
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021 515

On No-Sensing Adversarial Multi-Player
Multi-Armed Bandits With Collision

Communications
Chengshuai Shi , Graduate Student Member, IEEE, and Cong Shen , Senior Member, IEEE

Abstract—We study the notoriously difficult no-sensing adver-
sarial multi-player multi-armed bandits (MP-MAB) problem
from a new perspective. Instead of focusing on the hardness
of multiple players, we introduce a new dimension of hardness,
called attackability. All adversaries can be categorized based on
the attackability and we introduce Adversary-Adaptive Collision-
Communication (A2C2), a family of algorithms with forced-
collision communication among players. Both attackability-aware
and unaware settings are studied, and information-theoretic tools
of the Z-channel model and error-correction coding are utilized
to address the challenge of implicit communication without col-
lision information in an adversarial environment. For the more
challenging attackability-unaware problem, we propose a sim-
ple method to estimate the attackability enabled by a novel
error-detection repetition code and randomized communication
for synchronization. Theoretical analysis proves that asymptotic
attackability-dependent sublinear regret can be achieved, with or
without knowing the attackability. In particular, the asymptotic
regret does not have an exponential dependence on the number
of players, revealing a fundamental tradeoff between the two
dimensions of hardness in this problem.

Index Terms—Multi-player multi-armed bandits, adversarial
bandits, statistical learning.

I. INTRODUCTION

THE DECENTRALIZED multi-player multi-armed ban-
dits (MP-MAB) problem has received increasing interest

in recent years [1]–[5]. In MP-MAB, multiple players simulta-
neously play the bandit game without explicit communications
and interact with each other only through arm collisions. When
two or more players play the same arm simultaneously, they all
get a reward 0 (or equivalently loss 1) instead of the true under-
lying reward of that action. This model is largely motivated
by practical applications such as cognitive radio [6]–[9] and
wireless caching [10], where standard (single-player) MAB
does not fully capture the system complexity and user inter-
actions must be taken into account in conjunction with the
bandit game.
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Depending on how rewards are generated, the MP-MAB
game can be either stochastic or adversarial, as in the single-
player bandit problem. Most of the existing MP-MAB works
focus on the stochastic setting, in which a well-behaved
stochastic model exists for each arm (albeit unknown to the
players). However, it is often difficult to determine the cor-
rect stochastic assumptions in real-world applications, and
there are use cases where such assumptions do not hold.
For example, in cognitive radio systems, it is common to
have channel availability or signal quality fluctuations due to
changing environmental conditions or bursty radio frequency
interference [11], [12]. Adversarial MP-MAB is a more suit-
able model for such use cases, as it makes no stochastic
assumptions on the rewards and assigns an arbitrary reward
sequence to each arm exogenously. However, compared with
stochastic MP-MAB, adversarial MP-MAB is a considerably
harder problem because of the need to fight the adversary
while interacting with other players.

Since the MAB problem for a single player is well understood,
a predominant approach for both stochastic and adversarial MP-
MAB is to let each player play the single-player MAB game
while avoiding collisions for as much as possible [1], [2],
[7], [13], [14]. Recently, a pioneering work [3] proposes to
purposely instigate collisions as a way to share information
between players. Such implicit communication is instrumental
in breaking the performance barrier and achieving a regret that
approaches the centralized multi-play MAB [15], [16]. This
idea has been extended to several variants in the stochastic
setting [17]–[20] as well as adversarial MP-MAB [5], [12],
with improved regret performance for all models.

All the aforementioned works make an important assump-
tion of collision sensing – any collision with another player
is perfectly known. Such “collision indicator” plays a funda-
mental role in both collision avoidance and forced-collision
communication. It is widely recognized that a more dif-
ficult problem in MP-MAB is the no-sensing scenario, in
which players can only observe the final rewards but not
collisions. The difficulty lies in that the zero rewards can
indistinguishably come from collisions or null arm rewards.
Recently, there is some progress on the stochastic no-sensing
problem [4], [21]. In particular, the fundamental idea of
implicit communication is again proved crucial in achieving
regret that approaches the centralized counterpart [9].

Nevertheless, the most difficult setting of no-sensing adver-
sarial MP-MAB in a fully decentralized setting remains wide
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TABLE I
REGRET BOUNDS OF ADVERSARIAL MP-MAB ALGORITHMS

open. To the best of the authors’ knowledge, [5] is the only
work that achieves a sublinear regret by a collision-avoidance
design (i.e., no implicit communication) where “safe” arms
are reserved for players. However, its asymptotic regret of
O(T1− 1

2M ) is almost linear in T when M is large, where M
is the number of players and T is the time horizon of the
game. We note that this exponential dependence on M reveals
a particular dimension of hardness (multiple players) in the
no-sensing adversarial MP-MAB problem.

Recent development has repeatedly demonstrated that
implicit communication is crucial in achieving lower regret.
However, as pointed out in [5], it is unclear how to implicitly
communicate without collision information in an adversarial
environment. This paper makes progress in the no-sensing
adversarial MP-MAB problem by addressing the challenges
in incorporating implicit communication. In particular, this
work reveals a novel dimension of hardness associated with
the no-sensing adversarial MP-MAB problem: attackability of
the adversary, that is orthogonal to the multi-player dimen-
sion of hardness. Technically, we depart from the approach
of [5] which always assumes the worst possible adversary
while focusing on the multi-player hardness, and analyze the
relationship between the attackability hardness and implicit
communications. Notably, all possible adversaries can be clas-
sified based on this new concept of attackability, which is
defined either by a local view (for a “one-time” attack) or
a global view (for the cumulative attacks). The hardness
of attackability may or may not be aware by the players,
and we develop a suite of Adversary-Adaptive Collision-
Communication (A2C2) algorithms under both attackability-
aware and attackability-unaware settings, which adaptively
adjust the implicit communication by learning the attackabil-
ity of the adversary in an online manner. All of the A2C2
algorithms utilize some (common) new elements that have
not been considered before in no-sensing adversarial MP-
MAB, such as an information-theoretical Z-channel model and
error-correction coding, to design a forced-collision communi-
cation protocol that can effectively fight against the adversary
and achieve a non-dominant communication regret in the

no-sensing setting. On the other hand, for the more challenging
attackability-unaware setting, we show that a simple “escala-
tion” estimation of the attackability, a novel error-detection
repetition code, and randomized synchronizations are cru-
cial to handle the unknown attackability. A key idea behind
algorithms in the attackability-unaware setting is that commu-
nication error is not bad if it happens to all players, as such
error does not affect player synchronization.

The regret analysis of the A2C2 algorithms shows that they
can achieve attackability-dependent sublinear regrets asymp-
totically, without an exponential dependence on the number
of players as in [5]. This benefit, however, does not lead to
a universally lower regret. In fact, we may view A2C2 of
this paper and the method of [5] as operating at two different
regimes in the two-dimensional hardness space (multi-player
and attackability). On one hand, the T terms in the regret of
A2C2 algorithms are oblivious to the number of players (i.e.,
M) and the overall dependency on M is only a multiplicative
factor, while the regret of [5] has an exponential dependency
on M. On the other hand, A2C2 algorithms have exponen-
tial dependencies on the attackability, which does not affect
the regret of [5]. Philosophically speaking, the regret com-
parison between A2C2 and [5] shows that one can trade off
the multi-player dimension of hardness with the attackabil-
ity dimension of hardness, which may provide insight into
other relevant adversarial bandit problems. A comparison of
the regret bounds are given in Table I for both collision-sensing
and no-sensing adversarial MP-MAB algorithms.

The rest of the paper is organized as follows. Related
works are surveyed in Section II. The no-sensing adver-
sarial MP-MAB problem is formulated in Section III. The
general algorithm structure is presented in Section IV, fol-
lowed by algorithms for known (Section V) and unknown
(Section VI) attackability. The regret analyses of all algorithms
are given in Section VII. Discussions on some algorithmic
details and future research directions are given in Section VIII.
Numerical illustrations and experimental results are provided
in Section IX to support the theoretical analyses. Finally,
Section X concludes the paper.
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II. RELATED WORK

A. Overall Review

Collision-Sensing Stochastic and Adversarial MP-MAB: As
stated in Section I, initial approaches for collision-sensing
MP-MAB adopt single-player MAB algorithms with various
collision-avoidance protocols. Examples include Explore-then-
Commit [13], UCB [1], [2], ε-greedy [7] for stochastic MP-
MAB, and EXP3 [14] for adversarial MP-MAB with a regret
of O(T

3
4 ). Although these strategies achieve sublinear regret,

their performance cannot approach the centralized counter-
parts. In particular, for the stochastic environment, there is
a multiplicative factor M increase in the regret coefficient of
log(T) compared with the natural lower bound of centralized
MP-MAB [15], [16], which has long been considered fun-
damental due to the lack of explicit communication among
players.

The idea of implicit communication with forced collisions is
introduced by the SIC-MMAB algorithm [3], where bits 1 and
0 are transmitted by collision and no collision, respectively.
The theoretical analysis of SIC-MMAB shows, for the first
time, that the regret of decentralized MP-MAB can approach
the centralized lower bound in the stochastic environment. The
DPE1 algorithm [17] further improves the regret by combin-
ing the KL-UCB algorithm [23] with implicit communication.
Similar ideas have also been extended to other stochastic
variants, such as the heterogeneous setting [18], [20], where
rewards are player-dependent. For the adversarial environment,
implicit communication also proves to be effective. In partic-
ular, the C&P algorithm [12] achieves a regret of O(T

2
3 ) by

invoking forced collisions to let players coordinately perform a
centralized EXP3 algorithm. The performance for two players
(M = 2) has been improved to O(

√
T log(T)) in [5] by apply-

ing a filtering strategy with bandit-type information supported
by implicit communication, which approaches the lower bound
of �(

√
T) [22].

No-Sensing Stochastic and Adversarial MP-MAB: No-
sensing MP-MAB represents a more challenging scenario and
the progress has been limited. A collision-avoidance scheme
is investigated in [4] for the stochastic environment, which
cannot approach the centralized lower bound. Some initial
attempts to incorporate implicit communication in the no-
sensing stochastic setting, e.g., sharing arm indices instead
of statistics, are discussed in [3]. The EC-SIC algorithm
proposed in [9] proves that it is possible to approach the
centralized lower bound even without information of colli-
sion. For the most difficult case of no-sensing adversarial
MP-MAB, progress is extremely limited. To the best of our
knowledge, [5] is the only work studying this problem, and
detailed comparisons between [5] and A2C2 are provided in
the next subsection.

Cooperative MP-MAB: This is another line of MP-MAB
research where explicit communications are allowed (under
certain constraints) and players do not collide with each other.
Such scenarios have been studied in both stochastic and adver-
sarial environments [24]–[28], which are under a completely
different framework than this work.

Fig. 1. Multi-player dimension of hardness.

Fig. 2. Attackability dimension of hardness.

B. Comparison With [5]

As the only existing work studying the no-sensing adversar-
ial MP-MAB problem, [5] designs a novel collision-avoidance
algorithm by reserving “safe” arms for players. Nevertheless,
this approach gives up sharing information through implicit
communication. As a result, intuitively, when there are more
players involved in the game, it becomes increasingly diffi-
cult to avoid collisions without sufficient coordination enabled
by (implicit) communications. This issue is reflected in its
achievable regret of O(T1− 1

2M ), which has an exponential
dependency on M. To address this critical issue of [5], this
paper focuses on designing the implicit communication strate-
gies through forced collisions and proposes the concept of
attackability. The resulting suite of A2C2 algorithms have
only multiplicative dependencies on M in their achievable
regrets. However, this is accomplished by incurring additional
communication regrets caused by collisions, which has expo-
nential dependencies on the attackability. Thus, we conclude
that A2C2 establishes an alternative dimension in the hardness
space from attackability, in additional to the original dimension
from multiple players in [5].

The following preview of the analytical results provides
a more clear view of the two different dimensions of hard-
ness. Fig. 1 and Fig. 2 numerically illustrate the theoretical
dependencies of the asymptotical regret (i.e., scaling) of A2C2
algorithms and the no-sensing algorithm in [5] on the two
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dimensions of hardness. When fixing the attackability, i.e.,
fixing the local attackability parameter α to be 0.7 or the
global attackability parameter β to be 0.7, the regrets of α-
unaware A2C2 algorithm and the β-unaware A2C2 algorithm
only increase slowly with M in Fig. 1, since their T terms
are oblivious to M and the overall dependency on M is only
a multiplicative factor. However, the regret of [5] increases
sharply with more players due to the exponential dependency.
When M is large (larger than 4 in Fig. 1), the advantage of
A2C2 algorithms is obvious. On the other hand, while fix-
ing the number of players, the regret performance of [5] is
immune to the change of attackability. However, A2C2 algo-
rithms have exponential dependencies on the attackability. As
a result, their performances are very good when the adver-
sary’s attackability is weak or medium, but degrade quickly
when the attackability is extremely strong.

III. PROBLEM FORMULATION

A. The No-Sensing Adversarial MP-MAB Problem

We focus on the following decentralized no-sensing adver-
sarial MP-MAB model. There are K arms and 1 < M ≤ K
players in the game.1 The arms are labeled 1 to K and the
players 1 to M, respectively. There are no explicit commu-
nications among players, which is a key constraint of the
decentralized MP-MAB problem. The time horizon T is slot-
ted and synchronized among players, and at each time step
t ∈ [T], each player m ∈ [M] individually chooses and pulls
arm πm(t). Simultaneously, an adversary selects loss lk(t) for
each arm k ∈ [K]. The true loss lk(t) is player-independent
and has a bounded support on [0, 1]. A collision happens if
more than one player pull the same arm simultaneously. If no
collision happens for player m at time t, she receives the true
loss lπm(t)(t); otherwise, she always receives loss 1 (i.e., the
maximum loss) regardless of lπm(t)(t). The actual loss sπm(t)(t)
received by player m at time t can be written as

sπm(t)(t) := lπm(t)(t)
(
1− ηπm(t)(t)

)

︸ ︷︷ ︸
no collision

+ ηπm(t)(t)︸ ︷︷ ︸
collision

,

where ηπm(t) is the collision indicator defined as ηk(t) :=
1{|Ck(t)| > 1}, with Ck(t) := {n ∈ [M]|πn(t) = k}.

If the players have access to both sπm(t)(t) and ηπm(t)(t), it is
a collision-sensing problem and player m makes decision πm(t)
with past information {πm(v), sπm(v)(v), ηπm(v)(v)}v<t. When
information of ηπm(t)(t) is unavailable and players only know
sπm(t)(t), the problem is a no-sensing one as considered in this
paper. In this no-sensing setting, a loss 1 can indistinguish-
ably come from collisions or be exogenously generated by
the adversary, and player m makes decisions πm(t) only with
{πm(v), sπm(v)(v)}v<t. The lack of information on the collision
indicators complicates the MP-MAB problem in general [3],
[9], and this challenge is more significant for the adversarial
setting [5]. Note that if lk(t) �= 1, ∀k, t, the no-sensing setting
is equivalent to collision-sensing.

In the adversarial MP-MAB model, the notion of regret can
be generalized with respect to the best allocation of players to

1The special case of M = 1 is addressed in Appendix A.

arms as follows [12]:

R(T) :=
T∑

t=1

∑

m∈[M]

sπm(t)(t)− min
k1,...,kM∈[K],
kp �=kq,∀p �=q

T∑

t=1

∑

m∈[M]

lkm(t).

(1)

We are interested in the expected regret E[R(T)] where the
expectation is with respect to the algorithm randomization.

As shown in [5], one cannot obtain any non-trivial regret
guarantees facing an adaptive adversary. This work thus
focuses on the oblivious adversarial MP-MAB where the
reward generation of the adversary is independent of the
actions of players. Equivalently, the loss sequence is chosen
by the adversary at the beginning of the game.

A Motivating Example: The adversarial MP-MAB problem
formulated in this section captures the key characteristics of
a cognitive radio system, where arms correspond to channels,
and players represent the distributed devices trying to com-
municate over the channels. The adversarial loss captures the
unpredictable time-varying channel quality, e.g., due to bursty
interference [29]. When two (or more) users use the same
channel simultaneously, a packet collision happens and both
of their attempted communications fail (i.e., a loss of 1). This
is a commonly used model for shared wireless medium, e.g.,
the CSMA protocol in Wi-Fi [30]. Regarding whether the
collision is perceivable or not (i.e., collision-sensing or no-
sensing), it is determined by the communication protocol and
the sensing capabilities of devices. As stated in [2], [4], [31],
the no-sensing setting is more suited to large scale Internet-of-
Things (IoT) applications. Furthermore, minimizing the regret
defined in Eqn. (1) is equivalent to minimizing the cumula-
tive communication loss over the chosen channels, which is
a meaningful metric for practical systems. As a final remark,
since the changing of channel quality is typically caused by
external factors such as the dynamic radio frequency environ-
ment instead of user actions, the assumption of an oblivious
adversary is reasonable in the application of cognitive radio.

B. Attackabilities of the Adversary

To explore the idea of forced-collision communication in the
no-sensing adversarial setting, the overall horizon T is divided
into the exploration and communication phases, similar to the
approaches in collision-sensing settings [3], [12]. Information
is shared by purposely created collisions in the communication
phases to maintain synchronization and coordination between
players in the subsequent exploration phases. However, in the
no-sensing setting, loss 1 assigned by the adversary can be
viewed as a certain “attack”, since players have no knowledge
whether it comes from the adversary or collision. Such loss-
1 attack has very different impacts on the regret in different
phases:
• Exploration Phase: The loss-1 attack does not negatively

affect the exploration phase if the preceding commu-
nication phase is successful, as it would not ruin the
synchronization among players. Especially, with success-
ful synchronization, strategies can be designed to better
allocate arms and minimize the regret during exploration
phases.
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Fig. 3. Illustration of communication and exploration phases with commu-
nication errors.

• Communication Phase: The loss-1 attack in a commu-
nication phase requires special attention, as it may lead
to communication errors for players, which jeopardize
the essential synchronization among them and lead to a
potential linear regret due to collisions in the subsequent
exploration phase, as illustrated in Fig. 3.

Because of these different impacts, the worst-case adversarial
attack scenario can have all-one loss sequences for all com-
munication phases, which prevents any information sharing
among players and may cause a linear loss over the entire T
time slots.

From the previous studies in the stochastic setting [3], [9],
it is clear that any bandit policy attempting to enable forced-
collision communication in the no-sensing setting will have
a dependency on the environment’s ability to “attack” such
communications. This naturally requires bounding the worst-
case loss in communications. In the stochastic settings, this
ability is characterized by a positive lower bound μmin such
that 0 < μmin ≤ mink∈[K] μk, where μk is the mean of arm
k’s rewards. For example, such a lower bound is assumed to
exist and be known to all players in [3], [9].

Analogous to the role of μmin in the stochastic MP-MAB
models, we propose a new metric to characterize the adver-
sarial environment, called the adversary’s attackability, which
represents the upper bound on the adversary’s mechanism in
generating loss 1’s. This is a notable distinction to [5] where no
communication is utilized in the no-sensing setting, and thus
modeling the adversary’s attackability is not necessary. More
specifically, in this work, we define two types of attackabil-
ties: the local attackability and the global attackability, which
provide two different ways to categorize all the adversaries as
detailed in this section.

First, the local attackability aims at modeling the one-time
worst-case attack. In a communication phase shown in Fig. 3,
the worst case is for this phase to see all loss 1’s from the
adversary, because no information can be reliably shared in
such situation. In other words, the local attackability is cap-
tured by the maximum length of contiguous loss 1’s assigned
on the loss sequence, since it represents the longest duration
that no reliable communication can happen. Without loss of
generality, the local attackability is defined as follows.

Definition 1: For time horizon T , the local attackability
W(T) of the adversary is defined as W(T) = maxk∈[K] nk

1(T),
where nk

1(T) denotes the maximum length of the all-one
loss sequences that are assigned by the adversary on arm k
throughout the T time slots.

It is clear that every possible adversary is featured with a
W(T) ∈ [0, T]. In the case that the adversary has W(T) =
�(T), it may (asymptotically) attack at all time slots. If W(T)

of an adversary is a constant independent of T , i.e., O(1),
the attack is finite each time. A more general case lies in

between these two extremes and any possible adversary can be
characterized by the local attackability parameter α as follows.

Corollary 1: For any given adversary, there exists α ∈
[0, 1] such that the local attackability of this adversary satisfies
W(T) ≤ O(Tα).

The local attackability captures the one-time “budget” for
the adversary attack. The adversaries sharing the same param-
eter α can be viewed as in the same category.

Another perspective is to consider the overall attacks over
T as the global attackability. It captures the total amount of
loss 1’s assigned on one arm, and is defined as follows.

Definition 2: For given time horizon T , the global attack-
ability V(T) of the adversary is defined as V(T) =
maxk∈[K] Nk

1(T), where Nk
1(T) represents the total number of

losses 1 that are assigned by the adversary on arm k throughout
the T time slots.

Similar to W(T), each possible adversary is featured with
a V(T) ∈ [0, T]. If an adversary has V(T) = �(T), similar to
W(T) = �(T), it may (asymptotically) attack at all time slots
and no successful communication can happen. If V(T) of an
adversary is a constant independent of T , i.e., O(1), the over-
all attacks are finite, which is negligible asymptotically and
equivalent to the collision-sensing setting. Similarly, the adver-
saries can also be categorized with their global attackability
parameter β as follows.

Corollary 2: For any given adversary, there exists β ∈
[0, 1] such that the global attackability of this adversary
satisfies V(T) ≤ O(Tβ).

Similar to local attackability, the adversaries sharing the
same parameter β can be viewed as in the same category,
where the overall “budget” for the adversary attacks is of the
same order. However, note that since the local attackability
parameter α in Corollary 1 does not provide any bound on
the overall attack budget, it is more stringent than the global
attack parameter β in Corollary 2. For an adversary satis-
fying a sublinear local attackability, it is possible to have a
global attackability of �(T). For example, the adversary with
loss sequences of 0, 1, 0, 1, . . . for all arms satisfies the local
attackability of W(T) = O(1), i.e., α = 0, but also satisfies the
global attackability of V(T) = �(T), i.e., β = 1. Finally, we
note that the following sections consider either local or global
attackability, but not simultaneously.

It is important to keep in mind that Corollaries 1 and 2
represent two ways of categorizing the adversaries rather than
imposing constraints or requirements on them. Each category
still has many adversaries as long as their scalings of attacka-
bility are the same, and every possible adversary is in a certain
category. In addition, as shown in the subsequent sections,
such categorization does not even need to be aware by the
players. In this scenario, we do not impose more assumptions
than [5]. Rather, the attackability view represents a different
angle of the same no-sensing adversarial MP-MAB problem,
and the proposed algorithms can adapt to the varying attack-
ability in an automatic way, based on the perceived category
of the adversary that it faces.

A final remark is that the proposed concepts of attacka-
bility are closely related to the different modes of external
interference sources in the application of cognitive radio.
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Specifically, the concept of local attackability is suitable for the
low-duty-cycle interference source as it captures the essence
of burst interference. On the other hand, global attackability
focuses on measuring the overall interference and thus is more
appropriate to model an interference source with a median or
high duty cycle, or the cumulative interference from many
low-duty-cycle sources.

IV. ALGORITHM OUTLINE

All the algorithms proposed in this paper have two differ-
ent phases: exploration phases and communication phases, and
share a common leader–follower structure [12], [20]. Player 1
(leader) determines arm assignments for the remaining play-
ers (followers). The arm assignment is transmitted to each
follower in the communication phases. Then, in the following
exploration phases, all the players keep sampling the assigned
arms. This section introduces the arm assignment procedure
for the exploration phases and gives a brief introduction of the
communication phases, which will be separately discussed in
the following sections for different attackability scenarios.

A. Exploration Phase

Assuming explicit communications are allowed, i.e., in the
centralized model, the challenge of exploration phases is how
to choose M arms to explore for all the M players. We
note that this is similar to the adversarial multi-play problem,
where the leader (the centralized agent) chooses M arms
A(t) = {A1(t), . . . , AM(t)} at each time step t for the followers
to explore, i.e., player m is assigned with arm Am(t). As com-
monly adopted in the multi-play setting [32], each subset of
M distinct arms {A1, . . . , AM} is viewed as a single meta-arm
A to be chosen by the leader. The set of all meta-arms K is
defined as:

K := {{A1, . . . , AM} ⊆ [K]|Am �= An for any m �= n}.
An arm assignment policy that builds on [12] is proposed in

this paper. At time t−1, players first explore the assigned arms
in A(t−1). Then, the leader updates an unbiased loss estimator

for each arm k ∈ [K] as l̃k(t − 1) = M
l̂A1(t−1)(t−1)∑

A:k∈A∈K PA(t−1)
1{k =

A1(t − 1)}, where PA(t − 1) is the probability that meta-arm
A is chosen at time t − 1 and l̂A1(t−1)(t − 1) is the loss that
the leader observes on her arm A1(t − 1) at time t − 1. Note
that the update only requires past observations from the leader,
which is designed to reduce the communication burden and to
facilitate the generalization to the decentralized setting.2

For time t, the cumulative loss estimator L̃A(t) for each
meta-arm A ∈ K is first updated as the sum of the loss
estimations of its elementary arms up to time t − 1, i.e.,
L̃A(t) =∑t−1

υ=1
∑

k∈A l̃k(υ). Then, the EXP3 algorithm [33] is
applied to the meta-arm MAB problem, so that each meta-arm
A ∈ K is sampled with a probability PA(t) which is pro-
portional to exp(−ηL̃A(t)), as the exploration meta-arm A(t)

2We note that the recent advance [17] in stochastic MP-MAB proves that
using information collected by only one leader is sufficient to have an optimal
regret behaviour. However, it is unclear whether the similar argument holds
for adversarial MP-MAB, which may be an interesting direction for future
research.

for time slot t. The loss estimator {l̃k(t)}k∈[K] is then again
updated after pulling the chosen meta-arm. At time t + 1,
the same procedures are performed to get {L̃A(t + 1)}A∈K,
{PA(t+1)}A∈K and A(t+1). As shown in [12] and Appendix B,
this algorithm guarantees a regret bound of 2M

√
K log(K)T

when η =
√

log
(K

M

)
/MKT .

Furthermore, since there are |K| = (K
M

)
meta-arms, comput-

ing the probability PA(t) for each meta-arm and the marginal
probability

∑
A:k∈A∈K PA(t) for an arm k that is to be updated

would lead to an exponential complexity if it is done naively.
However, with a concept called K-DPPs [34], sampling and
marginalization can be made more efficient. As shown in [12],
the complexity of sampling a meta-arm and computing the
marginal probability for a fixed arm can both be reduced
to O(KM) with K-DPPs, which makes it less complex for
implementation.

Lastly, with the centralized algorithm described above, the
key adjustment to the decentralized setting is to notify follow-
ers of their assigned arms by forced-collision communications.
However, to avoid a linear communication regret due to fre-
quently updating, the exploration phase is extended from one
time slot to τ slots. This means each player is fixated on one
arm for at least τ slots, and the update happens only after each
exploration phase. The leader then uses her samples of losses
observed during this entire exploration phase as the feedback
to assign arms for the next phase. Note that although this infre-
quent switching reduces the communication burden, it also
degrades the regret guarantees [35]; we will elaborate on this
aspect in the analysis. When there is no ambiguity, the time
variable in A(t), PA(t), l̂k(t), l̃k(t) and L̃A(t) are replaced by
the corresponding phase index as A(p), PA(p), l̂k(p), l̃k(p) and
L̃A(p) under the decentralized setting for the p-th phase.

B. Communication Phase

In the communication phases, arm assignments are trans-
mitted from the leader to the followers with forced collisions.
Functions Send() and Receive() are used in the algo-
rithm description for the sending and receiving procedure with
forced collisions. Every player is first assigned with a unique
communication arm corresponding to her index, i.e., arm m for
player m. In the collision-sensing setting, players only need
to take predetermined turns to communicate by having the
“receive” player sample her own communication arm and the
“send” user either pull (create collision; bit 1) or not pull
(create no collision; bit 0) the receive player’s communica-
tion arm to transmit one-bit information. For a player that is
not engaged in the current peer-to-peer communication, she
keeps pulling her communication arm to avoid interrupting
other ongoing communications. Since the collision indicator is
perfectly known in the collision-sensing setting, player m can
receive error-free information after implicit communication.

In the more challenging no-sensing setting, there is no
information about the collision indicator, which means attacks,
i.e., loss 1 assigned by the adversary, may cause commu-
nication errors and incur a linear regret in the subsequent
exploration phase as shown in Fig. 3. The no-sensing set-
tings are discussed under four different scenarios (two with
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Algorithm 1 α-Aware A2C2: Leader
Input: M, K, T

1: Initialize: τ ← 
M 2
3 K− 1

3 log(K)
1
3 T

1+2α+2ε
3 �; η ←√

log
(K
M
)
τ/MKT

2: for p = 1, 2, ... do
3: ∀A ∈ K, L̃A(p)←∑p−1

v=1
∑

k∈A l̃k(v)

4: ∀A ∈ K, PA(p)← e−ηL̃A(p)

∑
J∈K e−ηL̃J (p)

� Loss estimator

5: Choose A(p) = {A1(p), . . . , AM(p)} with PA(p)

6: Randomly permute A(p) into Ã(p)
� Communication Phase:

7: ∀m ∈ [M], msgm ← rEncoder(Ãm(p), h(T, α + ε))

8: ∀m ∈ [M], Send
(
m, msgm

) � Send Assignment
� Exploration Phase:

9: Stay on arm Ã1(p) for τ time steps
10: Record cumulative loss l̂Ã1(p)

(p) � Exploration

11: ∀k ∈ [K], l̃k(p)← M
τ

l̂Ã1(p)
(p)

∑
A:k∈A∈K PA(p)

1{Ã1(p) = k}
12: end for

knowledge of attackability while the other two without such
knowledge) in the following sections, respectively.3

• α-Aware and β-Aware: Section V-A (resp. Section V-B)
proposes the α-aware (resp. β-aware) A2C2 algorithm
with Corollary 1 (resp. 2) and players having knowledge
of α (resp. β).

• α-Unaware and β-Unaware: Similar to the above but
players have no knowledge of α (resp. β). These are
reported in Sections VI-A and VI-B, respectively. This
is the more challenging case, and the main focus of this
work.

V. ATTACKABILITY KNOWN TO PLAYERS

In this section, the attackability is assumed to be perfectly
known by all players, but such information does not tell the
players how and when the attacks would happen. The two
definitions of attackability lead to two algorithms, which also
serve as the building blocks of subsequent algorithm designs
on the attackability-unaware setting.

A. α-Aware

Although the local attackability is theoretically more strin-
gent than the global attackability, it is relatively easier to
handle. The α-aware A2C2 is presented in Algorithm 1
(leader) and Algorithm 2 (follower). Two information-theoretic
concepts that are intimately related to reliable communications
but less utilized in the bandit literature are introduced; sim-
ilar ideas are also adopted in algorithm designs under other
scenarios.

Z-channel Model: There exists an asymmetry in colli-
sion communication of MP-MAB: bit 1 (collision) is always
received correctly, while bit 0 (no collision) can be potentially
corrupted by a loss 1 from the adversary. In other words, the
adversary attack is asymmetric – she can attack bit 0 but not

3The discussions focus on the no-sensing setting, but the proposed algo-
rithms can be easily modified to cover the collision-sensing setting, with
details provided in Appendix A.

Algorithm 2 α-Aware A2C2: Follower
Input: M, K, T , index m

1: Initialize: τ ← 
M 2
3 K− 1

3 log(K)
1
3 T

1+2α+2ε
3 �; η ←√

log
(K
M
)
τ/MKT

2: for p = 1, 2, ... do
� Communication Phase:

3: msgm ← Receive(h(T, α + ε)) � Receive Assignment
4: Ãm(p)← rDecoder

(
msgm, h(T, α + ε)

)

� Exploration Phase:
5: Stay on arm Ãm(p) for τ time steps � Exploration
6: end for

Fig. 4. The Z-channel model for implicit communications in no-sensing
adversarial MP-MAB.

bit 1. From an information-theoretic point of view, this corre-
sponds to a Z-channel model [36] as shown in Fig. 4. We note
that this connection to the Z-channel model was first utilized
in [9] to study stochastic no-sensing MP-MAB. A key chal-
lenge in the adversary setting as compared to [9], however, is
that a fixed crossover probability does not exist.

Error-Correction Code With Long Blocklength: The idea of
utilizing error-correction code naturally arises under the for-
mulation of a Z-channel model. With the knowledge of α, the
key idea to overcome the full attackability is to “overpower”
the adversary via codes that have sufficient error-correction
capabilities [37]. Different error-correction codes, ranging
from simple repetition code to more complex (and powerful)
algebraic and nonlinear codes, can be adopted in the proposed
algorithms. To facilitate the regret analysis, we choose to
use the repetition code [38] and functions rEncoder() and
rDecoder() are used in the algorithms as the encoder and
decoder.4 At the encoder, each information bit is expanded to a
string of length h(T, α+ε) = �(Tα+ε) = ω(Tα), where ε > 0
is a fixed constant which can be arbitrarily small.5 Then, the
coded bits are sent via forced collisions. If the received bit
sequence of length h(T, α + ε) is all-one, then the decoder
outputs bit 1. Otherwise, it outputs bit 0 (i.e., as long as
there exists at least one received bit 0 in the sequence). With
h(T, α+ ε) = ω(Tα), which implies h(T, α+ ε) = ω(W(T)),
this error-correction code is guaranteed to overpower the local
attackability asymptotically. Thus, all the communications are
guaranteed to be successful asymptotically.

B. β-Aware

In the α-aware case, although the local attackability is
bounded, the adversary can attack arbitrarily many times. This

4Note that more advanced codes can be used, but our regret analysis shows
that the regret scaling is not affected.

5f (T) = �(g(T)) iff f (T) = O(g(T)) and f (T) = �(g(T)); f (T) = ω(g(T))

iff lim infT→∞ f (T)
g(T)
= ∞.
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is the fundamental reason why each of the communication
phases needs protection. However, with an upper bound of
global attackability, the adversary has an overall budget for
attacking rather than a one-time budget. The α-aware A2C2
algorithm can still be applied by replacing α with β, but
it is an overkill to prevent the global attackability in every
communication phase.

A more efficient algorithm, β-aware A2C2, is proposed with
a holistic consideration for the total budget of the adversary.
Details of β-aware A2C2 can be found in Appendix D, and we
only highlight the key design philosophies here. Because of
the iteration between exploration and communication phases,
if the adversary succeeds in attacking one communication
phase, the immediately following exploration phase of length
τ could be out of synchronization. However, after time τ , play-
ers enter the communication phase again and a new iteration
starts. In other words, attacks in one communication phase can
only cause a one-time linear loss in the next (finite) τ time
slots, while the adversary has a reduced total budget for future
attacks. By the time that the adversary runs out of budget, no
more communication errors can happen. Thus, as long as the
loss caused by the global attackability does not dominate the
regret, a certain amount of errors are tolerable. This is a key
observation because it means that the power of error-correction
coding does not need to be too strong. Technically, instead of
coding with a long blocklength of h(T, α + ε) = �(Tα+ε),
a much shorter coded length of k(T, ν) = �(Tν), where
ν = max{ 3β−1

2 , 0}, is sufficient of achieving a sublinear regret
that is better than α-aware A2C2. In fact, a closer look reveals
a very surprising result: for β ≤ 1

3 , we have ν = 0, which
means there is no need for coding at all in communication
phases (see Section VII for details).

VI. ATTACKABILITY UNKNOWN TO PLAYERS

In this section, the assumption of the knowledge of attack-
ability is removed. No information on the parameter α or β is
revealed to the players. The α-unaware and β-unaware settings
are tackled separately in the subsequent subsections.

A. α-Unaware

With no information of α, the main difficulty lies in how
to prepare for the worst case without incurring a linear loss.
All the key features in α-aware A2C2 are still applied in the
adaptive algorithm called α-unaware A2C2, but several new
ideas are needed: an error-detection code to estimate α, and a
synchronization procedure with randomized length to synchro-
nize the estimation update among players. The algorithms for
the leader and followers are presented in Algorithms 3 and 4,
respectively.

Estimation of α: Without the knowledge of α, no effective
prevention is possible for communications in the worst-case
scenario. We propose to adaptively estimate α in an escalation
fashion. The interval [0, 1] (support of α) is uniformly divided
into sub-intervals with length ε, where ε > 0 is an arbitrarily
small constant. The estimated value α′ starts with α′ = 0,
and increases with a step size of ε while a communication
failure is observed until the upper limit is reached. As we see

Algorithm 3 α-Unaware A2C2: Leader
Input: M, K, T
1: Initialize: α estimation: α′ ← 0; error flag: F← 0
2: for p = 1, 2, ... do

3: τ ← 
M 2
3 K− 1

3 log(K)− 1
3 T

2+α′
3 �

4: η←
√

log
(K
M
)
τ/MKT; ξ ← 1−α′

2 ; F← 0

5: ∀A ∈ K, L̃A(p)←∑p−1
v=1

∑
k∈A l̃k(v)

6: ∀A ∈ K, PA(p)← e−ηL̃A(p)

∑
J∈K e−ηL̃J (p)

� Loss estimator

7: Choose A(p) = {A1(p), . . . , AM(p)} with PA(p)

8: Randomly permute A(p) into Ã(p)
� Communication Phase:

9: ∀m ∈ [M], msgm ← eEncoder(Ãm(p), h(T, α′))
10: ∀m ∈ [M], Send

(
m, msgm

) � Send Assignment
11: for q = 1, 2, . . . , N(ξ) do � Synchronization
12: msgF ← Receive

(
h
(
T, α′

))

13: F← rDecoder
(
msgF, h

(
T, α′

)) � Uplink: F = 0/1
14: msgF ← rEncoder

(
F, h(T, α′)

)

15: ∀m ∈ [M], Send
(
m, msgF

) � Downlink: F = 0/1
16: end for
17: α′ ← α′ + Fε � Update Estimation
� Exploration Phase:

18: Stay on arm Ã1(p) for τ time steps
19: if F = 0 then
20: Record cumulative loss l̂Ã1(p)

(p)

21: ∀k ∈ [K], l̃k(p)← M
τ

l̂Ã1(p)
(p)

∑
A:k∈A∈K PA(p)

1{Ã1(p) = k}
22: else ∀k ∈ [K], l̃k(p)← 0
23: end if
24: end for

Algorithm 4 α-Unaware A2C2: Follower
Input: M, K, T , index m
1: Initialize: α estimation: α′ ← 0; error flag: F← 0; exploration

set: S ← ∅
2: for p = 1, 2, ... do

3: τ ← 
M 2
3 K− 1

3 log(K)− 1
3 T

2+α′
3 �

4: η←
√

log
(K
M
)
τ/MKT; ξ ← 1−α′

2 ; F← 0
� Communication Phase:

5: msgm ← Receive
(
h(T, α′)

)

6: S ← eDecoder
(
msgm, h(T, α′)

) � Receive Assignment
7: Randomly choose in S for Ãm(p)
8: F← 1{|S| > 1} � Comm Error or not
9: for q = 1, 2, . . . , N(ξ) do

10: msgF ← rEncoder
(
F, h(T, α′)

)

11: Send(1, msgF) � Uplink: F = 0/1
12: msgF ← Receive

(
h(T, α′)

)

13: F← rDecoder
(
msgF, h(T, α′)

) � Downlink: F = 0/1
14: end for
15: α′ ← α′ + Fε � Update Estimation
� Exploration Phase:

16: Stay on arm Ãm(p) for τ time steps
17: end for

in the regret analysis, this seemingly naive estimation works
very well.

Error-Detection Repetition Code: The aforementioned esca-
lation mechanism to estimate α relies on knowing when
communication failure happens, which is non-trivial. This
leads to the second idea of utilizing a special kind of error-
detection code for the Z-channel, called the constant weight
code [39]. Codewords in one constant weight code share
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Fig. 5. Example of one communication phase and error-detection coding
with M = 2, K = 3 and h(T, α′) = 3.

the same Hamming weight, which enables error detection.
As noted in [39], a constant weight code can detect any
number of asymmetric errors, and the maximal number of
constant-weight codewords of length n can be attained by
taking all codewords of weight 
 n

2� or � n
2�. Thus, codeword

length of O(log(K)) is theoretically sufficient to enable a
constant-weight code with O(K) codewords.6

To facilitate the discussion, a particular kind of constant
weight code is adopted. As shown in Fig. 5, while trans-
mitting arm k’s index from the leader, it is represented by
a bit sequence of length K in which the k-th bit is 1 while all
other bits are 0. Then, each bit of this sequence is repeated
h(T, α′) = �(Tα′) times. Thus, all the codewords share the
weight of h(T, α′). The resulting coded bit sequence is then
transmitted with forced collisions. Upon receiving, the entire
bit string is divided into K blocks and each block is processed
separately. The decoder outcome S is the (possibly multiple)
indices of the blocks that have all-ones.

This is a very effective error detection method because,
based on the property of the Z-channel, the source index
k is always decoded correctly. Thus, if the decoder outputs
more than one indexes, there must be a communication error
(example ‘F’ in Fig. 5), meaning the current communica-
tion protocol with α′ is not strong enough to overcome the
attacks. Otherwise, there is only one index as the decoder out-
put, which means the communication is successful (example
‘S’ in Fig. 5). This suggests that it is sufficient to main-
tain the current estimation α′. Once α′ = vε > α, we
have h(T, α′) = �(Tα′) = ω(W(T)), which means there
will be no more communication errors (asymptotically) and
α′ can be used for the remainder of time slots. Functions
eEncoder() an eDecoder() are used in the algorithms
for the corresponding error-detection encoder and decoder,
respectively.

Synchronization With Randomized Length: Error-detection
repetition code allows each follower to decide whether the α-
estimation needs to be updated. However, the leader does not
have access to this information and such estimation across
players may not be synchronized, which poses a significant
challenge that calls for communication for synchronization.
Note that unlike communications for arm assignment, not all
errors in this procedure are equally bad. The worst case during

6This observation can be verified by invoking the Stirling’s formula: n! ≈√
2πn( n

e )n.

synchronization is uneven attacks: attacks that happen only on
a subgroup of players, i.e., some players receive incorrect sig-
nals and update the α estimation, while the others do not. On
the other hand, if all players receive wrong signals simultane-
ously, they are still synchronous because they all will increase
α′ to the next value.

To solve this problem, we return to the fundamental tech-
nique of (single-player) adversarial bandits and introduce
randomness to the synchronous procedure. After communi-
cation of arm assignment in each round, the followers report
to the leader whether communication errors occurred in this
round at the same time. The followers send bit 1 representing
error and bit 0 representing no error with the same error-
correction repetition code of length h(T, α′). Borrowing the
terminology from wireless communications, this process is
referred to as ‘uplink’, and as long as one follower has com-
munication errors, the leader can correctly receive bit 1 (signal
for updating). The uplink is robust to the attacks since there
is only one receiver (the leader); even if an attack is success-
ful, the need for updating is still conveyed correctly. After the
uplink, if bit 1 (no matter from followers or the adversary) is
received by the leader, she sends back bit 1 to every follower;
otherwise, bit 0 is sent. This is called ‘downlink’.7 If bit 1 is
sent, all the followers receive it correctly over the Z-channel.
However, in the case of bit 0, uneven attacks on partial fol-
lowers may happen, which leads to a failed synchronization.
To keep synchronization successful with a high probability,
the ‘uplink-downlink’ procedure keeps iterating for a random
number of rounds N(ξ), which is generated by a shared ran-
domness source among players8 and uniformly distributed in
[0, 
Tξ �]. If the follower detects communication errors during
the assignment or receives bit 1 in the preceding downlink, she
keeps sending bit 1 to the leader in the following uplink cycles
until the procedure ends. For this protocol, the adversary has to
exactly attack the last round of downlink to destroy synchro-
nization, since attacks at other rounds are broadcasting. As
analyzed in Section VII, this procedure with a carefully cho-
sen ξ = 1−α′

2 (which changes with α′) is crucial in maintaining
a sub-linear regret.

In addition to updating the estimation, the synchronization
also plays an important role in maintaining unbiased loss esti-
mations. With communication errors, potential collisions may
happen on the assigned arm of the leader, thus an unbiased
estimation is impossible if the leader uses the observed rewards
of this round as feedback. The algorithm allows the leader to
only use collected cumulative rewards when the signals from
followers indicate correct communications.

With full details given in Algorithms 3 and 4, we offer a
summary overview of the algorithmic structure of α-unaware
A2C2 as follows.

7Note that ‘uplink’ denotes that followers communicate to the leader, while
‘downlink’ denotes the opposite direction, i.e., the leader communicates to the
followers.

8Specifically, we can assume that players have access to a shared random
seed in advance, e.g., the starting time of the game, and then use this random
seed to generated N(ξ) for later synchronizations.
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• Step I (Meta-Arm Selection): With the arm assignment
policy specified in Section IV-A, a meta-arm is chosen
by the leader;

• Step II (Communication Phase for Arm Assignment): The
leader encodes the indices of the chosen arms with the
error-detection code. Then, she informs each follower of
her assigned arm by implicitly communicating the coded
arm index. Each follower decodes the received message,
and detects whether a communication error has occurred.

• Step III (Communication Phase for Synchronization):
A random length of “uplink-downlink” iteration is per-
formed, which composes of the synchronization pro-
cedure. After synchronization, each player updates the
estimation of the attackability parameter α′.

• Step IV (Exploration Phase): The players pull the
assigned arms for a certain duration. The leader counts
the cumulative losses which will be used by the loss
estimators.

Similar structures also apply to the previously discussed
α/β-aware A2C2 algorithms by removing the communication
phase for synchronization. For the β-unaware A2C2 algorithm,
detailed changes are discussed in the next subsection.

B. β-Unaware

Similar ideas of the previous design can be applied to the β-
unaware setting, and the resulting β-unaware A2C2 algorithm
is presented in Appendix F. Some important differences to
α-unaware A2C2 are explained in this subsection.

Unlike the α-estimation starting from α′ = 0, the estimation
β ′ starts with 1

4 as analyzed in Section VII. In each com-
munication phase, the arm assignment is similarly encoded
with the error-detection code but the codeword length for each
bit is adjusted to k(T, ν′) = �(Tν′), where ν′ = 4β ′−1

3 . The
increased coding rate is due to the same reason described in
Section V-B, i.e., a certain amount of communication errors
are tolerable within the global attackability bound.

As for the feedback from the followers, two different uplink
operations are performed: one to maintain the unbiased loss
estimations and the other to keep players synchronized with
the estimated β ′. First, after each arm assignment, followers
immediately notify the leader of communication errors for her
to maintain an unbiased loss estimation. This uplink does not
indicate the need of updating β ′ since β ′ is an estimation of
the overall budget and there is no following downlink. Since
communication errors in this uplink can only influence the
subsequent exploration phase, it is performed with a repeti-
tion code of length k(T, ν′) = �(ν′). Then, for the update of
β ′, each player keeps counting the overall number of attacks
on her communication arm and reports to the leader when the
estimated budget is exceeded. To reduce the communication
burden, the update of β ′ and the synchronization procedure
is performed only at potential updating time slots rather than
after each communication phase. Specifically, similar itera-
tions of uplink and downlink for synchronization happen every

Tβ ′/k(T, ν′)� phases, with length k(T, β ′) = �(Tβ ′) in each
round and a random number of rounds N(ξ) ∈ [0, 
Tξ �].
The choice of length k(T, β ′) is because that synchronization

error may influence the entire remaining time slots. Similar
to analysis in Section VI-A, the adversary must attack exactly
the last round of synchronization to succeed in breaking the
coordination among players.

VII. PERFORMANCE ANALYSIS

This section is devoted to the theoretical analyses for all
proposed A2C2 algorithms. Detailed proofs can be found in
Appendices C to F.

α/β-Aware: The regret of α-aware A2C2 and β-aware
A2C2 algorithms are first presented in Theorems 1 and 2,
respectively.

Theorem 1 (α-Aware): With τ =

M 2

3 K− 1
3 log(K)

1
3 T

1+2α+2ε
3 �, η =

√
log

(K
M

)
τ/MKT , the

expected regret of α-aware A2C2 algorithm is bounded by

E[R1(T)] ≤ O
(

M
4
3 K

1
3 log(K)

2
3 T

2+α+ε
3

)
,

where ε > 0 is an arbitrarily small constant.
Theorem 2 (β-Aware): With τ = 
K 1

3 log(K)− 1
3 Tmax{β, 1

3 }�,
η =

√
log

(K
M

)
τ/MKT , ν = max{ 3β−1

2 , 0}, the expected regret
of β-aware A2C2 algorithm is bounded by

E[R2(T)] ≤ O

(
M2K

2
3 log(K)

1
3 T

max
{

1+β
2 , 2

3

})
.

It is worth noting that for β ≤ 1
3 , we have ν = 0 which

means there is no need for coding at all. Another note is that
for α = 0 or β ≤ 1

3 , the known regret in collision-sensing

setting O(T
2
3 ) [12] is recovered. When α = 1 or β = 1,

which means W(T) = �(T) or V(T) = �(T), the adver-
sary can asymptotically attack all time slots to prevent any
communication, and thus our regret becomes O(T).

α/β-Unaware: Without knowledge of the attackability, the
performance of α-unaware A2C2 and β-unaware A2C2 algo-
rithms are guaranteed in Theorems 3 and 4, and analyzed
subsequently.

Theorem 3 (α-Unaware): With τ = 
M 2
3 K− 1

3 log(K)− 1
3

T
2+α′

3 �, η =
√

log
(K

M

)
τ/MKT and ξ = 1−α′

2 under the estima-
tion α′, the expected regret of the α-unaware A2C2 algorithm
is bounded by

E[R3(T)] ≤ O
(

M
4
3 K

1
3 log(K)

1
3 T

5+α+ε
6

)
,

where ε > 0 is an arbitrarily small constant.
Theorem 4 (β-Unaware): With τ = 
K− 1

3 log(K)− 1
3

T
1+2β′

3 �, η =
√

log
(K

M

)
τ/MKT , ξ = 1+2β ′

3 and ν′ = 4β ′−1
3

under estimation β ′ starting from 1
4 , the expected regret of the

β-unaware A2C2 algorithm is bounded by

E[R4(T)] ≤ O

(
M2K

1
3 log(K)

1
3 T

max
{

2+β+ε
3 , 3

4

})
,

where ε > 0 is an arbitrarily small constant.
Similar to the β-aware case, we have ν′ = 0 for β ≤ 1

4 in
the β-unaware A2C2 algorithm, which indicates there is no
need of coding for assigning arms and reporting communica-
tion errors. Compared with Theorem 1, the lack of knowledge
of α worsens the regret by a factor of O(T

1−α
6 ) in Theorem 3.
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Similarly, the lack of knowledge of β degrades the regret by
O(T

1−β
6 ). It is also worth noting that Theorems 2 and 4 provide

better dependencies on T than Theorems 1 and 3, respec-
tively, which reinforces the intuition that the local attackability
parameter α in Corollary 1 is more stringent than the global
attackability parameter β in Corollary 2.

Compared with the regret of O(MK
3
2 T1− 1

2M ) in [5], it can
be observed that the regret results of A2C2 have an exponen-
tial dependence on the attackability rather than the number of
players M, which could be an advantage while dealing with a
large number of players. From another perspective, these two
different dependencies reveal two orthogonal “dimensions of
hardness” in the no-sensing adversarial MP-MAB problem:
multiple players and attackability. As no information sharing
among players is utilized in [5], the coordination is limited
and the difficulty of the problem grows exponentially with the
number of players. In our work, forced collisions are used
for communications and coordination among players is estab-
lished. As a result, the regret shifts the exponential dependence
from number of players (M) to attackability (α or β), and the
dependence on M is only a multiplicative factor.

A. Proof Sketch: α-Unaware

Regret of the α-unaware A2C2 algorithm can be decom-
posed as R3(T) = Rexpl

3 (T) + Rcomm
3 (T) + Rsync

3 (T), corre-
sponding to the exploration regret, communication regret, and
synchronization error regret, respectively. The remaining of
this subsection is devoted to a brief discussion of each regret
term in the decomposition and its corresponding upper bound.

First, the exploration regret Rexpl
3 (T) can be further divided

into two parts depending on whether the preceding commu-
nication phase is successful or not. The first part has a regret
caused by exploration without collision. The second part is
caused by potential collisions due to the failed communica-
tions, which only occur with an underestimated attackability.
Lemma 1 presents an upper bound for the overall exploration
regret.

Lemma 1: Denoting ζ = 1{successful preceding
communication}, the expected exploration regret of the
α-unaware A2C2 algorithm is bounded by:

E

[
Rexpl

3 (T)
]
= E

[
Rexpl

3 (T|ζ = 1)
]
+ E

[
Rexpl

3 (T|ζ = 0)
]

≤ O
(

M
4
3 K

1
3 log(K)

1
3 T

5+α+ε
6

)
.

The communication regret of α-unaware A2C2 consists of
two parts: the first from arm assignments and the second from
synchronizations, which can be bounded as follows.

Lemma 2: The expected communication regret of α-
unaware A2C2 is bounded by

E
[
Rcomm

3 (T)
] ≤ O

(
M

4
3 K

1
3 log(K)

1
3 T

5+α+ε
6

)
.

Finally, the regret Rsync
3 (T) caused by the risk of losing

synchronization during updates is bounded in the following
lemma, where the worst case is assumed such that linear regret
is caused by collisions. Note that this term is unique in the
attackability-unaware setting as there is no synchronization
performed in the attackability-aware setting.

Lemma 3: The expected regret caused by potential synchro-
nization errors of α-unaware A2C2 is bounded by:

E
[
Rsync

3 (T)
] ≤ O

(
M

1
3 K

1
3 log(K)

1
3 T

5+α+ε
6

)
.

Combining Lemmas 1 to 3, the overall regret in Theorem 3
is proved. Note that all three component regret bounds share
the same order of T and similar factors of M and K, which is
not a coincidence. As the analysis in Appendix E shows, these
three terms can be further decomposed based on the estima-
tion α′, and they are all dominated by the elements associated
with the final (largest) estimation. Optimizations over τ and
ξ are carried out based on these elements, which carefully
control the regret associated with the communication error
and the synchronization error to avoid one component regret
dominating others.

B. Proof Sketch: β-Unaware

The regret of β-unaware A2C2 can be decomposed as
R4(T) = Rexpl

4 (T) + Rerr
4 (T) + Rcomm

4 (T) + Rsync
4 (T), which

refers to the exploration regret with successful preceding com-
munication phases, exploration regret with failed preceding
communication phases, communication regret, and synchro-
nization error regret, respectively. The decomposed regret
components Rexpl

4 (T), Rcomm
4 (T) and Rsync

4 (T) are similar to the
corresponding components in the proof of α-unaware A2C2,
which are bounded in Lemmas 4 to 6.

Lemma 4: The expected regret caused by explorations
after successful communications in β-unaware A2C2 is
bounded by:

E

[
Rexpl

4 (T)
]
≤ O

(
MK

1
3 log(K)

1
3 T

max
{

2+β+ε
3 , 3

4

})
.

Lemma 5: The expected communication regret of β-
unaware A2C2 is bounded by:

E
[
Rcomm

4 (T)
] ≤ O

(
M2K

1
3 log(K)

1
3 T

max
{

2+β+ε
3 , 3

4

})
.

Lemma 6: The expected regret caused by potential synchro-
nization errors of β-unaware A2C2 is bounded by:

E
[
Rsync

4 (T)
] ≤ O

(
MK

1
3 log(K)

1
3 T

max
{

2+β+ε
3 , 3

4

})
.

Since β-unaware A2C2 is designed to be capable of han-
dling a certain amount of communication errors, the explo-
ration regret associated with failed communications (i.e.,
Rerr

4 (T)) is separately analyzed, as opposed to being lump
summed into one exploration loss as in the local attackability
analysis.

Lemma 7: The expected regret caused by explorations after
failed communications in β-unaware A2C2 is bounded by:

E
[
Rerr

4 (T)
] ≤ O

(
M2K

1
3 log(K)−

1
3 T

max
{

2+β+ε
3 , 3

4

})
.

In addition to similar optimizations over τ and ξ as in the
analysis of α-unaware-A2C2, the choice of ν′ is also optimized
so that the exploration regret caused by the global attackability,
i.e., E[Rerr

4 (T)], does not dominate the total regret.

Authorized licensed use limited to: Penn State University. Downloaded on September 15,2021 at 15:00:08 UTC from IEEE Xplore.  Restrictions apply. 



526 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

VIII. DISCUSSION

We discuss some algorithmic details and a few directions
for potential future research.

Sublinear Regrets: As shown in Theorems 1 to 4, the regrets
of the A2C2 algorithms can be sublinear as long as the adver-
sary cannot (asymptotically) attack all time slots, i.e., α < 1
or β < 1, which is similar to the no-sensing stochastic setting
that sublinear regrets can be achieved only when μmin > 0.
Further, as stated in Section III-B, it is possible that β = 1
while α < 1, and in such cases, α-(un)aware A2C2 can still
achieve a sublinear regret.

The Choice of ε: With an unknown attackability, i.e., α or
β-unaware A2C2, ε can be an arbitrarily small constant in
the asymptotic case. In the finite case, this choice influences
both the convergence of estimation and the regret behavior.
A larger ε can let the algorithm escalate faster but with a
potential overestimation and a larger regret. With a smaller ε,
although the escalation is slower, better performance can be
achieved with a more precise estimation.

Implicit Communication of Loss Information: As stated in
Section IV-A, the choices of meta-arms in A2C2 algorithms
are only based on observations of the leader. While this simpli-
fies communications, an open problem is how to transmit the
collected loss information between players through collisions.
The methods of arm index sharing proposed in this work is
a starting point, but more careful designs may further reduce
the regret, e.g., quantizing the losses.

Combining A2C2 and [5]: Without a mature method of
statistics sharing, another idea to increase the information
usage is to have multiple leaders instead of one, which alludes
to a hybrid algorithm of this work and [5]. Specifically, each
leader with a certain number of followers can form as a meta-
player. Among the meta-players, the method from [5] can be
adopted since it does not require information sharing. Within
each meta-player, A2C2 algorithms can be performed to let
the leader coordinate the followers. It would be interesting to
see a rigorous analysis of this hybrid algorithm, especially its
dependence on M.

Dynamic Setting: While this work assumes the players are
fixed in the entire game, it is an interesting (but also very
challenging) open problem to consider the dynamic setting,
where players can enter and leave the game freely. Some
attempts have been made in the stochastic MP-MAB [3],
[13] and the collision-sensing adversarial MP-MAB [14],
while the no-sensing adversarial dynamic environment remains
largely open. For the attackability-aware setting (i.e., α/β-
aware A2C2), algorithmic extensions are relatively easy since
the new players can be synchronized with the already existing
players using the knowledge of attackability, but the theoreti-
cal analysis for this case may be difficult. If the new players do
not have information of the current estimation of attackability
(i.e., α/β-unaware A2C2), this extension becomes difficult.
With some constraint on the frequency of players entering
or leaving the game, it is conceivable to run α/β-unaware
A2C2 independently on each of these intervals, which is sim-
ilar to [13]. Nevertheless, its regret analysis would be highly
nontrivial.

Fig. 6. Regret comparison where the loss generations are non-stationary in
the entire horizon.

IX. EXPERIMENTS

More numerical illustrations comparing A2C2 and the algo-
rithm in [5] are provided in Appendix G. The A2C2 algorithms
are also empirically evaluated against a naive adversarial algo-
rithm as well as the EC-SIC design in [9], which is a stochastic
no-sensing algorithm. In the naive adversarial algorithm, each
player individually runs EXP3 [33] using her own observed
loss information, which results in M parallel EXP3 algorithms.
The EC-SIC algorithm is the state-of-the-art stochastic no-
sensing algorithm, which also utilizes error-correction coding
but is confined to stochastic loss distributions. The testing envi-
ronments have M = 4 and K = 10 (same as the numerical
illustrations in Fig. 2) and the step-size parameter ε is set as
0.01. The following figures are plotted by running the algo-
rithms under different time horizons and the regret result of
each horizon is the average over 50 runs.

The first loss sequence for evaluation is generated simi-
lar to [14]. Specifically, for arm k, a random variable ck is
first sampled from the uniform distribution on [0.2, 0.9], then
lk(t) is drawn from the uniform distribution on [ck, 0.9]. This
results in a non-stationary environment. After the generation,
to explicitly characterize the adversarial attackability, contigu-
ous loss-1 sequences of length 50 are randomly spread in
the whole loss sequence to replace the originally generated
losses. Fig. 6 illustrates the performance of α-unaware and
β-aware A2C2s against the other two benchmarks. It can be
observed that α-unaware and β-aware A2C2s outperform the
baselines, and β-aware A2C2 has the best performance, which
corroborates the regret analysis.

The second loss sequence is generated by shifting the
mean values of the stochastic loss distribution at a chang-
ing point, which is similar to [12]. Specifically, before
T ′ = 4 × 105, the loss expectations are [ak]K

k=1 =
[0.2, 0.2, 0.2, 0.2, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4], where arms 1−4
are better than the others, and the loss for each arm k is sam-
pled from the uniform distribution on [ak − 0.15, ak + 0.15].
Then, after T ′, some shifts happen to the loss expectations as
a1 = a4 = 0.8 and a5 = a6 = 0.2, thus arms 2, 3, 5, 6 now
generate lower losses. Then, contiguous loss-1 sequences of
length 50 are similarly spread into the whole loss sequences.
The results are reported in Fig. 7. It can be observed that
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Fig. 7. Regret comparison where the loss generations change at T ′ = 4×105

(labeled with the dotted red line).

while EC-SIC has the best performance at the beginning,
its performance quickly degrades after the changing point T ′
since it has already converged to the originally good arms,
some of which (arm 1 and 4) however become sub-optimal
afterwards. Although the performance of the two A2C2 algo-
rithms also fluctuate after the changing point, they quickly
adjust to the new environment and re-gain a sublinear regret
behavior.

X. CONCLUSION

This work made progress in the no-sensing adversarial
MP-MAB problem by incorporating implicit communication.
We have introduced the concept of attackability to cate-
gorize all possible adversaries from either a local view or
a global view, and designed Adversary-Adaptive Collision-
Communication (A2C2), a family of algorithms that can handle
known or unknown attackabilities. The algorithmic contri-
butions mainly came from several new tools in information
theory and communication theory, such as Z-channel model,
error-correction coding, (novel) error-detection repetition code,
and uplink-downlink communication with randomized length.
Theoretical analyses showed that the proposed algorithms
have attackability-dependent regrets, which eliminate the
exponential dependence on the number of players in the
state-of-the-art no-sensing adversarial MP-MAB research, and
revealed a new dimension of hardness, i.e., attackability,
that compliments the hardness associated with the number
of players.

APPENDIX A
SPECIAL CASES: M = 1 AND COLLISION-SENSING

The regrets from communications, synchronization errors,
and explorations after failed communications do not exist for
M = 1 (single player); our result recovers O(T

1
2 ) in this spe-

cial case. The reason that the asymptotic regret in Theorems 1
to 4 cannot recover this special case is that we focus on the
scaling behavior, and thus the multiplicative factor M − 1 is
simplified to M in the ensuing analysis.

We further note that if the collisions can be perceived
by players, i.e., collision-sensing, there is no need for
error-correction/detecting coding, attackability estimation and

synchronization. In this case, the proposed algorithms recover
the collision-sensing algorithm in [12].

APPENDIX B
THE CENTRALIZED ALGORITHM

For the completeness of this work, we first provide a regret
analysis of the algorithm described in Section IV-A, which is
based on [12].

Theorem 5: The exploration regret of the centralized algo-

rithm with η =
√

log
(K

M

)
/TKM described in Section IV-A has

a regret upper bound of:

E[Rc(T)] ≤ 2M
√

K log(K)T. (2)

Proof: First, we show that l̃A(t) =∑
k∈A l̃k(t) is an unbiased

estimation of the true loss from meta-arm A at time t, i.e.,
lA(t) =∑

k∈A lk(t). Denoting P(t) = {PA(t)}A∈K, we first show
that for any arm k ∈ [K], l̃k(t) is an unbiased estimation of
lk(t) as

E

[
l̃k(t)|P(t)

]
(i)= M

lk(t)∑
A:k∈A∈K PA(t)

P(k = A1(t))

= M
lk(t)∑

A:k∈A∈K PA(t)
P(k ∈ A(t))

× P(k = A1(t)|k ∈ A(t))
(ii)= M

lk(t)∑
A:k∈A∈K PA(t)

∑

A:k∈A∈K
PA(t)

1

M

= lk(t),

where equations (i) and (ii) are from the definitions of l̃k(t)
and PA(t), respectively. From the law of total expectation, we
can derive E[l̃k(t)] = E[E[l̃k(t)|P(t)]] = lk(t). Finally, with
l̃A(t) =∑

k∈A l̃k(t), by the linearity of expectation, l̃A(t) is an
unbiased estimation of lA(t).

With the standard EXP3 regret guarantees, the centralized
regret [12], [33] is bounded as:

E[Rc(T)] ≤ η

T∑

t=1

∑

A∈K
E

[
PA(t)E

[(
l̃A(t)

)2|P(t)

]]
+ log

(K
M

)

η
.

The term E[(l̃A(t))2|P(t)] can be simplified as:

E

[
(l̃A(t))2|P(t)

]
= E

⎡

⎣
(
∑

k∈A

l̃k(t)

)2

|P(t)

⎤

⎦

=
∑

j,k∈A

E

[
l̃k(t)l̃j(t)|P(t)

]

(i)=
∑

k∈A

E

[(
l̃k(t)

)2|P(t)

]

=
∑

k∈A

(
Mlk(t)∑

B:k∈B∈K PB(t)

)2

P(k = A1(t))

=
∑

k∈A

(
Mlk(t)∑

B:k∈B∈K PB(t)

)2

P(k ∈ A(t))

·P(k = A1(t)|k ∈ A(t))

= M
∑

k∈A

(lk(t))2
∑

B:k∈B∈K PB(t)
,
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where equation (i) is because l̃k(t) �= 0 holds for at most one
arm. With this result, we get:

E[Rc(T)] ≤ η

T∑

t=1

∑

A∈K
E

[

PA(t)M
∑

k∈A

(lk(t))2
∑

B:k∈B∈K PB(t)

]

+ log
(K

M

)

η

= Mη

T∑

t=1

E

[
∑

A∈K
PA(t)

∑

k∈A

(lk(t))2
∑

B:k∈B∈K P(t)

]

+ log
(K

M

)

η

= Mη

T∑

t=1

E

⎡

⎣
∑

k∈[K]

(lk(t))2 ∑
A:k∈A∈K PA(t)

∑
B:k∈B∈K PB(t)

⎤

⎦

+ log
(K

M

)

η

= Mη

T∑

t=1

E

⎡

⎣
∑

k∈[K]

(lk(t))
2

⎤

⎦+ log
(K

M

)

η

(i)≤ MKTη + log
(K

M

)

η

(ii)= 2
√

MKT log
(K

M

)

≤ 2M
√

KT log(K),

where inequality (i) is the result of lk(t) ≤ 1, and equation (ii)

is from η =
√

log
(K

M

)
/MKT .

The following result establishes a regret bound for the
blocked version of the centralized algorithm, which is
important for the ensuing analysis in the decentralized
setting.

Theorem 6 [12], [35]: Let � be a bandit algorithm with
an expected regret upper bound of R(T). Then the blocked
version of � with a block size τ has a regret upper bound of
τR(T/τ)+ τ .

In the multi-player case, the last term τ , which represents
the additional regret when T is not divisible by τ , is converted
into Mτ .

APPENDIX C
α-AWARE

The overall regret of α-aware A2C2 can be decomposed as:
R1(T) = Rexpl

1 (T) + Rcomm
1 (T), with Rexpl

1 (T) and Rcomm
1 (T)

referring to the exploration and communication regret,
respectively.

The local attackability W(T) satisfies W(T) ≤ O(Tα).
Intuitively, the length of repetition code in α-aware A2C2 is
h(T, α + ε) = �(Tα+ε). It is implied that h(T, α + ε) =
ω(W(T)), which means asymptotically no successful attack
can possibly happen and communication phases are guaran-
teed to be successful. With no communication phase in the
centralized algorithm, the upper bound in Eqn. (2) can also
serve as an upper bound for the exploration regret of α-aware
A2C2 after successful communications with Theorem 6. Thus,

the exploration regret Rexpl
1 (T) can be bounded in the following

lemma.
Lemma 8: The exploration regret of α-aware A2C2

satisfies:

E

[
Rexpl

1 (T)
]
≤ O

(
M
√

K log(K)Tτ
)
.

Proof: Since h(T, α + ε) = �(Tα+ε), there exist m1 >

0, m2 > 0, and T0 such that, ∀T > T0, m1Tα+ε ≤ h(T, α +
ε) ≤ m2Tα+ε . Furthermore, since W(T) = O(Tα), ∃n > 0
and T1 such that ∀T > T1, |W(T)| ≤ nTα . Thus, ∃T∗ =
max{T0, T1, (n/m1)

1
ε }, h(T, α+ε) ≥ m1Tα+ε > nTα ≥ W(T),

∀T > T∗, which means communications are guaranteed to be
successful for T > T∗. Thus, all explorations are collision-free.
Denote Te = T − Tc, where Te is the overall exploration time
and Tc is the overall communication time. With Theorem 6
and Eqn. (2), we have that ∀T > T∗,

E

[
Rexpl

1 (T)
]
≤ τRc(Te/τ)+Mτ

= 2M
√

K log(K)Teτ +Mτ

≤ 3M
√

K log(K)Tτ ,

and thus E[Rexpl
1 (T)] ≤ O(M

√
K log(K)Tτ).

There are at most 
T
τ
� rounds communication, while each

round contains (M− 1)
log2(K)�h(T, α+ ε) time slots. Thus,
the communication regret can be bounded as follows.

Lemma 9: The communication regret of α-aware A2C2
satisfies:

E
[
Rcomm

1 (T)
] ≤ M(M − 1)

⌈
log2(K)

⌉
T/τ�h(T, α + ε)

≤ O
(

M2 log(K)T1+α+ε/τ
)
.

With Lemmas 8 and 9, Theorem 1 can be proven via solving
the optimization problem of

min
τ∈N max

{
O
(

M
√

K log(K)Tτ
)
, O

(
M2 log(K)

T1+α+ε

τ

)}

which leads to τ = 
M 2
3 K− 1

3 log(K)
1
3 T

1+2α+2ε
3 �.

APPENDIX D
β-AWARE

The same error detection code in Section VI-A is also used
in the β-aware A2C2 algorithm. However, it is not used for the
update of estimations, but rather only to maintain an unbiased
loss estimation. The β-aware A2C2 algorithm is presented in
Algorithms 5 (leader) and 6 (follower).

The overall regret of β-aware A2C2 can be decomposed
as R2(T) = Rexpl

2 (T) + Rerr
2 (T) + Rcomm

2 (T), where Rexpl
2 (T)

and Rerr
2 (T) refer to the exploration regret after successful and

failed communications, respectively, and Rcomm
2 (T) character-

izes the communication regret. With Theorem 6 and Eqn. (2),
Rexpl

2 (T) can be upper bounded, as stated in the following
lemma.

Lemma 10: The exploration regret of β-aware A2C2 after
successful communication satisfies:

E

[
Rexpl

2 (T)
]
≤ O

(
M
√

K log(K)Tτ
)
.
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Algorithm 5 β-Aware A2C2: Leader
Input: M, K, T

1: Initialize: τ ← 
K 1
3 log(K)− 1

3 Tmax{β, 1
3 }�; η ←√

log
(K
M
)
τ/MKT; ν ← max

{
3β−1

2 , 0
}

; F← 0
2: for p = 1, 2, ... do
3: ∀A ∈ K, L̃A(p)←∑p−1

v=1
∑

k∈A l̃k(v)

4: ∀A ∈ K, PA(p)← e−ηL̃A(p)

∑
J∈K e−ηL̃J (p)

� Loss estimator

5: Choose A(p) = {A1(p), . . . , AM(p)} with PA(p)

6: Randomly permute A(p) into Ã(p)
� Communication Phase:

7: ∀m ∈ [M], msgm ← eEncoder(Ãm(p), k(T, ν))

8: ∀m ∈ [M], Send
(
m, msgm

) � Send Assignment
9: msgF ← Receive(k(T, ν))

10: F← rDecoder
(
msgF, k(T, ν)

)

� Exploration Phase:
11: Stay on arm Ã1(p) for τ time steps � Exploration
12: if F = 0 then
13: Record cumulative loss l̂Ã1(p)

(p)

14: ∀k ∈ [K], set l̃k(p)← M
τ

l̂Ã1(p)
(p)1{Ã1(p)=k}

∑
A:k∈A∈K PA(p)

15: else ∀k ∈ [K], l̃k(p)← 0
16: end if
17: end for

Algorithm 6 β-Aware A2C2: Follower
Input: M, K, T , index m

1: Initialize: τ ← 
K 1
3 log(K)− 1

3 Tmax{β, 1
3 }�; η ←√

log
(K
M
)
τ/MKT; ν ← max

{
3β−1

2 , 0
}

; F← 0; S ← ∅
2: for p = 1, 2, ... do
� Communication Phase:

3: msgm ← Receive(k(T, ν))
4: S ← eDecoder

(
msgm, k(T, ν)

) � Receive Assignment
5: Randomly choose in S for Ãm(p)
6: F← 1{|S| > 1}
7: msgF ← rEncoder(k(T, ν))
8: Send

(
1, msgF

) � Feedbak Communication Error
� Exploration Phase:

9: Stay on arm Ãm(p) for τ time steps � Exploration
10: end for

Proof: Denote Ts = T − Tc − Tf , where Tf is the overall
exploration time after failed communications and Tc is the
overall communication time. Since ∀t ∈ Ts, all explorations
are collision-free, and the same combination of Theorem 6
and Eqn. (2) leads to the following upper bound:

E

[
Rexpl

2 (T)
]
≤ τRc(Ts/τ)+Mτ

= 2M
√

K log(K)Tsτ +Mτ

≤ 3M
√

K log(K)Tτ ,

which means E[Rexpl
2 (T)] ≤ O(M

√
K log(K)Tτ).

The overall number of loss ones on one arm, i.e., the
global attackability, is V(T) ≤ O(Tβ). To succeed in attack-
ing one communication phase, at least k(T, ν) = �(Tν) of
loss ones are required. Thus, the overall number of success-
ful attacks is no more than MV(T)

k(T,ν)
≤ O(MTβ−ν) times . The

second term Rerr
2 (T) in the overall regret can be bounded

as follows.

Lemma 11: The exploration regret caused by failed com-
munications of β-aware A2C2 satisfies:

E
[
Rerr

2 (T)
] ≤ O

(
M2Tβ−ντ

)
.

Proof: Since k(T, ν) = �(Tν), there exist m1 > 0, m2 > 0
and T0 such that, ∀T > T0, m1Tν ≤ k(T, ν) ≤ m2Tν . Since
V(T) = O(Tβ), ∃n > 0 and T1 such that, ∀T > T1, |V(T)| ≤
nTβ . Thus, ∃T∗ = max{T0, T1}, V(T)

k(T,ν)
≤ n

m1
Tβ−ν, ∀T > T∗.

With a loss of at most Mτ caused by each successful attack,
we have that ∀T > T∗,

E
[
Rerr

2 (T)
] = M

V(T)

k(T, ν)
·Mτ ≤ M2 n

m1
Tβ−ντ.

Thus, E[Rerr
2 (T)] ≤ O(M2Tβ−ντ ).

With at most 
T/τ� rounds of communications consisting
of M − 1 times of arm assignment and one time error report,
the communication regret can be bounded as follows.

Lemma 12: The communication regret of β-aware A2C2
satisfies:

E
[
Rcomm

2 (T)
] ≤ M(M − 1)K
T/τ�k(T, ν)+M
T/τ�k(T, ν)

≤ O
(

M2KT1+ν/τ
)
.

With Lemmas 10 to 12, Theorem 2 can be proven via
solving the following optimization problem:

min
τ∈N,ν≥0

max
{

O
(

M
√

K log(K)Tτ
)
,

O
(

M2Tβ−ντ
)
, O

(
M2KT1+ν/τ

)}

which leads to τ = 
K 1
3 log(K)− 1

3 Tmax{β, 1
3 }� and ν =

max{ 3β−1
2 , 0}.

APPENDIX E
α-UNAWARE

Since multiple estimations are required before success-
ful communications can be guaranteed, Rexpl

3 (T) consists of
not only the exploration regret Rexpl

3 (T|ζ = 1) after suc-
cessful communication phases, but also explorations regret
Rexpl

3 (T|ζ = 0) after failed communications, which is differ-
ent from Rexpl

1 (T) in α-aware A2C2. The estimation α′ = jε
is denoted as αj for an integer j for simplicity. The overall
exploration time steps when αj is used as the α-estimation is
denoted as Te,j, and the corresponding τ and ξ with αj are
denoted as τj and ξj, respectively.

With the update, ∃v > 0, δ ∈ [0, ε), α ≤ α + δ ≤ αv =
vε ≤ α + ε. Since h(T, αv) = �(Tvε), ∃κ1 > 0, κ2 > 0 and
T0 such that, ∀T > T0, κ1Tvε ≤ h(T, αv) ≤ κ2Tvε . Since
W(T) = O(Tα), ∃n > 0 and T1 such that, ∀T > T1, |W(T)| ≤
nTα . It implies that W(T) ≤ nTα < κ1Tα+δ ≤ h(T, αv),
∀T > T∗ = max{T0, T1, (n/κ1)

1
δ }, which means ∀T > T∗,

the repetition code can overpower the local attacks, and thus
successful communications are guaranteed with αv. For a given
adversary sequence, ∀T > T∗, the update is assumed to stop
at αw = wε with w ≤ v.

Proof of Lemma 1: Denote Ts,j and Ts = ∑w
j=0 Ts,j ≤∑w

j=0 Te,j ≤ T as the length of exploration with successful
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preceding communications under estimation αj and in total,
respectively. The exploration under each estimation αj with
successful preceding communications can be viewed alone as
a bandit game with horizon Ts,j and block τj. Thus, by apply-
ing Theorem 6 to Eqn. (2), ∀T > T∗, the first term in the
exploration regret can be bounded as

E

[
Rexpl

3 (T|ζ = 1)
]
=

w∑

j=0

E

[
Rexpl

3

(
T|ζ = 1, α′ = αj

)]

≤
w∑

j=0

(
2M

√
K log(K)Ts,jτj +Mτj

)

(i)≤ 3(w+ 1)M
√

K log(K)Tsτw

≤ 3
√

2(v+ 1)M
4
3 K

1
3 log(K)

1
3 T

5+αv
6 ,

where inequality (i) is from that Ts,j ≤ Ts and τj is mono-
tonically increasing with j. Thus, E[Rexpl

3 (T)|ζ = 1] ≤
O(M

4
3 K

1
3 log(K)

1
3 T

5+α+ε
6 ).

The second term is caused by the potential collisions due
to failed communications with an underestimated attackability,
and ∀T > T∗, for the adversary given above, it takes w trials to
eliminate communication errors, and the trial with estimation
αj leads to a regret of Mτj. Thus, the second term can be
bounded as:

E

[
Rexpl

3 (T|ζ = 0)
]
=

w−1∑

j=0

E

[
Rexpl

3

(
T|ζ = 0, α′ = αj

)]

≤
w−1∑

j=0

Mτj

=
w−1∑

j=0

M

⌈
M

2
3 K−

1
3 log(K)−

1
3 T

2+αj
3

⌉

≤ 2M
5
3 K−

1
3 log(K)−

1
3 T

2+αv
3 .

Since αv ≤ 1, the first term dominates the second term as
2+αv

3 ≤ 5+αv
6 . Thus, the overall exploration regret can be

bounded as E[Rexpl
3 (T)] ≤ O(M

4
3 K

1
3 log(K)

1
3 T

5+α+ε
6 ).

Proof of Lemma 2: The communication regret consists of
that for arm assignment and synchronization under different
estimations. The arm assignment in each round consists of
(M− 1)Kh(T, αj) time slots while the synchronization has an

average length of Mh(T, αj)

Tξj�

2 . For the given adversary in
the proof above, ∀T > T∗, the overall communication regret
can be bounded as:

E
[
Rcomm

3 (T)
] ≤

w∑

j=0

⌈Te,j

τj

⌉

×
(

M(M − 1)Kh(T, αj)+M2h(T, αj)

Tξj�

2

)

Considering h(T, αj) = �(Tαj), ∀j = 0, 1, . . . , v, ∃fj,1 >

0, fj,2 > 0 and Tj,0 such that, ∀T > Tj,0, fj,1Tαj ≤ h(T, αj) ≤
fj,2Tαj . Thus, ∀j = 0, 1, . . . , v, ∃f1 ≤ minj{fj,1}, ∃f2 ≥
maxj{fj,2} and Tx > maxj{Tj,0} such that ∀T > Tx, f1Tαj ≤

h(T, αj) ≤ f2Tαj . Based on this, ∀T > max{T∗, Tx}, the
communication regret can be bounded as:

E
[
Rcomm

3 (T)
] ≤ 2

w∑

j=0

Te,j

τj

(
M2Kf2Tαj +M2f2Tαj Tξj

)

= 2
w∑

j=0

Te,jM
4
3 K

4
3 log(K)

1
3 f2T

αj−1
3

+ 2
w∑

j=0

Te,jM
4
3 K

1
3 log(K)

1
3 f2T

αj−1
6

≤ 2M
4
3 K

4
3 log(K)

1
3 f2T

2+αv
3

+ 2M
4
3 K

1
3 log(K)

1
3 f2T

5+αv
6 .

With αv < 1, we have E[Rcomm
3 (T)] ≤

O(M
4
3 K

1
3 log(K)

1
3 T

5+α+ε
6 ).

Proof of Lemma 3: Before completing the estimation of α′,
each communication for synchronization has a failure prob-
ability of 1


Tξ � , which in the worst case has a linear regret
MT . With a union bound for all communication phases with
estimation less than αw, we have:

E
[
Rsync

3 (T)
] ≤

w−1∑

j=0

⌈
Te,j

τj

⌉
1


Tξj�MT

≤ 2
w−1∑

j=0

Te,j

τj

1

Tξj
MT

≤ 2M
1
3 K

1
3 log(K)

1
3 T

5+α+ε
6 .

Thus, Lemma 3 can be obtained as E[Rsync
3 (T)] ≤

O(M
1
3 K

1
3 log(K)

1
3 T

5+α+ε
6 ).

APPENDIX F
β-UNAWARE

The β-unaware algorithm for the leader and followers are
presented in Algorithms 7 and 8, respectively. The following
proofs focus on β ≥ 1

4 , and the case of β ≤ 1
4 can be obtained

as a special case where the estimation β ′ is kept as 1
4 . Under

estimation β ′ = 1
4 + jε, denoted as βj for simplicity, similar

notations of Te,j, τj, ξj and νj are applied referring to the overall
time that the current estimation holds and the corresponding
parameters.

With the update, ∃v > 0, δ ∈ (0, ε], β + ε ≥ β ′ = βv >

β + δ ≥ β. Since k(T, βv) = �(T
1
4+vε), ∃κ1 > 0, κ2 > 0,

and T0 such that, ∀T > T0, κ1Tβ+δ ≤ κ1T
1
4+vε ≤ k(T, βv) ≤

κ2T
1
4+vε ≤ κ2Tβ+ε . With V(T) = O(Tβ), ∃n > 0, T1 so

that ∀T > T1, |V(T)| ≤ nTβ . We then have V(T) ≤ nTβ <

κ1Tβ+δ ≤ k(T, βv), ∀T > T∗ = max{T0, T1, (n/κ1)
1
δ }, which

means updating stops with βv. For a given adversary, ∀T > T∗,
the estimation is assumed to be completed as β ′ = βw =
1
4 + wε, where w ≤ v.

Proof of Lemma 4: Denote Ts = ∑w
j=0 Ts,j ≤ T as

the overall length of the exploration phases after success-
ful communications. The term Rexpl

4 (T) now consists of only
explorations after successful communications, which is again
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Algorithm 7 β-Unaware A2C2: Leader
Input: M, K, T
1: Initialize: β ′ ← 1

4 ; communication flag: F1, F2 ← 0; round
counter: R← 0; collision counter C← 0

2: for p = 1, 2, ... do

3: τ ← 
K− 1
3 log(K)− 1

3 T
1+2β′

3 �
4: η←

√
log

(K
M
)
τ/MKT; ξ ← 1+2β ′

3 ; ν′ ← 4β ′−1
3

5: F1 ← 0; R← R+ 1;
6: ∀A ∈ K, L̃A(p)←∑p−1

v=1
∑

k∈A l̃k(v)

7: ∀A ∈ K, PA(p)← e−ηL̃A(p)

∑
J∈K e−ηL̃J (p)

8: Choose A(p) = {A1(p), . . . , AM(p)} with PA(p)

9: Randomly permute A(p) into Ã(p)
� Communication Phase:

10: ∀m ∈ [M], msgm ← eEncoder(Ãm(p), k(T, ν′))
11: ∀m ∈ [M], Send(m, msgm) � Send Assignment
12: msgF1

← Receive(k(T, ν′))
13: F1 ← rDecoder(msgF1

, k(T, ν′)); � Uplink
14: C← C + F1k(T, ν′) � Count Attack

15: if R ≥
⌈

Tβ′
k(T,ν′)

⌉
then

16: F2 ← 1{C ≥ 
Tβ ′ �} � Update Point
17: for q = 1, 2, . . . , N(ξ) do
18: msgF2

← rEncoder
(
F2, k(T, β ′)

)

19: ∀m ∈ [M], Send(m, msgF2
) � Downlink

20: msgF2
← Receive(k(T, β ′))

21: F2 ← rDecoder(msgF2
, k(T, β ′)) � Uplink

22: end for
23: R← 0; β ′ ← β ′ + F2ε � Update
24: end if
� Exploration Phase:

25: Stay on arm Ã1(p) for τ time steps
26: if F1 = 0 then
27: Record cumulative loss l̂Ã1(p)

(p)

28: ∀k ∈ [K], set l̃k(p)← M
τ

l̂Ã1(p)
(p)1{Ã1(p)=j}

∑
A:k∈A∈K PA(p)

29: else ∀k ∈ [K], l̃k(p)← 0
30: end if
31: end for

bounded by Theorem 6 and Eqn. (2) as:

E

[
Rexpl

4 (T)
]
=

w∑

j=0

E

[
Rexpl

4

(
T|β ′ = βj

)]

≤
w∑

j=0

(
2M

√
K log(K)Ts,jτj +Mτj

)

≤ 3(v+ 1)M
√

K log(K)Tsτv

≤ 3(v+ 1)MK
1
3 log(K)

1
3 T

2+βv
3 .

Thus, we have E[Rexpl
4 (T)] ≤ O(MK

1
3 log(K)

1
3 T

2+β+ε
3 ).

Proof of Lemma 7: With the estimated βj, the adversary

at most attacks Dj = 2
 Tβj

k(T,νj)
� rounds on each arm before

updating, and each successful attack leads to a loss of at most

Mτj. With k(T, νj) = �(Tνj) = �(T
4βj−1

3 ), ∀j = 0, 1, . . . , w,

∃hj,1 > 0, ∃hj,2 > 0, ∃Tm,y, ∀T > Tj,0, hj,1T
4βj−1

3 ≤ k(T, νj) ≤
hj,2T

4βj−1
3 . Thus, ∀j = 0, 1, . . . , v, ∃h1 ≤ minj{hj,1}, ∃h2 ≥

maxj{hj,2}, ∃Ty ≥ maxj{Tj,0}, ∀T > Ty, h1T
4βj−1

3 ≤ k(T, νj) ≤

Algorithm 8 β-Unaware A2C2: Follower
Input: M, K, T , index m
1: Initialize: β ′ ← 1

4 ; communication flag: F1, F2 ← 0; round
counter: R← 0; collision counter C← 0

2: for p = 1, 2, ... do

3: τ ← 
K− 1
3 log(K)− 1

3 T
1+2β′

3 �
4: η←

√
log

(K
M
)
τ/MKT; ξ ← 2−2β ′

3 ; ν′ ← 4β ′−1
3

5: F1, F2 ← 0; R← R+ 1
� Communication Phase:

6: msgm ← Receive(k(T, ν′))
7: S ← eDecoder(msgm, k(T, ν′)) � Receive Assignment
8: Randomly choose in S for Ãm(p)
9: F1 ← 1{|S| > 1} � Communication Error

10: C← C + (|S| − 1)k(T, ν′) � Count Attack
11: msgF1

← rEncoder(F1, k(T, ν′))
12: Send(1, msgF1

) � Uplink

13: if R ≥
⌈

Tβ′
k(T,ν′)

⌉
then

14: F2 ← 1{C ≥ 
Tβ ′ �}
15: for q = 1, 2, . . . , N(ξ) do � Update Point
16: msgF2

← Receive(k(T, β ′)) � Downlink
17: F2 ← max{F2, rDecoder(msgF2

, k(T, β ′))}
18: msgF2

← rEncoder(F2, k(T, β ′))
19: Send(1, msgF2

) � Uplink
20: end for
21: R← 0; β ′ ← β ′ + F2ε; F2 ← 0 � Update
22: end if
� Exploration Phase:

23: Stay on arm Ãm(p) for τ time steps
24: end for

h2T
4βj−1

3 . It then follows that

E
[
Rerr

4 (T)
] ≤

w∑

j=0

MDjMτj

≤
w∑

j=0

4Tβj

k
(
T, νj

)M2τj

≤
w∑

j=0

4

h1
M2K

1
3 log(K)−

1
3 T

2+βj
3

≤ (v+ 1)
4

h1
M2K

1
3 log(K)−

1
3 T

3+βv
3 ,

∀T > max{T∗, Ty}, which means E[Rerr
4 (T)] ≤

O(M2K
1
3 log(K)− 1

3 T
2+β+ε

3 ).
Proof of Lemma 5: Communications consist of three parts:

those for arm assignment, communication error report, and
synchronization. With the estimated βj, the arm assignment and
communication error report happen at most 
Te,j/τj� rounds
while each round lasts (M− 1)Kk(T, νj)+ k(T, νj) time slots.
On the other hand, under the same βj, the synchronization
happens at most 
Te,j

τj
� k(T,νj)

Tβj
rounds while each round lasts

Mk(T, νj)

Tξj�

2 time slots on average. Thus, it can be get that

E
[
Rcomm

4 (T)
] =

w∑

j=0

⌈
Te,j

τj

⌉
(M − 1)

[
MKk

(
T, νj

)+ k
(
T, νj

)]

+
w∑

j=0

⌈
Te,j

τj

⌉
M2k2

(
T, νj

)

Tβj

⌈
Tξj

⌉

2
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Fig. 8. Regret differences between α-unaware A2C2 and [5].

≤ 2
w∑

j=0

h2M2K
4
3 log(K)

1
3 Te,jT

2βj−2
3

+ 2
w∑

j=0

(h2)
2M2K

1
3 log(K)

1
3 Te,jT

βj−1
3

≤ 2h2M2K
4
3 log(K)

1
3 T

1+2βv
3

+ 2(h2)
2M2K

1
3 log(K)

1
3 T

2+βv
3 .

∀T > T∗. Since βv ≤ 1, 2+βv
3 ≥ 1+2βv

3 , E[Rcomm
4 (T)] ≤

O(M2K
1
3 log(K)

1
3 T

2+β+ε
3 ).

Proof of Lemma 6: With the estimated βj, the synchro-

nization happens every 
 Tβj

k(T,νj)
� iterations of exploration and

communication, and each synchronization has a failure prob-
ability 1


Tξj� , which leads to a worst-case linear regret of MT

in the following time slots:

E
[
Rsync

4 (T)
] ≤

w∑

j=0

⌈
Te,j

τj

⌉
k(T, νj)

Tβj

1
⌈

Tξj
⌉MT

≤ 2h2

w∑

j=0

Te,j

τj
MT1+νj−βj−ξj

≤ 2h2

w∑

j=0

MK
1
3 log(K)

1
3 Te,jT

βj−1
3

≤ 2h2MK
1
3 log(K)

1
3 T

2+βw
3

≤ 2h2MK
1
3 log(K)

1
3 T

2+β+ε
3 .

Thus, we have E[Rsync
4 (T)] ≤ O(MK

1
3 log(K)

1
3 T

2+β+ε
3 ).

APPENDIX G
ADDITIONAL NUMERICAL ILLUSTRATIONS

In addition to Figs. 1 and 2 in Section I, a more detailed
numerical illustration is given here to compare A2C2 with the
algorithm in [5]. In Fig. 8, the regret differences between α-
unaware and [5] with different number of participating players
(i.e., M) and attackabilities (i.e., α) are illustrated. We see that
the advantage of α-unaware A2C2 is more pronounced in the
region of large M and small α. A similar observation can be
made from Fig. 9, which shows the regret differences between
β-unaware A2C2 and [5].

Fig. 9. Regret differences between β-unaware A2C2 and [5].
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