-
formed using an AMD Ryzen7 4800H Processor (2.9 GHz), no GPU was used.

Fig. 14. The classification accuracy comparison table for the ablation study.

ms to process a one-second data pair. As the collection of pro-
prioceptive feedback required a whole second, comparatively, a
millisecond-level inference time indicated a classification rate
near 1 Hz is possible once the models are deployed online.
Moreover, storage sizes for all the models can easily fit in the
memory of a single-board computer like a Raspberry Pi or an
NVidia TX2.

IV. ABLATION STUDY

An ablation study was conducted to help understand the
efficacy of the use of the derived features mentioned in
Section II.D: Instead of using the features adopted from [12],
a Proprioceptive CNN model, denoted as a Raw Proprioception
Net, that takes the raw proprioceptive sensor signals as inputs
was built and compared to the Proprioception Net. To ensure
a fair comparison, both networks were trained under the same
conditions. Two pairs of training and development sets were
generated using the same random seed such that they had the
same data frames as their counterparts. One pair of the training
and development sets used in the ablation study was formed
following the same procedures described in Section II.C, while
the other excluded the feature derivation procedure and packed
the proprioceptive signals untreated (i.e., ωenc,l , ωenc,r, accelx,
accely, accelz, vvio,x, wvio,z, Il, Ir, φ, θ; where Il and Ir were the
current feedback from the left and right DC motors). Note that
in (1, 2, 3), current feedback Il and Ir, and vehicle attitude φ and
θ were used to compute the motion resistance coefficients fr,l
and fr,r. Therefore, by omitting these computations, the input
space of the Proprioceptive CNN increased from 100 × 9 to
100 × 11. The network structure of the Raw Proprioception
Net was the same as the Proprioception Net except for a larger
input layer to accommodate for the change in input space. As a
result, the total number of trainable parameters was marginally
larger (35527 parameters in total).

Fig. 14 shows the accuracy comparison between the Raw
Proprioception Net and the Proprioception Net. As mentioned
earlier, the training and development sets used in the ablation
study were newly generated. The data composition was slightly
different from before due to the random selection procedure
described in Section II.B, which caused accuracy fluctuations for
the Proprioception Net (less than ±0.64% compared to Fig. 12)
in both the Test Set and the Dark Set.

As shown in Fig. 14, the performance margin of using the
proposed derived features was small – about 1.72% in the
development set. The accuracy of the Raw Proprioception Net in
the Test Set and Dark Set also suggested the 1D CNN structure
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given in Fig. 5 can be trained to process raw proprioceptive
signals directly and achieve a similar level of accuracy as the
one using the proposed derived proprioceptive features. This
ablation study implied that the proposed data processing pipeline
can be further simplified in a follow-up study.

V. CONCLUSION AND FUTURE WORK

This study successfully developed a fast, lightweight,
and motion-robust proprioception-based terrain classification
method using a CNN model and signals from common on-board
UGV sensors. The strong performance (over 89.54%) and the
robustness of this method were demonstrated by testing it under
data sets that contained arbitrary vehicle motions. Furthermore,
it was shown that the proprioception and vision-based models
were complementary. By fusing the two models, a higher level of
accuracy (up to 99.38%) was observed in both the feature map-
level and decision-level fusion models. Four distinct lighting
conditions were used to validate the generalizability of the fusion
models. The validation results (over 93.68% accuracy) showed
the fusion models in this study can strategically cope with differ-
ent environmental illumination without human interference and
achieve significantly higher accuracy than the baseline methods.
The decision-level fusion model achieved the highest average
accuracy (96.40%) over the four test sets. Compared to the
feature map-level fusion, the decision-level fusion was more
stable under different test conditions and did not require further
training. It is worth noting that the Proprioception Net and Vision
Net were independently trained before their integration into the
decision-level fusion model as frozen layers. This suggested the
association between the proprioceptive signals and the image
was not critical to the success of the decision-level fusion in
this study. Additionally, the time profiling indicated the online
deployment of the models in this study was possible. Lastly,
an ablation study showed the proposed data processing pipeline
can be further simplified by removing the use of all manually
derived features. Doing so permitted the proposed method to be
less model-dependent, as the knowledge of the vehicle specifica-
tions, dynamic, and kinematic models were no longer required.

In the future, more human operators should be recruited to
enrich the variety of driving motion in the data sets, or a program
can be developed to automate the data collection process. Data
augmentation on proprioceptive signals should be performed to
further improve the accuracy. A larger range of vehicle motions
and data collection sites should be included in the test sets
to further validate the generalizability of the models. Feature
importance analysis would need to be conducted to reduce the
number of required signals and the size of the model. More
accurate data association techniques like SLAM should be ap-
plied for online deployment. And other fusion mechanics should
be investigated so that the correlations between proprioceptive
signals and images can be effectively utilized. Moreover, as this
method is vehicle-specific, the portability and scalability of the
method should be addressed in future studies.
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