
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Model Compression Hardens Deep Neural
Networks: A New Perspective to Prevent

Adversarial Attacks
Qi Liu and Wujie Wen , Member, IEEE

Abstract— Deep neural networks (DNNs) have been
demonstrating phenomenal success in many real-world
applications. However, recent works show that DNN’s decision
can be easily misguided by adversarial examples–the input
with imperceptible perturbations crafted by an ill-disposed
adversary, causing the ever-increasing security concerns for
DNN-based systems. Unfortunately, current defense techniques
face the following issues: 1) they are usually unable to mitigate
all types of attacks, given that diversified attacks, which may
occur in practical scenarios, have different natures and 2) most
of them are subject to considerable implementation cost such as
complete retraining. This prompts an urgent need of developing
a comprehensive defense framework with low deployment costs.
In this work, we reveal that “defensive decision boundary”
and “small gradient” are two critical conditions to ease the
effectiveness of adversarial examples with different properties.
We propose to wisely use “hash compression” to reconstruct
a low-cost “defensive hash classifier” to form the first line
of our defense. We then propose a set of retraining-free
“gradient inhibition” (GI) methods to extremely suppress and
randomize the gradient used to craft adversarial examples.
Finally, we develop a comprehensive defense framework by
orchestrating “defensive hash classifier” and “GI.” We evaluate
our defense across traditional white-box, strong adaptive
white-box, and black-box settings. Extensive studies show that
our solution can enormously decrease the attack success rate of
various adversarial attacks on the diverse dataset.

Index Terms— Adversarial defense, adversarial examples, deep
neural network (DNN), model compression.

I. INTRODUCTION

DEEP neural networks (DNNs) have been achieving
tremendous success across many exciting real-world

applications, such as image classification, speech recognition,
and self-driving cars [1], [2]. However, recently, the security of
DNN has emerged as a major concern with the proliferation
of DNN-based applications. Extensive studies show that the
function of a DNN can be easily deceived by adversarial
examples—a type of slightly polluted inputs [3]–[6]. The
injected adversarial perturbations are almost imperceptible to

Manuscript received September 27, 2020; revised March 22, 2021; accepted
May 26, 2021. This work was supported by the National Science Foundation
under Award CNS-2011260, Award CCF-2011236, and Award CCF-2006748.
(Corresponding author: Wujie Wen.)

The authors are with the Department of Electrical and Computer
Engineering, Lehigh University, Bethlehem, PA 18015 USA (e-mail:
qil219@lehigh.edu; wuw219@lehigh.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3089128.

Digital Object Identifier 10.1109/TNNLS.2021.3089128

human eyes but can mislead the decision of a target DNN
model with very high confidence, i.e., misinterpreting the
“Stop” sign as a “Speed Limit” or other sign in a self-driving
car, thereby causing potential disastrous consequences [7].

To address this problem, researchers have proposed a series
of defense techniques, which mainly include the following four
categories: adversarial training [4], [8], gradient masking [9],
input transformation [10], [11], and adversarial example detec-
tion [12]. However, the research on the defense is still lagging
behind and facing the following significant challenges.

1) Inefficiency of a single defense solution due to different
natures of existing adversarial examples. For example,
the fast gradient sign method (FGSM)-based [4] adver-
sarial examples could cross DNN’s decision boundary
easily because of the large input perturbations, while
stronger examples based on Carlini & Wagner (C&W)
method [13], which offers ∼100% attack success rate,
are more close to decision boundary with much smaller
perturbations. This leads to the fact that a single defense
solution cannot work well when facing various attacks,
e.g., model-specific methods such as “defensive distilla-
tion” [9] can mitigate FGSM attacks but fails in C&W
attacks.

2) High implementation cost because of costly retraining,
data preprocessing, and so on. For example, projected
gradient descent (PGD)-based adversarial training can
resist the L∞ adversarial attacks [8] by doubling the
training cost due to the augmented training dataset
with adversarial patterns. Defensive distillation [9] also
requires additional training on the soft labels from the
first-round training. Note that training modern DNNs
from scratch is very expensive as it involves long
processing time over multiple GPU clusters [14], e.g.,
a few weeks or months. Apparently, these limitations
make them difficult to protect DNNs, especially con-
sidering the varying strategies of attackers in practi-
cal scenarios. As DNN model size continues growing
and state-of-the-art attacks become more diversified and
stronger, exploring a comprehensive defense framework
with low cost has become a necessity.

In this work, we attempt to fill this research gap by
systematically attacking two fundamental entities that impact
the effectiveness of any type of adversarial examples: Factor 1)
“decision boundary”—the surface of trained DNN model’s
input space where adversarial examples need to cross for

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3953-5320
https://orcid.org/0000-0003-0011-0675

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

causing incorrect output predictions and Factor 2) “adversarial
gradient”—the gradient with respect to inputs directly used
to craft adversarial examples. Existing research has shown
how each individual factor impacts the success rate of several
selected adversarial attacks [8], [9], [15], and here, we advo-
cate that the reason for different adversarial examples can
exhibit different nature stems from the relative importance
of both factors, e.g., (“Factor 2” dominated—“direct gradi-
ent”) FGSM, and (“Factor 1” dominated—“indirect gradient”)
C&W attack with much smaller perturbations according to
iterative and search process of better objective functions [13].
Therefore, a critical observation in this article is that DNN
models can be comprehensively hardened if and only if
the above two factors can be well handled simultaneously.
Inspired by this observation, we propose to construct the
model compression-based “defensive decision boundary” first,
followed by a set of retraining-free “gradient inhibition” (GI)
methods to further suppress the adversarial gradient and,
at the same time, to obfuscate the iterative search procedure
of fine-grained attacks (e.g., C&W). We summarize our key
contributions as follows.

1) We rearchitect “hash compression” technique to harden
the pretrained DNN model with defensive decision
boundary, namely “defensive hash classifier,” in order
to provide the first line of defense. Besides, we pro-
pose a robustness estimator to guide the search of
optimized compression rates (CRs) of selected layers
for the “defensive hash classifier.” The robustness esti-
mator is built upon the synthetic contribution of both
adversarial gradient and L2 distance of logits (before
the softmax function). The key advantages of such
defensive classifier include: 1) quick installation by
applying dedicated hash compression to a few selected
fully connected layers of trained DNNs and 2) marginal
retraining cost (i.e., three epochs) for accuracy recovery
by using “transfer learning.” This is an early attempt that
explores how weight compression—an indispensable
technique originally aiming to ease the memory/storage
overhead during DNN hardware implementation—can
be redesigned for enhancing the robustness of DNN
models.

2) We develop a set of retraining-free “GI” methods com-
plementary to the defensive hash classifier to effectively
eliminate the remaining impact of adversarial gradi-
ents with marginal accuracy reduction. Unlike existing
gradient masking methods, “GI” directly manipulates
the trained weights without involving any retraining
and reduces the impact of gradients to the minimum.
Besides, one of the proposed methods also misleads
the procedure of searching optimal adversarial pertur-
bations, which is the key to find stronger adversarial
examples, i.e., C&W attacks. This can translate into
significant improvement in defense efficiency.

3) We orchestrate the “defensive hash classifier” and “GI”
for a holistic solution set to defend against attacks
under two settings: white box and black box. For
white-box setting, experimental results show that our
solution set can reduce the attack success rate from

93.45% to 14.39% (from 91.27% to 22.98% and
from 87.18% to 34.63%) on average for the MNIST
(CIFAR10 and ImageNet-subset) datasets across eight
mainstream attacks with very marginal accuracy loss.
For black-box setting, our solution can lower the success
rate of state-of-the-art zeroth-order optimization (ZOO)
attacks by ∼50% (untarget) and ∼70% (target) for both
MNIST and CIFAR10, respectively.

We believe that this work provides a radically different
perspective, e.g., model compression and retraining-free DNN
hardening techniques, for developing a comprehensive defense
strategy to protect DNNs against adversarial attacks, with the
guarantee of low cost and high accuracy.

II. BACKGROUND

A. Deep Neural Network

DNN can be simplified as F(·) : x → y, with the input
x ∈ R

n, output y ∈ R
m , parameters θ (such as weights and

bias), and DNN model function F . The randomly initialized θ
will be iteratively updated until the convergence by minimizing
the loss function, i.e., cross-entropy loss function, in the train-
ing phase. The softmax function is widely adopted in the out-
put layer [16]–[19], to produce an m-dimensional probability
vector that indicates the confidence of each class with respect
to an input x . We define z = Z(x) as the logits (multiply–
accumulate features before softmax) and y as the DNN output
(after softmax activation): F(x) = softmax(Z(x)) = y.

B. Adversarial Attacks

Adversarial examples are crafted by adding small and
imperceptible perturbations into normal data, in order to
mislead the DNN classification. We summarize several main-
stream white-box attacks (1–7) and black-box attacks (8 and 9)
as follows.

1) White-Box Attacks:
a) Fast gradient sign method: FGSM [4] is L∞-norm

nontarget attack and intends to add the largest perturbations
(ε) into each pixel of an image, by following the direction
of the gradient of loss function L with respect to input x
(∇x L(x, y)): x∗ = x + ε · sign(∇x L(x, y)).

b) Basic iterative method (BIM): BIM [20] is an iterative
FGSM attack to add small perturbations α in each iteration
until the largest perturbations level reaches ε or achieves a
successful attack.

c) Momentum iterative method (MIM): Dong et al. [21]
proposed to integrate the momentum method to accelerate and
optimize iterative FGSM’s gradient descent process, so as to
further boost the effectiveness of adversarial examples.

d) Jacobian-based saliency map approach (JSMA):
JSMA [22] is the L0-norm attack against a specific class
(targeted attack). Adversarial examples are created by mod-
ifying only few most significant pixels of the input image. As
the saliency map can be generated either from the gradient
of logits Z before softmax function or gradient of DNN
output F after softmax function, JSMA attacks can be further
categorized into two versions: JSMA-Z [23] and JSMA-F.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU AND WEN: MODEL COMPRESSION HARDENS DNNs 3

e) C&W method: Carlini et al. [13] proposed three types
of attacks based on L0, L∞, and L2 norms. Such examples are
crafted by solving the following two-term objective function:

min �δ�p + c · f (x + δ) s.t. x + δ ∈ [0, 1]n (1)

where c is a critical parameter decided by the binary search
using the gradient descent method to minimize both terms
of (1), p is the norm, and f can be further expressed as
follows:

f (x∗) = max(max{Z(x∗)i i 	= t} − Z(x∗)t ,−κ) (2)

with κ the confidence level of incorrect classification (i 	= t).
f) Elastic-net attacks to DNNs (EAD): Elastic-net attack

[24] further improves the C&W method by adding L1 and
L2 regularization terms simultaneously to the optimization
function. The new objective function can be expressed as:
minx β · �x − x∗�1 + �x − x∗�2 + c · f (x∗), where c and
β are the regularization parameters.

g) Backward pass differentiable approximation (BPDA):
Athalye et al. [25] introduced the BPDA, to circumvent the
majority of state-of-the-art defenses, based on the assumption
that the adversary has the full knowledge of defense method
on top of the DNN model (a strong white-box attack setting).
The key idea of BPDA is to find a differentiable approximation
function g(x) to replace the nondifferentiable function fi (x)
designed by defense [where g(x) ≈ fi (x)] in layer i of a DNN
model so that attackers can still generate adversarial examples
on the backward pass.

2) Black-Box Attacks:
a) Black-box attack based on a substitute model: Paper-

not et al. [7] proposed a more practical adversarial attack
method in the black-box setting. Adversary needs to train
a substitute model for generating adversarial examples. As
the decision boundary modeled by the substitute model is
similar to the targeted model, adversarial examples generated
in a substitute model (using white-box attack techniques listed
above) exhibit high transferability and can mislead the targeted
model.

b) Restricted black-box attack-based ZOO: To overcome
the low transferability issue of black-box attack (especially on
target attack) based on a substitution model, Chen et al. [26]
proposed a stronger black-box attack based on ZOO. It directly
approximates the gradient of a targeted DNN model by using
the symmetric difference quotient. Note that the ZOO attack
does not need to query targeted DNN several times to obtain
the initial dataset for training substitute model. As a result,
we introduced a more restricted black-box set—no query.

C. Hash Compression

DNN compression techniques, such as network
pruning [27], [28], network quantization [28], and HashNet
[29], [30], can effectively reduce the number of needed
weights through pruning or weight sharing. “Hash
compression”-based HashNet shares weights using the hash
function to reduce storage overhead significantly. The basic
idea is to randomly group original weights into hash bucket
through the hash function so that the weights assigned to the

same hash bucket can share the similar value. Then, the real
weights in the hash bucket along with the corresponding hash
index will be actually stored in hardware, costing much less
memory than that of storing original weights. The tradeoff
between DNN accuracy and memory overhead is realized by
tuning the parameter–hash CR (defined as the ratio between
the number of real weights and virtual weights in this article).
To maximize the CR, hash compression is applied to all DNN
layers, and however, a reasonable CR cannot be very high,
i.e., 1/64, due to the accuracy drop [29].

D. Related Defense Techniques

1) Adversarial Training: Adversarial training attempts to
harden the DNN model by incorporating both adversar-
ial examples and normal data during the training process
[4], [8], [31]. However, defense efficiency is limited since
it relies on the knowledge of assumed adversarial examples,
which may be quite different from realistic attacks in terms
of perturbation strength ε (i.e., FGSM) or attack types (i.e.,
FGSM versus variant FGSM [15], [21]). Madry et al. [8] also
proposed a new adversarial training method using the PGD
attack (BIM attack with random starts) as the strongest attack
in the first-order adversary, in order to enhance the robustness
of the DNN model. However, PGD-based adversarial training
is very costly. Recent works mainly focus on accelerating
the PGD-based adversarial training [32], [33]. For example,
Shafahi et al. [32] proposed a free adversarial training algo-
rithm to accelerate the computation by reusing the backward
pass calculation.

2) Gradient Masking: The gradient masking method sup-
presses the adversarial gradient of output with respect to
inputs as much as possible so that adversaries are unable to
leverage such gradient to craft adversarial examples [9], [34].
For example, “defensive distillation” [9] is a classic gradient
masking method. The basic idea is to first train a DNN
model with smoothed labels generated by a trained teacher
model with a modified softmax function, instead of hard labels
(0 or 1). Then, the last layer of the distilled model after
training will be replaced by a “harder” softmax function.
By paying extra training on the teacher model, it can well
resist some of “direct-gradient-based” attacks such as JSMA-F.
However, studies proved that it cannot mitigate JSMA-Z or
C&W [13], [23] attacks.

3) Model Compression and Adversarial Robustness: There
exist a few recent studies that explore the interplay between
model compression and adversarial robustness [35], [36].
For example, Gui et al. [35] proposed to concurrently inte-
grate weight pruning, factorization, and quantization into the
adversarial training framework with the goal of enabling
model compression and preserving the adversarial robustness
simultaneously, so as to tackle the dilemma of adversar-
ial training—the prominent model accuracy drop versus the
improvement of adversarial robustness. Ye et al. [36] proposed
an ADMM-based weight pruning to reduce the larger network
capacity caused by adversarial training without hurting the
model accuracy and adversarial robustness. Therefore, pre-
vious works only utilize model compression to cope with

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Decision boundary illustration of an example neural network (“AND” function) before (a)/after (original model) and (b) hash compression (HashNet).

the compromised performance or larger model size incurred
by adversarial training. There exists no work to explore
whether it is possible to directly rearchitecture compression
techniques in the context of security to significantly enhance
model’s adversarial robustness at both low cost and marginal
accuracy loss. This work represents a very early attempt to
redesign the hash compression technique, which is originally
dedicated for storage overhead reduction, as a defense solution
against a variety of adversarial attacks, by formulating the
compression-enabled defensive decision boundary.

III. FACTOR 1: COMPRESSION-BASED DEFENSIVE

DECISION BOUNDARY

“Decision boundary” and “adversarial gradient” are two
fundamental factors impacting the effectiveness of generated
adversarial examples. In this section, we first present the
concept of our advocated “defensive decision boundary” as
well as the opportunity of hash compression for achieving such
boundary. Then, we develop a robustness estimator to math-
ematically guide the design of compression-based “defensive
decision boundary,” followed by its implementation details.

A. Hash Compression for Defensive Decision Boundary

1) Defensive Decision Boundary: The “defensive decision
boundary” in this work is assumed to convey the following
natures.

1) Condition 1: The differences of logits Z among different
classes under this boundary should be small, as long
as a correct class prediction can be still made after
softmax. This indeed softens the decision (boundary)
and can increase the difficulty of generating adversarial
examples relevant to logits, such as C&W method in
(2). This assumption is confirmed by recent studies
[37], [38] where the decision surface is highly correlated
with logits Z , i.e., D(x) = Zi(x) − Z j (x) (i 	= j),
and the authors proved that a wide and flat plateau
of decision surface indicates better model robustness to
adversarial attacks.

2) Condition 2: Statistically, the distance between input
and the boundary should be large, so as to increase the
needed perturbations of adversarial example generating.
Note that greatly satisfying both conditions 1 and 2 is
nontrivial due to accuracy constraint. Therefore, the fun-
damental goal is to create the boundary that seems to

be somewhat “softened” in decision-making but can still
maintain high prediction accuracy.

2) Conceptual View of Decision Boundary After Hash Com-
pression: Our observation is that properly applying hash com-
pression can achieve the aforementioned defensive decision
boundary for DNN models. The reason is that random weight
sharing of hash compression can cause the original DNN
classification function to miss some precision to flatten the
surface of the decision boundary. To test our hypothesis,
we study the decision boundary change incurred by hash
compression using a simple neural network for performing
“AND” function. We train the original model and its hash
compressed version (CR 0.2) using the cross-entropy loss
for 100 epochs. The noninteger inputs are rounded up to
nearest integer, i.e., if 0.5 ≤ x1 ≤ 1 and 0.5 ≤ x2 ≤ 1,
then FAND = 1 else FAND = 0. As expected, the decision
boundary can be approximated as the intersecting line of two
decision surfaces: D(x1, x2) = Z1(x1, x2) − Z2(x1, x2) and
D(x1, x2) = 0. Fig. 1 shows the decision boundary of original
model and HashNet, where the x- and y-axes are the inputs
x1 and x2, respectively, and the z-axis represents the value
range of decision surface Z1(x1, x2) − Z2(x1, x2). Note that
Z1(x1, x2) > Z2(x1, x2) indicates that the input belongs to
class FAND = 1; otherwise, it belongs to FAND = 0. As shown
in Fig. 1, the plotted decision boundary of hash compressed
model is more flattened than the original model. Given the
fact that adversarial examples can be more easily found from
the sharp part (larger curvature) of the decision boundary [37],
a flattened decision boundary of the hash compressed model
could potentially better protect DNN models from adversarial
attacks (see our validation in Section V). On the other hand,
its accuracy is degraded from 98.88% to 96.42% at a CR 0.2.
This is because the boundary of original DNN model without
compression [see Fig. 1(a)] is closer to the ideal one offering
the best accuracy—a polyline with the right angle.

B. Robustness Estimator

Hash compression offers the possibility to realize our desir-
able “defensive decision boundary.” Conceptually, the more
softened the boundary is, the higher chance that DNN model
can avoid being attacked by adversarial examples. Therefore,
it is imperative to develop a quantitative measurement to
evaluate the quality of defensive decision boundary. However,
directly adopting attack success rate or defense efficiency as

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU AND WEN: MODEL COMPRESSION HARDENS DNNs 5

the metric is neither cost-effective nor applicable due to the
variety of adversarial examples and unknown attack strategies.
Instead, we propose a mathematical robustness estimator,
which does not require any knowledge of adversarial attacks,
to quickly estimate the quality of defensive decision boundary.
Note that model compression can degrade DNN accuracy.
In addition, we also incorporate “adversarial gradient” into
robustness estimator as it is another factor to impact the
effectiveness of adversarial examples. As we shall show in
Section V, our robustness estimator can efficiently guide the
search of the key parameter–CR, to maximize the capability
of hash compression for hardening DNN model with marginal
accuracy loss.

1) Modeling Defensive Decision Boundary: Directly plot-
ting decision surface to find an optimized defensive CR for
HashNet is impractical. In a multidimensional classification
task, the decision surface of any two classes can be rep-
resented: D(x) = Zi (x) − Z j(x) (i 	= j). The larger the
difference of Zi(x) and Z j(x) is, the steeper D(x) will be.
The extreme weight sharing may lead to the highest similarity
between Zi(x) and Z j(x). Take the aforementioned neural
network for “AND” function as an example again, and we
can observe that the decision surface (blue hyperplane) of
HashNet is flatter than that of the original model in Fig. 1.
In an extreme case, if all weights are compressed to the
same value (the highest CR), the decision surface will become
D(x1, x2) = 0, given that Z1(x) ≡ Z2(x). Apparently, it is not
a reasonable classifier but achieves the most softened decision
boundary. Therefore, softening the boundary of a DNN model
can prevent the input from fitting too tight (confident) toward
a certain class. Inspired by this observation, we model the
softness of DNN model as the mutual distance of the logits
Z j(j ∈ 1 . . . m) (before softmax activation), where the largest
Z j is the true class. We choose the variance of logits (i.e.,
φ(x) = (1/m)

∑m
j=1(Z j(x)−(1/m)

∑m
i=1 Zi(x))2) as the first

term of our robustness estimator. A smaller φ(x) indicates a
smoother decision boundary.

2) Modeling Adversarial Gradient: Generally, there
are three types of gradients: (∂L(x)/∂x), (∂ F(x)/∂x),
and (∂ Z(x)/∂x), which correspond to the crafting of
adversarial examples based on FGSM (BIM), JSMA-F, and
JSMA-Z methods, respectively. Specifically, (∂L(x)/∂x) =
(∂L/∂ F)(∂ F/∂ Z)(∂ Z/∂x) and (∂ F(x)/∂x) =
(∂ F/∂ Z)(∂ Z/∂x). Note that other attacks such as C&W
are also indirectly impacted by those gradients. To reduce
the effectiveness of all created examples, one possible
approach is to just minimize the common factor of
the three gradients—(∂ Z(x)/∂x). This motivates us to
incorporate the mean of absolute value of ((∂ Z(x))/∂x)
across all input dimensions of an image for all classes
(i.e., g(x) = (1/mn)

∑m
j=1

∑n
i=1 |((∂ Z j(x))/∂xi)|) into the

robustness estimator.
Finally, robustness estimator can be expressed as follows:

R(x) = α · g(x)+ (1− α) · φ(x) (3)

where α indicates the relative importance of adversarial gradi-
ent and decision boundary (α ∈ [0, 1]). A smaller R indicates

Algorithm 1 Search Process for CRs
Data:
Z ; // DNN model
xtrain, ytrain, xtest, ytest; // training and testing

dataset
Acc; // normal testing accuracy
T ; // threshold of accuracy
Result:
R(g, φ); // robustness table
// get number of neurons
N1, M1 ←number of presynaptic, postsynaptic neurons in
layer 1
N2, M2 ←number of presynaptic, postsynaptic neurons in
layer 2
// initialize compression rate for

2-layer hash classifiers

C R1 ← (N1 · M1)
− 1

2 , C R2 ← 1
2

// initialize searching sets
R, {g}, {φ}, {accuracyh} ← ∅
// setup boundary of compression rate

for searching
while C R1 > (N1 · M1)

−1 do
while C R2 > (N2 · M2)

−1 do
Zh ← hashTraining(xtrain, ytrain, Z , C R1, C R2)
{accuracyh} ← hashTesting(xtest, ytest, Zh)
{g} ← {g} ∪ g(xtest, Zh)
{φ} ← {φ} ∪ φ(xtest, Zh)

C R2 = C R2
2

C R1 = C R1
2

{g}, {φ} ← normalize({g}, {φ}) : [min, max] → [0, 1]
foreach ai ∈ {accuracyh} do

Ai
degradation ← Acc− ai

if Ai
degradation < T then
// robustness estimation based on 3
R← R ∪ (α · {g}i + (1− α) · {φ}i)

else
R← R ∪ 1

that the model can exhibit stronger resistance to adversarial
attacks if the accuracy can be guaranteed.

C. Implementing Defensive Hash Classifier

Developing “hash compression” for the purpose of harden-
ing DNN models should satisfy three constraints: 1) soften
the boundary as much as possible; 2) degrade the accuracy
very marginally; and 3) make the implementation cost low.
To meet these requirements, we rearchitect the compression
mechanism as follows.

1) Compressed Layer Selection: We only identify a few
layers to compress to reduce the accuracy drop and implemen-
tation cost. The selected layers should contain enough num-
ber of parameters for compression purpose. In our practice,
we find that compressing two fully connected layers that are
close to the output can better balance the accuracy and the
smoothness of decision boundary, given their importance to

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

final decision-making. This is quite different from the goal of
original hash compression: compressing all layers to achieve
the highest entire CR.

2) CR Selection: For selected layers, we attempt to com-
press them aggressively with extremely high CRs so that the
decision boundary can become softened. To select optimized
CR configuration for multiple layers, we adopt robustness
estimator to guide and accelerate the search process. Note that
the accuracy constraint is used to terminate the search. As we
shall show later, our adopted CR is much higher than that of
normal compression, e.g., 1/8192 versus 1/64.

3) Dedicated Low-Cost Training Policy: We borrow the
concept of transfer learning to accelerate the learning process.

1) Step 1: Replace selected layers of a pretrained DNN
model, e.g., the last two fully connected layers, with
untrained HashNet–hash bucket and index table with a
corresponding CR for each selected layer.

2) Step 2: Initialize compressed weights of replaced layers
and retrain the entire model for a few training epochs
to recover the accuracy.

The hash compressed model can be quickly converged with
very low training cost (i.e., 2–3 epochs here) since we only
manipulate the last two fully connected layers and leave all the
other layers untouched (e.g., convolutional layers for feature
extraction).

To summarize, the key idea is to quickly design and install
a more robustness DNN classifier for any pretrained DNN
model (instead of its original classifier). We name the new
classifier as “defensive hash classifier” and the corresponding
DNN model as “defensive hash model.” To determine the
defensive CRs at selected layers for defensive hash classifier,
we further propose a detailed search algorithm based on
robustness estimator. As shown in Algorithm 1, for each
CR configuration (CR1 and CR2), we perform steps 1 and
2 of dedicated low-cost training policy. Once the training is
finished, we characterize the testing accuracy and the values of
the two terms in robustness estimator at (CR1 and CR2). Then,
we scale CR1 (CR2) by two and repeat the above process until
reaching the limit of defined CRs. To balance the importance
of gradient and decision boundary (i.e., their importance is
only controlled by α), we normalize g(x) and φ(x) to [0, 1].

IV. FACTOR II: GI

In this section, we propose free-retraining “GI” to address
the remaining gradient problem, i.e., suppress and obfuscate
the gradient simultaneously. This method, as the second line of
defense, can assist the defensive hash classifier to effectively
mitigate adversarial attacks.

A. Theoretical Analysis of GI

The “GI” method should satisfy the following conditions:
1) low implementation cost without extra training; 2) high
defense efficiency against both direct-gradient- and indirect-
gradient-based attacks; and 3) marginal accuracy reduction.
To achieve these goals, we investigate the basic idea of defense
distillation and propose a set of “GI” methods.

Fig. 2. Impact of different GIs on the amplitude of three types of the
adversarial gradient. The values in brackets are inhibition coefficient ε for
different GIs. The data are collected using all 10 000 images from the MNIST
test data.

In defensive distillation [9], “teacher model,” which gen-
erates the soft labels to train the distilled model, needs to
apply a modified softmax function with a high temperature
T , i.e., T = 100, at the training stage. The modified softmax
function can be expressed as follows:

Fi (x, T) = eZi /T

∑m
j eZ j /T

(4)

where m is the number of classes. In the training phase,
the distilled model uses the same T with the teacher model,
whereas in the testing stage, the distilled model needs to
reset a smaller T, i.e., T = 1, to saturate the softmax. This
leads to significantly reduced adversarial gradient (∂ F/∂x) so
that it can address the JSMA-F attack efficiently. Since the
goal of defensive distillation is to saturate softmax to reduce
gradient, our observation is that we do not necessarily change
the expression of original softmax and spend two-step training
cost to achieve this goal. If we assume that DNN is trained
with the original softmax F (T = 1) in (4) and cross-entropy
loss function (L(x) = −∑m

i ti log(Fi), where t is the hard
label). (∂L/∂x) can be expressed as follows:

∂L

∂xi
=

m∑

j

m∑

k

(Fk − tk)
∂ Z j

∂xi
. (5)

(Fk − tk) should be a dominant factor for gradient reduction.
Ideally, if every output of softmax function Fk is infinitely
approaching tk , i.e., 100% confidence on the ground truth class
and 0% confidence on others), (∂L/∂xi) would be 0. In other
words, directly saturating the original softmax can also vanish
the gradient (∂L/∂x). Similarly, (∂ F/∂x) can be presented as
follows:

∂ Fk

∂xi
=

m∑

j

∂ Fk

∂ Z j

∂ Z j

∂xi
=

m∑

j

Fk(� j=k − Fj)
∂ Z j

∂xi
(6)

where � is the indicator function and Fk(�k= j − Fj) is the
key element to reduce the gradient (∂ F/∂x). The saturated
softmax results can make this element close to 0, thereby again
suppressing the gradient as much as possible.

Therefore, pushing the original softmax to its saturation
region can directly ease the adversarial gradient—(∂L/∂x)
and (∂ F/∂x). Since softmax is a monotonically increasing
function of logits Z , if we can enlarge the absolute value of Z

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU AND WEN: MODEL COMPRESSION HARDENS DNNs 7

through manipulating the weights (i.e., adding small changes
in the direction of weight), the softmax can reach the saturation
region with marginal accuracy reduction.

B. GI as Defense

According to the above analysis, we design three types of
weight transformation to enlarge the weight w, which can be
depicted as follows:

φ1(w) = w + ε · sign(w) (7)

φ2(w) = (1+ ε) ·w (8)

φ3(w) = w + ε · uniform(0, 1) · sign(w) (9)

where ε is the inhibition coefficient. Specifically, φ1(w) aims
at adding the perturbation constant ε to weights along the
direction of each weight. φ2(w) further introduces the pertur-
bation proportional to the magnitude of each weight (ampli-
tude is controlled by ε) on top of φ1(w). φ3(w) injects random
perturbation that follows the uniform distribution into the
weight. We name the three weight transformations—φ1(w),
φ2(w), and φ3(w) as “GI” methods—GI1, GI2, and GI3,
respectively. Besides vanishing the adversarial gradients for
direct gradient-based attacks, we expect that φ3(w) (GI3) with
random distortion can also mislead the iterative search and
optimization process of other types of attacks, such as C&W
attacks, so as to improve the defense efficiency. If we simply
assume that Z(x) = wx , then the input transformation defense
techniques, such as “feature squeezing,” can be modeled as
Z(x) = wg(x), where g(x) is the input preprocessing such as
bit depth reduction or spatial filtering. Similarly, our method
can be modeled as Z(x) = φ(w)x , where φ(w) is a set of GI
methods. Note that the deployment of GIs occurs at the testing
stage, so it only impacts the crafting process of adversarial
examples rather than the training process. Moreover, GIs can
be directly applied to the weights of pretrained DNN model
without involving any training process. To achieve the best
defense efficiency but lowest accuracy reduction of original
DNN model, GIs can be quickly implemented in the last few
fully connected layers close to the output, due to the moderate
number of weights and the importance to decision-making.

Gradient Reduction Effectiveness: We now observe gradient
reduction effectiveness of our three types of GIs on MNIST
dataset. To fairly observe the efficiency of gradient reduction
for three GIs, we adjust ε for each GI to make sure that
the average perturbation added to the weight for three GIs is
similar, i.e., ε = 0.1 for φ1(w) (GI1), ε = 3 for φ2(w) (GI2),
and ε = 0.2 for φ3(w) (GI3), for the average perturbation 0.1.
Fig. 2 shows the statistics of gradient amplitude for the original
DNN model and model with different GIs. As shown in Fig. 2,
all GIs reduce the average absolute value of gradients (∂L/∂x)
and (∂ F/∂x) remarkably. The largest proportion of (∂L/∂x)
of the original DNN is ∼66% at (1e−20, 1e−10], while that of
DNN with G I1, G I2, and G I3 are ∼97%, ∼99%, and ∼97%,
at [0, 1e−40), respectively. This can be translated into ∼1030

gradient reduction for (∂L/∂x). We also observe the similar
gradient reduction for (∂ F/∂x). Among the three GIs, G I2

achieves the best result, e.g., ∼99% at [0, 1e−40). However,
we also find that all GIs cannot reduce but increase the gradient

(∂ Z/∂x) slightly when compared with the original model. For
example, the proportion of gradient at (1e− 1, 1] is increased
from ∼21% on original DNN to ∼69%, ∼87%, and ∼65%
on DNN with GI1–GI3, respectively. Such minor increase is
almost negligible when compared with the far more significant
reduction of (∂L/∂x) and (∂ F/∂x). Therefore, GIs show great
potentials to mitigate adversarial attacks.

V. EVALUATION

A. Experimental Setup

1) Benchmarks and Model Configurations: We choose
MNIST, CIFAR-10, and ImageNet-subset as our evalua-
tion benchmarks. For MNIST and CIFAR-10, we use a
representative seven-layer DNN model (i.e., Conv64(3 ×
3)-Conv128(3 × 3)-MaxPooling-Conv128(3 × 3)-Conv64
(3 × 3)-MaxPooling-FC256-FC256-FC10) and popular DNN
architecture–VGG-19 [16], with their accuracy reaching
99.50% and 90.09%, respectively. Adversarial training, which
relies on enhanced decision boundary for defense, has been
proved to be difficult at ImageNet scale to ensure high
defense efficiency and marginal accuracy degradation simul-
taneously [20], [25], [39], e.g., 1.5%–3.9% defense efficiency.
Similarly, our defensive hash classifier also has the same
issue because of the limited adjustable space of decision
boundary for all classes with the requirement of marginal
accuracy degradation in a super multidimensional classifica-
tion task. Therefore, to better test our method on a large
dataset with affordable simulation cost, we choose a subset
of Imagenet, e.g., with first 50 classes. This assumption is
also reasonable considering that in practice, the dataset of
a common classification task (e.g., road sign) may not be
as complex as a complete Imagenet with 1000 classes. We
use popular Inception-V3 [18] on the ImageNet-subset with
50 classes to achieve competitive top-1 accuracy 80.95% (78%
for ImageNet with 1000 classes).

2) Defense Deployment: In the defensive hash classifier
deployment stage, we replace the last two fully connected
layers with defensive hash classifiers with the same structure.
Then, we set α = 0.5 and T = 1% to search optimal defensive
CR in algorithm on the MNIST dataset. As expected, a higher
CR could produce a smaller R that indicates the stronger
resistance to adversarial attacks but incur higher accuracy
degradation. As a result, we choose CR combination—(1/16 ·
(N1 · M1)

−1/2, 2/N2)—to offer the optimal balance between
defense efficiency and accuracy in general. To avoid the time
cost from the search process, we directly use this empirical
result on VGG-19 (CIFAR-10) and Inception-V3 (ImageNet).
Note that we add a fully connected hashed layer between
the output layer and the last-second layer with 512 units
for InceptionV3 since it only has one fully connected layer.
Then, we retrain the defensive hash model for three epochs.
In the GI deployment stage, we apply our GI1–GI3 methods
in all the last three layers on three types of benchmarks.
As shown in Table I, the proposed defense techniques do not
compromise the original classification accuracy, e.g., only mar-
ginal degradation (<1% on MNIST and CIFAR-10, ∼1–2%
on ImageNet). We use “TensorFlow” as our deployment

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

ACCURACY (%) OF CLEAN EXAMPLES FOR ORIGINAL DNN, DEFENSIVE HASH CLASSIFIER ONLY,
GI ONLY, AND COMBINED SOLUTION ON MNIST, CIFAR-10, AND IMAGENET (SUBSET)

framework and conduct all the simulations on NVIDIA GTX
1080 GPUs.

3) Adversarial Examples Crafting: We craft various types
of adversarial examples under two different settings: eight
under the white-box setting and two under the black-box
setting, for conducting comprehensive evaluations.

a) White-box setting: For low-cost untargeted attacks
such as FGSM and BIM, we use all test sets from each
benchmark to craft adversarial examples. For high-cost tar-
geted attacks including two JSMAs (JSMA-Z and JSMA-F),
C&W, and EAD, we select the first 100 correctly predicted
images from the test dataset of each benchmark. For MNIST
and CIFAR-10, we set all other classes (t 	= Label) as the
attack target (900 adversarial samples) for each method. For
ImageNet, we use next class as the target (t = Label + 1
mod #classes) for C&W and EAD (JSMA is too costly for
complex DNN models and datasets). We directly adopt the
implementations of FGSM, BIM, MIM, JSMA, C&W, and
EAD from the Cleverhans library [40]. For strong white-box
adaptive attack—BPDA, the basic idea is to find a reasonable
gradient by leveraging a function replacement (approximation)
to fix obfuscated gradient incurred by our defense, given the
attacker knows the defense method. In our case, we attempt
to generate a “normal-size” gradient to evaluate our defense.
By assuming that the attacker knows that the effectiveness of
GI (or close to zero gradient) lies in the saturation of softmax,
we replace the softmax with sigmoid function, to generate the
BPDA adversarial examples. This is because using sigmoid
activation not only preserves the testing accuracy but also
outputs meaningful gradients for the adversary. Considering
the simulation cost, we use 1000 images from the test data
of MNIST and CIFAR-10 and 100 test images of ImageNet
to craft adaptive adversarial examples (all untargeted attacks).
Note that since the defense principle of “defensive decision
boundary” could be similar to that of the BPDA-unbroken
“adversarial training,” we follow the same method in [25] to
evaluate our “defensive decision boundary” and the combined
solutions.

b) Black-box setting: For substitute model-based
black-box attack [13], we use a sample DNN architecture as
the substitute model for MNIST and CIFAR-10, i.e., FC1000-
FC1000-FC10 for MNIST and Conv32(5× 5)-Conv32(5× 5)-
FC512-FC10 for CIFAR-10. We use the first 150 images
from the test dataset and run five Jacobian augmentation
epochs to train the substitute model (codes are provided
from Cleverhans library [40]). We implement FGSM and
C&W attack on the substitute model for untargeted or
targeted transfer attacks in the black-box model. For the
ZOO black-box attack, we run the ZOO-ADAM method
with untargeted attack and targeted attack provided in [26] to

generate adversarial examples (1000 examples for untargeted
attack and 9× 100 examples for targeted attack).

B. Results and Analysis

1) Baselines and Evaluation Metrics: We evaluate three dif-
ferent combinations of the proposed defensive hash classifier
and GI, i.e., hash(CR1, CR2) + GIi (ε), on each dataset with
detailed parameters shown in Table II. The baselines selected
for attack success rate comparisons are the original DNN
without any defense and DNN with defensive hash classifier
only—hash(CR1, CR2) and with GIs only—GIi (ε). Note the
latter two baselines use the same parameter configuration
as their respective “combo” solution. Meanwhile, we use
DeepFool [41] to compute minimal attack distance (distance
between inputs and decision boundary) to measure the robust-
ness of DNN further and validate our defensive hash model
for Condition 2 (see Section III-A).

2) Robustness: As shown in Table II, all the combined
solutions significantly improve the DNN’s robustness (enlarge
distance between inputs and decision boundary) when com-
pared with baselines. For example, the robustness of original
model is 0.0863, while that of hash + GI1−3 is 0.1259,
0.1269, and 0.1275 on MNIST data. Besides, we can observe
that adding GIs to defensive hash model (robustness of the
defensive hash model is 0.1253) does not change the distance
between inputs and decision boundary.

3) Defense Under White-Box Attacks: In order to analyze
the impact of the three different defense setup: hash only—
hash, GI only—GIi , and combined solutions—hash + GIi ,
i = 1, 2, 3. As shown in Table II, for the state-of-the-art direct
gradient-based attack—MIM, its attack success rate is reduced
significantly from 99.1% (original) to 3.02% (hash + GI1),
1.15% (hash+GI2), and 3.2% (hash+GI3) on MNIST, which
well preserves the capability of their respective GI (3.35%,
1.02%, and 3.28%) when mitigating such an attack. For other
direct gradient-based attacks, e.g., FGSM, BIM, and JSMA-F
(except for JSMA-Z), we can observe similar results. Note that
all GI only solutions are not good at mitigating JSMA-Z attack
because they are unable to reduce the gradient (∂ Z/∂x) (see
Fig. 2). However, defensive hash classifiers can address it for
GIs effectively, i.e., 25.33% (hash+GI1), 28.44% (hash+GI2),
and 24.44% (hash+GI3) versus 90.22% (original) on MNIST.
For indirect gradient-based attacks, i.e., C&W and more
advanced EAD, GI1 or GI2 only defense becomes completely
helpless, while both defensive hash classifier and GI3 can
mitigate them, i.e., 56.67% (78.44%) and 24.33%/(54.56%)
for C&W (EAD) on hash only and GI3 only defense, respec-
tively, on MNIST. This also indicates that defensive decision
boundary and random distortion could effectively mislead the
iterative search and optimization process of these attacks. We

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU AND WEN: MODEL COMPRESSION HARDENS DNNs 9

TABLE II

SUCCESS RATE OF WHITE-BOX ADVERSARIAL ATTACKS FOR ORIGINAL DNN, DEFENSIVE HASH CLASSIFIER ONLY, GI ONLY, AND COMBINED
SOLUTION (INCLUDING THE ROBUSTNESS OF DNN MODEL MEASURED BY DEEPFOOL) ON MNIST, CIFAR-10, AND IMAGENET

TABLE III

SUCCESS RATE OF BLACK-BOX ATTACK FOR ORIGINAL DNN, DEFENSIVE
HASH CLASSIFIER ONLY, GI ONLY, AND COMBINED SOLUTION

ON MNIST AND CIFAR-10

also found that the combined solution—hash+GI3—can fur-
ther lower the attack success rate, i.e., C&W 5.44% and EAD
52.56%. For the adaptive attack, BPDA, as expected, all GIs
are incapable of mitigating it on MNIST [attack success rate:
83.5% (GI1), 89.5% (GI2), and 83.7% (GI3)], given that GIs
are still based on gradient obfuscations though no retraining
is required. In contrast, our defensive hash classifier (as well
as the combined solution) can significantly reduce the attack
success rate of BPDA to 22.8% (hash+GI1), 25.2% (hash+
GI2), and 22.1% (hash + GI3), respectively. This is because
our defensive hash classifier can reconstruct defensive decision
boundary [8], instead of generating obfuscated gradients, thus,
it is more resistant to BPDA. Therefore, hash+GI3 delivers the
best defense effectiveness to all types of adversarial attacks,
e.g., reduce the average attack success rate from 93.45% to
14.39% on MNIST. We also observe the similar results on
CIFAR-10 and ImageNet—the average attack success rate is
dropped sharply from original 91.27% (87.18%) to 22.98%
(34.63%) by hash+ GI3 on CIFAR-10 (ImageNet).

4) Defense Under Black-Box Attacks: As shown
in Table III, we observe that our hash, GI3, and hash + GI3

exhibit limited efficiency against the substitute model-based

black-box attacks (i.e., untargeted sub-FGSM attack and
targeted sub-CW attack). For example, the success rate
of sub-FGSM attack on all models is ∼62% on MNIST.
However, the transferability of substitute model-based
black-box attack is relatively bad (especially targeted sub-CW
attack) compared with the state-of-the-art ZOO attack (note
that our experimental results are consistent with [26]).
For example, sub-CW attack achieves a 32.22% (14.44%)
success rate, whereas ZOO attack achieves 83.33% (92.22%),
on original DNN for MNIST (CIFAR-10). Thereby, the threat
of substitute model-based black-box attack is not that
significant for DNN in practice, at least for targeted attack
with more substantial threats. We believe that the state-of-
the-art ZOO black-box attack is a reasonable measurement
standard for evaluating the robustness of the defensive model
against black-box attacks. In Table III, we found that our GI3

achieves significant mitigation efficiency to both untargeted
and targeted ZOO attacks for both datasets. For example,
the success rates of untargeted and targeted ZOO attacks
are reduced from 100% (original DNN) to 61.6% (GI3)
and 83.33% (original DNN) to 14.44% (GI3) on MNIST,
respectively. ZOO attack is to directly approximate gradient
of the targeted model, but the approximated gradient is still
small (near 0) on GI3. This explains why our GI3 can mitigate
the ZOO-based black-box attack significantly. Because of
the impact of GI3, our combined solution (hash + GI3)
can also mitigate ZOO attack on MNIST [success rate of
untargeted (targeted) ZOO attack is 45.8% (13.89%)]. We can
observe similar results on CIFAR-10. Our combined solution
(hash + GI3) reduce the success rate of untargeted (targeted)
ZOO attack from 100% (92.22%) to 50.1% (26.67%).

5) Comparison With PGD-Based Adversarial Training:
Since “PGD-based adversarial training” is also to harden
the DNN model but can only resist L∞-bounded white-box
attacks [8], [42], we focus on evaluating the attack success

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Success rate of FGSM attack with various values of ε on PGD-based
adversarial training versus combined defense method.

Fig. 4. Success rate of BIM attack with various values of α on PGD-based
adversarial training versus combined defense method.

rate of FGSM and BIM attacks. Since the goal of the two
state-of-the-art adversarial training methods [32], [33] is to
reduce the computational cost of PGD-based adversarial train-
ing, rather than enhancing the defense efficiency, we only
compare our method with the original PGD-based adversarial
training. The success rate variance of FGSM attack with varied
ε in the original model and the proposed defensive combined
models is shown in Fig. 3 (we do not show the result of
hash + GI3, because it is very similar with hash + GI1 in
resisting the FGSM and BIM attacks). PGD slightly surpasses
hash + GI1 and hash + GI2, at ε ≤ 0.2 and ε = 0.05,
respectively. However, when ε changes from 0.2 to 0.5 (0.1 to
0.5), our hash + GI1 (hash + GI2) outperforms PGD model
remarkably. In fact, our methods are barely related to the
ability of FGSM adversary, while PGD is highly dependent
on the ε of PGD internal adversary. If ε of exotic adversary
is larger than that of PGD internal adversary (ε > 0.3),
it can easily lead to degraded mitigating effectiveness. We
also notice a similar trend in BIM attack. As shown in Fig. 4,
different values of α barely impact the mitigating effect of
our methods to BIM attack, while PGD is very sensitive to
the value of α in exotic (practical) BIM adversary. As α
of exotic BIM increases, the resistance efficiency of PGD
can get worse. In practice, we cannot guarantee that the
adversarial settings of the exotic adversary are similar to that
of adversarial training. For the computational cost, adversarial
training-based defense first needs to generate a sufficient
number of adversarial examples as extra training inputs for
each training epoch. Then, the model needs to be trained
from the scratch (e.g., 100 epochs for training VGG19) to
obtain a defensive model with combined adversarial and clean
training inputs, incurring expensive computational cost. While
the latest adversarial training (see [32]) can reduce the cost of
crafting adversarial inputs, it still involves an entire training

TABLE IV

ATTACK SUCCESS RATE OF ADVERSARIAL EXAMPLES FOR OUR
HASH + GI3 AND TWO INPUT TRANSFORMATION-BASED

DEFENSE ON MNIST AND CIFAR-10

TABLE V

ACCURACY (%) OF CLEAN EXAMPLES FOR ORIGINAL DNN AND OUR
COMBINED DEFENSE SOLUTION ON RESNET-34, RESNET-50,

AND RESNET-101 ON CIFAR-10

TABLE VI

ATTACK SUCCESS RATE (%) OF ADVERSARIAL EXAMPLES FOR DNNS

(RESNET-34/RESNET-50/RESNET-101) WITHOUT AND WITH OUR
COMBINED DEFENSE SOLUTION ON CIFAR-10

process. In contrast, our method requires neither crafting
expensive adversarial examples as the extra training data nor
training from scratch (e.g., just three retraining epochs for
fun-tuning), to quickly install hash defensive classifier (GI is
training-free). Therefore, compared with adversarial training,
our solution is more lightweighted.

6) Comparison With Input Transformation: We compare the
defense effectiveness of our hash + GI3 with that of two
representative input transformation-based defense: squeezing
input’s bit depth and median smoothing [10] under four
typical attacks crafted from MNIST and CIFAR-10. As shown
in Table IV, our hash + GI3 achieves significantly lower attack
success rates than the two input transformation-based defense
on all attacks and datasets. Furthermore, two input transfor-
mations cannot mitigate BPDA, e.g., the attack success rate of
BPDA is more than 80% on MNIST and CIFAR-10, because
the input transformation-based defense is mainly based on
gradient obfuscation and can be easily broken by BPDA [25].

C. Discussion

In this section, we discuss the generalization of our com-
bined defense methods on deeper models and compare our
defensive hash compression with other compression tech-
niques in the context of adversarial robustness.

1) Defense Against Adversarial Attacks on Deeper Net-
works (ResNets): We evaluate our combined solution across
three different ResNet models: ResNet-34, 50, and 101 using
CIFAR-10. Since ResNet only has one fully connect layer
(output layer), we introduce an additional fully connected

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU AND WEN: MODEL COMPRESSION HARDENS DNNs 11

TABLE VII

ATTACK SUCCESS RATE (%) OF ADVERSARIAL EXAMPLES OF
ORIGINAL DNN AND PRUNING/QUANTIZED MODELS ON MNIST

hashed layer between the output layer and last-second layer
with 512 neurons and apply the optimized CR combination
(1/16 · (N1 ·M1)

−1/2, 2/N2), i.e., (1/8192, 1/256), to two fully
connected layers to train the defensive hash model in three
epochs. Then, we apply GI3 with ε = 0.2 to the well-trained
defensive hash model. Table V reports the accuracy of clean
examples on models protected without (original) and with
our combined defense solution. The results show that our
hash + GI3 incurs very marginal accuracy loss (e.g., <1%)
compared with original baseline accuracy on all three ResNet
models. For defense effectiveness, as shown in Table VI,
our hash + GI3 can significantly drop the attack success rate
on ResNet-34/50/101 under six white-box attacks, e.g., from
the original 93.65%, 93.36%, 87.98% to 22.45%, 23.13%,
and 23.43% on three ResNet models. This indicates that our
defense can be well generalized to large DNN models.

2) Defense Effectiveness of Other Compression Techniques:
We also explore whether other model compression tech-
niques, e.g., pruning and quantization, could enhance the
DNN model’s adversarial robustness. As shown in Table VII,
the standard pruning and quantization [28] (with two different
bit widths—3 and 8) achieve almost no defense effectiveness
against three basic adversarial attacks. We believe that this is
because they usually can only slightly reshape and share model
weights based on given value ranges, e.g., from “well-trained”
or “half-trained” weights, to maintain the accuracy and thus are
unable to substantially change the decision boundary. On the
other hand, our hash compression performs a random weight
sharing technique to randomly group untrained weights into
the respective cluster and hence can reshape decision boundary
significantly when CR is high.

VI. CONCLUSION

As DNNs are subject to ever-increasing adversarial
input-based security concerns, this work investigates how to
design a comprehensive defense framework to mitigate a
wide range of adversarial attacks at low cost. We consider
both defensive decision boundary and small gradient as two
critical factors to address attacks with different natures. For
the first aspect, we found that hash weight sharing, a DNN
model compression technique dedicated to storage overhead
reduction, can be wisely used to reconstruct a defensive
decision boundary to prevent adversarial attacks. To satisfy the
requirements of defensive decision boundary, marginal accu-
racy degradation, and low implementation cost, we redesign
the original “HashNet” as the defensive hash classifier. For
the second aspect, we propose a set of retraining-free “GI”
methods to extremely suppress adversarial gradients while
obfuscating the search and optimization process of strong

attacks like C&W attacks. Finally, we orchestrate the defensive
hash classifier and “GI” for a combined defense solution that
can effectively resist most of the traditional white-box, strong
adaptive white-box, and black-box attacks. We believe that
our proposed solutions create a new paradigm of safeguarding
DNNs from a radically different perspective by model com-
pression with a focus on integrating defenses into compression
and weight transformation of pretrained DNN models with
low cost.

REFERENCES

[1] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[3] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
Int. Conf. Learn. Represent., 2014, pp. 1–10.

[4] I. J. Goodfellow et al., “Explaining and harnessing adversarial exam-
ples,” in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–11.

[5] D. Yang et al., “Realistic adversarial examples in 3D meshes,” 2018,
arXiv:1810.05206. [Online]. Available: http://arxiv.org/abs/1810.05206

[6] Z. Yang et al., “Characterizing audio adversarial examples using tempo-
ral dependency,” in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–15.

[7] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proc. ACM Asia Conf. Comput. Commun. Secur., Apr. 2017,
pp. 506–519.

[8] A. Madry et al., “Towards deep learning models resistant to adversarial
attacks,” in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–28.

[9] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597.

[10] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2018, pp. 1–15.

[11] Z. Liu et al., “Feature distillation: DNN-oriented JPEG compression
against adversarial examples,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 860–868.

[12] J. H. Metzen et al., “On detecting adversarial perturbations,” in Proc.
Int. Conf. Learn. Represent., 2017, pp. 1–12.

[13] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39–57.

[14] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “FireCaffe:
Near-linear acceleration of deep neural network training on compute
clusters,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2592–2600.

[15] F. Tramèr et al., “Ensemble adversarial training: Attacks and defenses,”
in Proc. 6th Int. Conf. Learn. Represent. (ICLR), 2018, pp. 1–22.

[16] K. Simonyan et al., “Very deep convolutional networks for large-
scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015,
pp. 1–14.

[17] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[20] A. Kurakin et al., “Adversarial machine learning at scale,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 1–17.

[21] Y. Dong et al., “Boosting adversarial attacks with momentum,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 9185–9193.

[22] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372–387.

[23] N. Carlini and D. Wagner, “Defensive distillation is not robust to
adversarial examples,” 2016, arXiv:1607.04311. [Online]. Available:
http://arxiv.org/abs/1607.04311

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[24] P. Y. Chen et al., “EAD: Elastic-net attacks to deep neural networks via
adversarial examples,” in Proc. AAAI Conf. Artif. Intell., 2018, vol. 32,
no. 1, pp. 1–8.

[25] A. Athalye et al., “Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 274–283.

[26] P. Y. Chen et al., “ZOO: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute models,” in
Proc. 10th ACM Workshop Artif. Intell. Secur., 2017, pp. 15–26.

[27] S. Han et al., “Learning both weights and connections for efficient neural
network,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 1135–1143.

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

[29] W. Chen, J. T. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Com-
pressing neural networks with the hashing trick,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2015, pp. 2285–2294.

[30] Z. Cao, M. Long, J. Wang, and P. S. Yu, “HashNet: Deep learning to
hash by continuation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 5609–5618.

[31] J. Wang et al., “Bilateral adversarial training: Towards fast training of
more robust models against adversarial attacks,” in Proc. IEEE Int. Conf.
Comput. Vis., Oct./Nov. 2019, pp. 6629–6638.

[32] A. Shafahi et al., “Adversarial training for free!,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 3358–3369.

[33] D. Zhang et al., “You only propagate once: Painless adversarial training
using maximal principle,” in Proc. 33rd Conf. Neural Inf. Process. Syst.,
2019, pp. 1–16.

[34] S. Gu et al., “Towards deep neural network architectures robust to
adversarial examples,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1–9.

[35] S. Gui et al., “Model compression with adversarial robustness: A unified
optimization framework,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 1285–1296.

[36] S. Ye et al., “Adversarial robustness vs. Model compression, or
both?” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 111–120.

[37] F. Yu et al., “Interpreting adversarial robustness: A view from decision
surface in input space,” in Proc. 28th Int. Joint Conf. Artif. Intell.
(IJCAI), 2019, pp. 1–15.

[38] D. Jakubovitz et al., “Improving DNN robustness to adversarial attacks
using jacobian regularization,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 514–529.

[39] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pair-
ing,” 2018, arXiv:1803.06373. [Online]. Available: http://arxiv.org/abs/
1803.06373

[40] N. Papernot et al., “Cleverhans v2. 0.0: An adversarial machine
learning library,” 2016, arXiv:1610.00768. [Online]. Available:
http://arxiv.org/abs/1610.00768

[41] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A
simple and accurate method to fool deep neural networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016.

[42] Y. Sharma et al., “Attacking the Madry defense model with L1-based
adversarial examples,” 2017, arXiv:1710.10733. [Online]. Available:
http://arxiv.org/abs/1710.10733

Qi Liu is currently pursuing the Ph.D. degree with
the Department of Electrical and Computer Engi-
neering, Lehigh University, Bethlehem, PA, USA.

His works have been published widely on artifi-
cial intelligence (AI) and electronic design automa-
tion conferences, including Conference on Computer
Vision and Pattern Recognition (CVPR), Design
Automation Conference (DAC), International Con-
ference on Computer Aided Design (ICCAD), Asia
and South Pacific Design Automation Conference
(ASP-DAC), and International Conference on Med-

ical Image Computing and Computer Assisted Intervention (MICCAI). His
research focuses on secure, privacy preserving, and efficient deep learning.

Mr. Liu received the Best Paper Nomination from ASP-DAC 2018. He is
also a Reviewer for journals, such as IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS and Neurocomputing.

Wujie Wen (Member, IEEE) received the B.S.
degree in electronic engineering from Beijing Jiao-
tong University, Beijing, China, in 2006, the M.S.
degree in electronic engineering from Tsinghua Uni-
versity, Beijing, in 2010, and the Ph.D. degree from
the University of Pittsburgh, Pittsburgh, PA, USA,
in 2015.

He is currently an Assistant Professor with
the Department of Electrical and Computer Engi-
neering, Lehigh University, Bethlehem, PA, USA.
His research interests include reliable, secure, and

energy-efficient deep learning, neuromorphic computing, and electronic design
automation.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 19,2021 at 22:09:51 UTC from IEEE Xplore. Restrictions apply.

