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Abstract—In this work, we study the no-sensing adversarial
multi-player multi-armed bandits problem. A new dimension of
hardness, called attackability, is introduced, which is orthogo-
nal to the hardness of multiple players. All adversaries can
be categorized based on the attackability and we introduce
Adversary-Adaptive Collision-Communication (A2C2), a family of
algorithms with forced-collision communications among play-
ers. Information-theoretic tools of the Z-channel model, error-
correction/detection coding, and randomized communication are
utilized to address the challenge of implicit communication
without collision information in an adversarial environment. The-
oretical analysis proves that asymptotic attackability-dependent
sublinear regrets can be achieved, which do not have an exponen-
tial dependence on the number of players and as a result reveal
a fundamental tradeoff between the two dimensions of hardness
in this problem.

I. INTRODUCTION

The multi-player version of the multi-armed bandits (MP-
MAB) problem, in which players simultaneously play the ban-
dit game and interact with each other through arm collisions,
has received increasing interest in recent years [2]–[6]. This
model is largely motivated by practical applications such as
cognitive radio [7]–[10] and wireless caching [11], [12], where
user interactions must be taken into account along with the
bandit game.

Depending on how rewards are generated, the MP-MAB
game can be either stochastic or adversarial. While most
of the existing works focus on the stochastic setting, the
(oblivious) adversarial problem is considerably harder. The
need of fighting the adversary while interacting with other
players introduces significant difficulties to the problem. A
predominant approach for both stochastic and adversarial MP-
MAB is to let each player play the single-player MAB game
while avoiding collisions for as much as possible [2], [3], [8],
[13], [14]. Recently, [4] proposes to purposely instigate colli-
sions as a way to communicate between players. Such implicit
communication is instrumental in breaking the performance
barrier and achieving a regret that approaches the centralized
multi-play MAB [15], [16].

All the aforementioned works make an important assump-
tion of collision sensing – any collision with another player

A full version of this paper [1] is accepted to be published at IEEE Journal
on Selected Areas in Information Theory. The work was supported in part by
the US National Science Foundation (NSF) under Grant CNS-2002902 and
ECCS-2029978, and a Commonwealth Cyber Initiative (CCI) cybersecurity
research collaboration grant.

is perfectly known. Such “collision indicator” plays a fun-
damental role in both collision avoidance and forced-collision
communication. A widely-recognized more difficult MP-MAB
problem is the no-sensing scenario, in which players cannot
access the collision indicators. Recently, some progress has
been made on the stochastic no-sensing problem [5], [10],
[17], but the more difficult setting of decentralized no-sensing
adversarial MP-MAB remains open. To the best of our knowl-
edge, [6] is the only work that achieves a sublinear regret of
O(T 1− 1

2M ), where M is the number of players and T is the
time horizon. We note that this exponential dependence on M
reveals a particular dimension of hardness (multiple players)
in the no-sensing adversarial MP-MAB problem.

This work makes progress in the no-sensing adversarial MP-
MAB problem by addressing the challenges in incorporating
implicit communications. A new dimension of hardness is
revealed: attackability of the adversary, that is orthogonal
to the multi-player dimension of hardness [6]. Under both
attackability-aware and attackability-unaware settings, we de-
velop a suite of Adversary-Adaptive Collision-Communication
(A2C2) algorithms. All of the A2C2 algorithms utilize some
(common) new elements, such as the information-theoretical
Z-channel model and error-correction coding, to design a com-
munication protocol that can effectively counter the adversary
with a non-dominant communication regret. For the more
challenging attackability-unaware setting, we show that a sim-
ple “escalation” estimation of the attackability, a novel error-
detection repetition code, and randomized synchronizations are
crucial to handle the unknown attackability. The A2C2 algo-
rithms are proved to achieve attackability-dependent sublinear
regrets asymptotically, without an exponential dependence on
the number of players as in [6].

We may view A2C2 of this paper and the method of [6]
as operating at different regimes in the two-dimensional hard-
ness space (multi-player versus attackability). Philosophically
speaking, this result shows that one can trade off the multi-
player dimension of hardness with the attackability dimension
of hardness. A comparison of the regret bounds is given in
Table I, including a preview of the main results of this work.

II. RELATED WORK

Collision-sensing MP-MAB. Initial approaches for
collision-sensing MP-MAB adopt single-player algorithms
with various collision-avoidance protocols [2], [3], [8], [13],
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TABLE I
REGRET BOUNDS OF ADVERSARIAL MP-MAB ALGORITHMS

Model/Reference Asymptotic Bound
Centralized, Optimal Regret [18] Θ(

√
MKT )

Collision Sensing [14] Õ(KMM2T
3
4 )

Collision Sensing [19] Õ(M
4
3K

1
3 T

2
3 )

Collision Sensing, M = 2 [6] Õ(K2
√
T )

No Sensing [6] Õ(MK
3
2 T 1− 1

2M )

No Sensing, α-aware (this work) Õ(M
4
3K

1
3 T

2+α+ε
3 )

No Sensing, β-aware (this work) Õ(M2K
2
3 Tmax{ 1+β

2
, 2
3})

No Sensing, α-unaware (this work) Õ(M
4
3K

1
3 T

5+α+ε
6 )

No Sensing, β-unaware (this work) Õ(M2K
1
3 Tmax{ 2+β+ε

3
, 3
4})

K: number of arms; M : number of players with 1 < M ≤ K;
α: local attackability (see Corollary 1); β: global attackability (see

Corollary 2); ε: an arbitrarily small positive constant;
with the notation of Õ(·), the logarithmic factors are ignored.

including EXP3 for adversarial MP-MAB with a regret of
O(T

3
4 ) [14]. The idea of implicit communication with forced

collisions is introduced and developed by [4], [20]–[22]. The
theoretical analysis in [4] shows, for the first time, that the
regret of decentralized stochastic MP-MAB can approach the
centralized lower bound [15]. For the adversarial environment,
a regret of O(T

2
3 ) is achieved in [19] by invoking forced

collisions to let players coordinately perform an EXP3
algorithm. The two-players performance has been improved
to O(

√
T log(T )) in [6].

No-sensing MP-MAB. Early attempts to incorporate im-
plicit communication in the no-sensing stochastic setting are
discussed in [4], [10]. For the more difficult case of no-sensing
adversarial MP-MAB, progress is very limited. To the best of
our knowledge, [6] is the only work studying this problem. The
idea is to design a collision-avoidance approach by reserving
“safe” arms for players, which results in a regret of O(T 1− 1

2M )
that has an exponential dependency on M .

III. PROBLEM FORMULATION

A. The no-sensing adversarial MP-MAB problem

In the decentralized no-sensing adversarial MP-MAB
model, there are K arms and 1 < M ≤ K players. The
arms are labeled 1 to K and the players 1 to M , respectively.
At each time step t ∈ [T ], each player m ∈ [M ] individually
chooses and pulls arm πm(t). Simultaneously, an adversary
assigns loss lk(t) for each arm k ∈ [K]. The true loss lk(t)
is assumed to be player-independent. A collision happens if
more than one player pull the same arm simultaneously. If no
collision happens for player m at time t, she receives the true
loss lπm(t)(t); otherwise, she always receives loss 1 regardless
of lπm(t)(t). The actual loss sπm(t)(t) received by player m
at time t can be written as

sπm(t)(t) := lπm(t)(t)(1− ηπm(t)(t))︸ ︷︷ ︸
no collision

+ ηπm(t)(t)︸ ︷︷ ︸
collision

,

where ηπm(t) is the collision indicator defined as ηk(t) :=
1{|Ck(t)| > 1}, with Ck(t) := {m ∈ [M ]|πm(t) = k}.

If the players have access to both sπm(t)(t) and ηπm(t)(t), it
is a collision-sensing problem. When information of ηπm(t)(t)
is unavailable and players only know sπm(t)(t), the problem is
a no-sensing one as considered in this paper. In this no-sensing
setting, a loss 1 can indistinguishably come from collisions
or be exogenously generated by the adversary. The lack of
information on the collision indicators complicates the MP-
MAB problem in general [4], [10], and this challenge is more
significant for the adversarial setting [6]. Note that if lk(t) 6= 1,
∀k, t, the no-sensing setting is equivalent to collision-sensing.

For this model, the notion of regret can be generalized w.r.t.
the best allocation of players to arms as follows [19]:

R(T ) :=

T∑
t=1

∑
m∈[M ]

sπm(t)(t)− min
k1,...,kM∈[K],
kp 6=kq,∀p6=q

T∑
t=1

∑
m∈[M ]

lkm(t).

We are interested in the expected regret E[R(T )] where the
expectation is w.r.t. the algorithm randomization.

As shown in [6], one cannot obtain any non-trivial re-
gret guarantees facing an adaptive adversary. This work thus
focuses on the oblivious adversary who chooses the loss
sequence independently of the actions of players.

B. Attackabilities of the adversary

To explore the idea of forced-collision communications,
the overall horizon T is divided into the exploration and
communication phases [4], [19]. Information is shared by
purposely created collisions in the communication phases to
maintain synchronization and coordination between players in
the subsequent exploration phases. However, in the no-sensing
setting, loss 1 assigned by the adversary can be viewed as a
certain “attack”, since players have no knowledge whether it
comes from the adversary or collision. Such loss-1 attack has
very different impacts on different phases:
• Exploration phase. Assuming that the preceding communi-
cation phase is successful, no negative influence occurs when
the adversary assigns loss 1 in the exploration phase, since the
regret is measured by the gap to the optimal choice.
• Communication phase. The loss-1 attack in a commu-
nication phase may lead to communication errors, which
jeopardize the essential coordination among players and lead
to a potentially linear regret due to collisions in the subsequent
exploration phase, as illustrated in Fig. 1. The worst-case
scenario can have all-one loss sequences for all communication
phases, which prevents any information sharing.

… …
T

… …comm expl comm expl

Success Error Linear Loss by CollisionSuccessNo Collision No Collision

comm expl

Fig. 1. Illustration of communication and exploration phases.

Previous studies of the stochastic no-sensing MP-MAB [4],
[10] show that any policy with collision-communications has
a dependency on the environment’s ability to “attack” such
communications. In the stochastic settings, such ability is
characterized by a lower bound µmin such that 0 < µmin ≤
mink∈[K] µk, where µk is the expectation of arm k’s rewards.
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Analogous to the role of µmin [4], [10], we propose a new
concept to characterize the adversarial environment, called the
adversary’s attackability, which represents the upper bound
on the adversary’s mechanism in generating loss 1’s. More
specifically, we define two types of attackabilties: the local
attackability and the global attackability, which provide two
different ways to categorize all the adversaries.

First, the local attackability is captured by the maximum
length of contiguous loss 1’s assigned on the loss sequence,
since it represents the longest duration that no reliable com-
munication can happen, and is defined as follows.

Definition 1. For a time horizon T , the local attacka-
bility W (T ) of the adversary is defined as W (T ) =
maxk∈[K] n

k
1(T ), where nk1(T ) denotes the maximum length of

the all-one loss sequences that are assigned by the adversary
on arm k throughout the T time slots.

Corollary 1. For any given adversary, there exists α ∈ [0, 1]
such that her local attackability satisfies W (T ) ≤ O (Tα).

Any possible adversary can be characterized by the local
attackability parameter α in Corollary 1, and the adversaries
sharing the same parameter α can be viewed as in the same
category. Another perspective is to consider the overall attacks
over T as the global attackability. It captures the total amount
of loss 1’s assigned on one arm, and is defined as follows.

Definition 2. For a given time horizon T , the global at-
tackability V (T ) of the adversary is defined as V (T ) =
maxk∈[K]N

k
1 (T ), where Nk

1 (T ) represents the total number
of loss 1’s that are assigned by the adversary on arm k
throughout the T time slots.

Corollary 2. For any given adversary, there exists β ∈ [0, 1]
such that her global attackability satisfies V (T ) ≤ O

(
T β
)
.

Similar to local attackability, the adversaries share the same
parameter β can be viewed as in the same category. However,
note that since the local attackability parameter α in Corollary
1 does not provide any bound on the overall attack, it is more
stringent than the global attack parameter β in Corollary 2.

It is important to note that Corollaries 1 and 2 represent
two ways of categorizing the adversaries rather than imposing
constraints or requirements on them. Each category still has
many adversaries as long as their scalings of attackability
are the same, and every possible adversary must be in one
category. In addition, such categorization does not need to be
aware by the players. In this sense, we do not impose more
assumptions than [6]. Rather, the attackability view represents
a different angle of the same no-sensing adversarial MP-MAB
problem, and the proposed algorithms can adapt to the varying
attackability in an automatic way, based on the perceived
category of the adversary that it faces.

IV. ALGORITHM OUTLINE

All the algorithms proposed in this paper have two different
phases: exploration phases and communication phases, and
share a common leader-follower structure [19], [22]. Player 1

(leader) determines arm assignments and transmits them to the
remaining players (followers) in the communication phases.
Then, in the following exploration phases, all the players keep
sampling the assigned arms.

A. Exploration Phase

Assuming explicit communications are allowed, the prob-
lem is similar to the adversarial multi-play problem, where
the leader (the centralized agent) assigns M arms A(t) =
{A1(t), ..., AM (t)} at each time step t to the followers,
i.e., arm Am(t) for player m. As commonly adopted in
the multi-play setting [23], we can view each subset of M
distinct arms {A1, ..., AM} is viewed as a single meta-arm
A and the set of all meta-arms K is defined as: K :=
{{A1, ..., AM} ⊆ [K]|Am 6= An for any m 6= n} .

An arm assignment policy that builds on [19] is adopted
in this paper. The key idea is to perform a centralized EXP3
algorithm but with only the leader’s observations, which is
designed to facilitate the generalization to the decentralized
setting. Specifically, after exploration at time t− 1, using her
own observation l̂A1(t−1)(t−1) from arm A1(t−1), the leader
updates an unbiased loss estimator as ∀k ∈ [K], l̃k(t − 1) =
Ml̂A1(t−1)(t−1)∑
A:k∈A∈K PA(t−1)1{k = A1(t− 1)}, where PA(t− 1) is the

probability that meta-arm A is chosen at time t− 1.
For time t, the decision is based on the cumulative loss

estimator L̃A(t) for each meta-arm A ∈ K as L̃A(t) =∑t−1
υ=1

∑
k∈A l̃k(υ). Then, the EXP3 algorithm [24] is applied

to the meta-arms, so that each meta-arm A ∈ K is sampled
with a probability PA(t) ∝ exp(−ηL̃A(t)) as the exploration
meta-arm A(t). The loss estimator {l̃k(t)}k∈[K] is then again
updated and the same procedures iterate for time t+ 1.

Lastly, the key adjustment to the decentralized setting is
to notify followers of their assigned arms by forced-collision
communications. However, to avoid a linear communication
regret due to frequently updating, the exploration phase is
extended from one time slot to τ slots and the update happens
only after each exploration phase. The leader also uses her
samples of losses observed during the entire exploration phase
as the feedback to assign arms for the next phase.

B. Communication Phase

In the communication phases, arm assignments are transmit-
ted from the leader to the followers with the forced collisions
mechanism [4], [10]. Every player is first assigned a unique
communication arm corresponding to her index, e.g., arm m
for player m. In the collision-sensing setting, players only need
to take predetermined turns to communicate by having the
“receive” player sample her own communication arm and the
“send” user either pull (create collision; bit 1) or not pull (cre-
ate no collision; bit 0) the receive player’s communication arm
to transmit one-bit information. In the more challenging no-
sensing setting, without information on the collision indicator,
loss-1 attacks from the adversary may cause communication
errors and incur a linear regret as shown in Fig. 1. The no-
sensing settings are discussed in the following sections.

535
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 20,2021 at 01:54:34 UTC from IEEE Xplore.  Restrictions apply. 



Bit 1

Bit 0

Collision

No Collision

Loss= 1

Loss< 1

Fig. 2. The Z-channel model for forced-collision communications.

V. LOCAL ATTACKABILITY: α-(UN)AWARE A2C2

In this section, we first assume that the local attackability
parameter α is known to the players, i.e., α-aware A2C2, and
introduce some important ideas. Then, we discuss the case
with unknown α, i.e., α-unaware A2C2.

A. α-aware A2C2

Two information-theoretic concepts play important roles in
the design of α-aware A2C2 and subsequent algorithms.

Z-channel model. There exists an asymmetry in collision-
communication of no-sensing MP-MAB: bit 1 (collision) is
always received correctly, while bit 0 (no collision) can be
potentially corrupted by an attack of loss 1. Thus, the adver-
sary attack corresponds to a Z-channel model [25] as shown
in Fig. 2: she can attack bit 0 but not bit 1. Compared with
the stochastic no-sensing MP-MAB [10], the key difference
here is that a fixed crossover probability does not exist.

Error-correction code with long blocklength. With the
Z-channel model, the key idea to overcome the full attack-
ability is to “overpower” the adversary via coding that has
sufficient error-correction capabilities [26]. To facilitate the
regret analysis, we choose to use the simple repetition code
[27].1 At the encoder, each information bit is repeated to a
string of length h(T, α + ε) = Θ(Tα+ε) = ω(Tα), where
ε > 0 is an arbitrarily small constant.2 Then, the coded bits
are sent via forced collisions. If the received bit sequence of
length h(T, α + ε) is all-one, then the decoder outputs bit 1.
Otherwise, it outputs bit 0 (i.e., as long as there exists at least
one received bit 0 in the sequence). With h(T, α+ε) = ω(Tα),
which implies h(T, α + ε) = ω(W (T )), this error-correction
code is guaranteed to overpower the local attackability and
thus provides successful communications asymptotically.

B. α-unaware A2C2

With no information of α, the main difficulty lies in how
to prepare for the worst case without incurring a linear loss.
In addition to the key features in α-aware A2C2, several new
ideas are needed in the α-unaware A2C2 algorithm. A sketch
of α-unaware A2C2 is presented in Algorithm 1.3

Estimation of α. To effectively protect communications,
we propose to adaptively estimate α in an escalation fashion.
The estimated value α′ ∈ [0, 1] starts with 0, and increases
with a step size of ε upon each communication failure, where

1Note that more advanced codes can be used, but our regret analysis shows
that the regret scaling is not affected.

2f(T ) = Θ(g(T )) iff f(T ) = O(g(T )) and f(T ) = Ω(g(T )); f(T ) =
ω(g(T )) iff lim infT→∞ f(T )/g(T ) = ∞.

3For compactness, Algorithm 1 is written to be applicable to all M players,
but note that these players are operating in a decentralized fashion.

Algorithm 1 Sketch of α-unaware A2C2 Algorithm
1: for phase p do

Leader:
2: Sample one meta-arm A(p) w.r.t. PA(p)
3: Send assigned arms in A(p) to followers with the

error-detection repetition code . Communication
4: Iterate “Uplink-Downlink” for N(ξ) times and decide

to update estimation α′ or not . Synchronization
5: Pull the assigned arm for τ time steps and update loss

estimators with the collected rewards . Exploration
Follower m:

6: Receive and decode the assigned arm, and check if a
communication error happens . Communication

7: Iterate “Uplink-Downlink” for N(ξ) times and decide
to update estimation α′ or not . Synchronization

8: Pull the assigned arm for τ time steps . Exploration
9: end for

Fig. 3. Example of one communication phase and error-detection coding with
M = 2, K = 3 and h(T, α′) = 3.

ε > 0 is an arbitrarily small positive constant. Once reaching
α′ = vε > α, we have h(T, α′) = ω(W (T )), which means
there will be no more communication errors (asymptotically).

Error-detection repetition code. To provide information
of communication failure for the aforementioned escalation
mechanism, the constant weight code [28], which is an error-
detection code for the Z-channel, is utilized. To facilitate
discussions, a specific kind of constant weight code is adopted.
As shown in Fig. 3, while transmitting arm index k, the leader
represents it by a bit sequence of length K where the k-th bit
is 1 while all other bits are 0. Then, each bit of this sequence
is repeated h(T, α′) = Θ(Tα

′
) times. Thus, all codewords

share the weight of h(T, α′). Upon receiving, the entire bit
string is divided into K blocks and the decoder outcome is
the (possibly multiple) indices of the blocks that have all-ones.

Thanks to the property of the Z-channel, the source index
k is always decoded correctly. Thus, if the decoder outputs
more than one index, there must be a communication error
(example ‘F’ in Fig. 3), meaning the estimation should be
updated. Otherwise, the decoder outputs only one index, which
indicates the communication is successful (example ‘S’ in
Fig. 3) and it is sufficient to maintain the current estimation.

Synchronization with randomized length. Error-detection
repetition code allows each follower to decide whether the α-
estimation needs to be updated. However, such decisions may
vary across players, which calls for communication for syn-
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chronization. We note the worst case during synchronization
is uneven attacks: attacks that happen only on a subgroup of
players, i.e., some players receive incorrect signals and update
the estimation, while the others do not.

To solve this problem, we introduce randomness to the
synchronous procedure. After communication of arm assign-
ment in each round, the followers report to the leader whether
communication errors occurred in this round at the same time
(referred to as ‘uplink’). The followers send bit 1 representing
error and bit 0 representing no error with the same error-
correction repetition code of length h(T, α′). As long as one
follower has communication errors, the leader can correctly
receive bit 1 (signal for updating). This ‘uplink’ is robust to
the attacks since there is only one receiver (the leader); even if
an attack is successful, the need for updating is still conveyed
correctly. After the ‘uplink’, if bit 1 (no matter from followers
or the adversary) is received by the leader, she sends back bit
1 to every follower; otherwise, bit 0 is sent (referred to as
‘downlink’). If bit 1 is sent, all the followers can receive it
correctly. However, in the case of bit 0, uneven attacks may
happen and thus the synchronization may fail.

To keep synchronization successful with a high probability,
the ‘uplink-downlink’ procedure keeps iterating for a random
number of rounds N(ξ), which is uniformly distributed in
[0, dT ξe]. If the follower detects communication errors during
the assignment or receives bit 1 in the preceding ‘downlink’,
she keeps sending bit 1 to the leader in the following ‘uplink’
cycles until the procedure ends. For this protocol, the adversary
has to exactly attack the last round of ‘downlink’ to destroy
synchronization, since attacks at other rounds are broadcast-
ing. This procedure with a carefully chosen ξ is crucial in
maintaining a sub-linear regret.

VI. GLOBAL ATTACKABILITY: β-(UN)AWARE A2C2

In the discussion of Section V, although the local attack-
ability is bounded, the adversary can attack arbitrarily many
times. However, with the global attackability, the adversary
has an overall budget for attacking rather than a one-time
budget. Thus, it is an overkill to prevent the global attackability
in every communication phase. More efficient algorithms, β-
(un)aware A2C2, are proposed with a holistic consideration
for the total budget of the adversary. Details of β-(un)aware
A2C2 can be found in [1], and we only highlight the key
design philosophies here. As illustrated in Fig. 1, attacks in
one communication phase can only cause a one-time linear
loss in the next (finite-length) exploration phase, while the
adversary has a reduced total budget for future attacks. By
the time that the adversary runs out of budget, no more
communication errors can happen. Thus, it is sufficient to
adopt a less powerful error-correction/detection code and a less
frequent synchronization scheme, as long as the loss caused
by the global attackability does not dominate the regret.

VII. PERFORMANCE ANALYSIS

This section provides the theoretical analysis for all pro-
posed A2C2 algorithms. Detailed proofs can be found in [1].

Theorem 1 (α-aware). With τ =

dM 2
3K−

1
3 log(K)

1
3T

1+2α+2ε
3 e, η =

√
log
(
K
M

)
τ/(MKT ),

the expected regret of α-aware A2C2 algorithm is bounded
by E [R(T )] ≤ O(M

4
3K

1
3 log(K)

2
3T

2+α+ε
3 ), where ε is an

arbitrarily small positive constant.

Theorem 2 (α-unaware). With τ =

dM 2
3K−

1
3 log(K)−

1
3T

2+α′
3 e, η =

√
log
(
K
M

)
τ/(MKT )

and ξ = 1−α′
2 under the estimation α′, the expected

regret of the α-unaware A2C2 algorithm is bounded by
E[R(T )] ≤ O(M

4
3K

1
3 log(K)

1
3T

5+α+ε
6 ), where ε > 0 is an

arbitrarily small positive constant.

Noting that for α = 0, the known regret in collision-sensing
setting O(T

2
3 ) [19] is recovered by α-aware A2C2. When

α = 1, i.e., W (T ) = Ω(T ), the adversary can asymptotically
attack all time slots, and thus our regrets become O(T ).
Also, compared with Theorem 1, the lack of knowledge of
α worsens the regret by a factor of O(T

1−α
6 ) in Theorem 2.

We also note that with the properly chosen parameters in
[1], the expected regret of β-aware and β-unaware A2C2
algorithms are of order O(M2K

2
3 log(K)

1
3Tmax{ 1+β

2 , 23})and
O(M2K

1
3 log(K)

1
3Tmax{ 2+β+ε

3 , 34}), respectively.
Compared with the regret of O(MK

3
2T 1− 1

2M ) in [6], it can
be observed that the regret results of A2C2 have an exponential
dependence on the attackability rather than the number of
players M , which could be an advantage while dealing with a
large number of players. From another perspective, these two
different dependencies reveal two orthogonal “dimensions of
hardness” in the no-sensing adversarial MP-MAB problem:
multiple players and attackability. As no information sharing
among players is utilized in [6], the coordination is limited
and the difficulty of the problem grows exponentially with
the number of players. In our work, forced collisions are
used for communications and coordination among players
is established. As a result, the regret shifts the exponential
dependence from number of players (M ) to attackability (α
or β), and the dependence on M is only a multiplicative factor.

VIII. CONCLUSIONS

This work made progress in the no-sensing adversarial MP-
MAB problem by incorporating implicit communications. We
have introduced the concept of attackability to categorize all
possible adversaries from either a local view or a global view,
and designed Adversary-Adaptive Collision-Communication
(A2C2), a family of algorithms that can handle known or un-
known attackabilities, with several new tools from information
theory and communication theory. Theoretical analysis showed
that the proposed algorithms have attackability-dependent re-
grets, which eliminated the exponential dependence on the
number of players in the state-of-the-art no-sensing adversarial
MP-MAB research, and revealed a new dimension of hardness
of attackability that compliments the hardness associated with
the number of players.
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