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Abstract— Smart Mobility is an important component of 
Smart Cities with most of the current approaches focusing on 
crash incidents for safety within Smart Mobility. The Safe 
Community System (SCS) aims to collect and provide information 
to city residents about events beyond crash incidents using mobile 
technology. The work reported in this manuscript aims to manage 
and provide information to residents in a meaningful way to 
support their decision making. This paper describes our efforts in 
extending an initial proof-of-concept of the SCS by establishing a 
Safety Index (SI)– a derived metric that aggregates the value of 
resident-submitted reports to generate real-time safety levels for 
streets within a city considering the lifespan and verification of 
these reports. The SCS mobile application has been refined to 
provide further information about a specific incident. The SCS 
updated design also proposes a Safe Path Algorithm (SPA) which 
is a modified Dijkstra’s algorithm that uses the SI to compute a 
safe path for the resident. The goal of the SCS is to support 
resident’s decision-making when choosing a route and thus 
fostering safety for Smart Mobility. Efforts like the SCS 
contribute to converting cities to Smart Cities. 

Keywords—Smart Cities, Smart Mobility, Smart City Metrics, 
Safety Index, Safe Path, ICT. 

I. INTRODUCTION 

This project aligns with Smart Cities' goals to create 
solutions that aim to improve the quality of life of city residents. 
Smart Mobility is one dimension of Smart Cities that focuses on 
efficient and effective mobility systems using technology [1]. 
Research on Smart Mobility has focused on traffic-related 
mobility [2]. Navigation tools, such as the one evaluated in [3], 
use crowdsourcing to collect and provide traffic incident reports 
but approaches to collect safety incidents are limited.  The Safe 
Community System (SCS) aims to increase the community’s 

mobility safety by addressing other types of incidents (i.e., 
criminal or suspicious activity) that enable residents to choose a 
path based on safety. Personal safety contributes to the quality 
of life of residents. Living and commuting in an area with a 
perception of low safety levels can affect the wellbeing of the 
residents.   For example, according to a 2019 INEGI poll, 77.7% 
of residents in the state of Jalisco, Mexico, perceive a lack of 
safety [4]. This project was originally inspired by the need for 
real-time safety information around university campuses in 
Guadalajara, Jalisco with the engagement of residents, faculty, 
and industry in the design phase [5]. 

Currently, residents in Mexico may access public historical 
data such as the one provided by the “Instituto Nacional de 
Estadística, Geografia e Informatica” (INEGI) [6]. While 
historical data is useful, there is a need to support the decision 
making of smart mobility safety using real-time data. One way 
to collect real-time data is through crowdsourcing where 
residents provide information and share it with its community 
using resources such as mobile applications. Another advantage 
of real-time crowdsourced data over historical data is 
community engagement and building.  

A binational interdisciplinary collaboration for Smart Cities 
research between faculty and students from Universidad de 
Guadalajara (UDG) and The University of Texas at El Paso 
(UTEP) has identified needs in the City of Guadalajara that can 
be addressed using Smart Cities solutions, with the additional 
goal of transferring these solutions to other cities, including El 
Paso. This international collaboration aims to train students from 
both universities, working in summer cohorts, with the 
knowledge and skills needed to convert cities to Smart Cities.  

The initial design of the SCS  and the proof-of-concept of its 
mobile application to enable the collection of crowdsourced data 
for incident reports were previously presented in [5].  This paper 
describes the new features of the SCS proposed by the research 
team of faculty and 2020 student cohort. The new features 
include the definition and calculation of the Safety Index (SI) 
using incident reports for measuring the safety of street 
segments and the lifespan of reports. In addition, the Safe Path 
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Algorithm (SPA) is proposed to use SI as a factor to compute a 
safe path for the resident. The SCS mobile application refined 
version enables residents to verify the accuracy of a report given 
by another resident.   

The SCS integrates people and technology through 
crowdsourcing to provide meaningful information about safety 
for mobility purposes which aligns with the Smart Cities 
approach defined in [7]. In this project, residents are considered 
“sensors” since they are providing, verifying, and consuming the 
data generated in this system. The SCS leverages the concept of 
“participatory sensing” [8] since it relies on resident’s 
engagement and participation. The research team assumes that 
residents will be incentivized to use the SCS application for self 
and community gain.  

The SCS is a Smart City solution that uses Information and 
Communication Technology (ICT) to support the decision-
making of city residents with the use of crowdsourced 
information. An enduring challenge to manage crowdsourced 
data is the verification of the data [9]. The SI and SPA employ 
resident-submitted reports for their calculations. Thus, the 
reports must be verified. To address this, the SCS design 
proposes a crowdsourcing approach to allow residents that are 
close to the location where the report has been created to confirm 
or deny the accuracy of the reports. These confirmations and 
denials of the accuracy of the reports are also included in the 
information provided to the residents. Each resident can confirm 
or deny the report’s accuracy once. The SI and SPA aim to 
provide the most recent safety information to the resident. Thus, 
the lifespan of the crowdsourced data is also considered in this 
research. The overall objective of this project is to provide city 
residents with information about safety that supports their 
mobility through the city using mobile technology. The levels of 
safety are obtained by classifying crowdsourced data using the 
SI.  

Through this research, the following three questions are 
answered:  How can crowdsourcing data contribute to a 
mobility safety index? How can safety paths be generated using 
a SI? and  How can a safe path and SI be effectively 
communicated to the residents?  

II. BACKGROUND 
This section reviews relevant concepts such as smart 

mobility, safety indices, and routing algorithms. In addition, this 
section provides a summary of existing mobile applications that 
provide similar functionalities. 

A. Smart Mobility Approaches  
As previously mentioned, the focus of current Smart 

Mobility approaches has been on traffic-related incidents [2]. 
Research regarding smart mobility and non-traffic related 
personal safety is sparse. Research on how to mitigate problems 
in mobility caused by many tourists in certain areas is provided 
in [10]. Work focusing on the connection between smart 
mobility and increasing accessibility for the elderly is provided 
in [11]. Other research provides measures for Smart Mobility; 
however, it does not include a measure for personal safety [12]. 
A bibliometric analysis confirms that Smart Mobility research 
mainly focuses on improving current transportation’s 
environmental friendliness as well as mitigating issues such as 

congestion and traffic accidents; nonetheless, personal safety 
beyond traffic activities is not mentioned [13]. 
B. Safety Metrics  

This section provides examples of mobility metrics. Metrics 
and indices are important for understanding the performance of 
a Smart City. Standard metrics for smart cities, however, have 
not yet been fully defined and adopted [14]. Few research 
articles examine measurement techniques for Smart Cities. 
There have been some attempts in measuring the performance 
of Smart Cities.  For example, the United Nations initiative 
“United for Smart Cities” developed over 91 Key Performance 
Indicators (KPI’s) for the evaluation of a smart city in the areas 
of Economy, Environment, Society, and Culture [15]. The only 
KPI that is directly related to personal safety is a violent crime 
rate. There are also some socioeconomic status indicators such 
as the Gini Coefficient and Poverty but these KPIs cannot 
directly inform residents of the safety levels of an area at any 
given time [15].  

Smart Mobility indices for understanding or quantifying the 
safety of an area in a city have yet to be clearly defined and 
standardized. As mentioned earlier, past work has established 
measures for Smart Mobility but excluded measures for personal 
safety [12]. Park et.al. proposed detection of dangerous events 
by using data from different types of sources (i.e., camera, 
sensors, smartphones) where residents’ mobile devices are used 
to pinpoint crime and alert authorities [16]. Moreover, Machine 
Learning techniques have been employed to analyze reports 
submitted by residents on a website designated for them to 
report problems in the city they have witnessed [17]. 
Approaches [16], [17] neither provide a measure for dangerous 
events nor addresses the problem from a mobility perspective.  
A system for detecting and predicting vehicle accidents based 
on historical data as well as sensor data has been proposed, even 
though this approach provides a mobility perspective, it does not 
consider personal safety [18]. Also, a system for detecting 
dangerous events in underground transport systems like a 
subway was proposed [19], this approach does consider personal 
safety and mobility but it is limited to a single mode of 
transportation and does not provide a safety indicator.  

All these systems proposed methods for detecting unsafe 
situations by using sensor data, crowdsourced data, or video 
data, but they all work within specific domains and none 
contribute a metric that can serve as a SI of any given area of a 
city. To the best of our knowledge, these metrics cannot be used 
to create a SPA due to their domain specificity.   

C. Existing ICT Approaches  
During the literature review for the SCS, multiple 

applications that had similar features or ideas as the SCS were 
found. One important aspect of SCS is the use of real-time 
resident data. Similar applications that take this approach are 
Retio and Avisora. Retio is a website that classifies Tweets 
related to public safety by Artificial Intelligence algorithms [20]. 
The use of data provided by Retio was not considered because 
of its lack of geographical coordinates [20]. Avisora uses 
crowdsourced data to identify infrastructure issues in the city 
and alert users about them. The application verifies users and 
prioritizes reports to meet the user’s needs. Though their number 



of users has declined over time and it has not been updated since 
2017 [21]. 

An important proposed feature in SCS is the ability to create 
safe paths – paths that consider safety information. An 
application that uses crowdsourced data for the creation of safe 
paths is Chi Safe Path. This application is a web-based tool for 
the residents of the city of Chicago to identify hazardous zones 
in sidewalks from the accessibility perspective. It also provides 
a feature that creates paths that avoid zones with reported 
incidents  [22]. The Chi Safe Path does not provide information 
on the specific incident reported and its current use is limited to 
Chicago.  

The study of these applications and the need for 
comprehensive safety information identified by the binational 
group of researchers [5] facilitated identifying features needed 
to refine the SCS. The SCS includes some of the features 
provided by the current approaches and adds the definition and 
proof-of-concept of the SI, which considers several parameters 
of safety data, to better inform and guide residents while 
transiting their city. Table 1 provides a comparison of the 
features offered by SCS and the applications reviewed in this 
section.  

TABLE 1 – COMPARISION OF FEATURES OF RELATED APPLICATIONS 

 User 
Report  

Safe Path 
Generation 

Report 
Visualization 

(Map) 

Safety 
Index  

Report 
Verification 

SCS      
Retio  X X X X 
Avisora  X  X 
Chi Safe Path    X X 

III. THE SCS DESIGN 
The main purpose of the SCS is to provide real-time mobility 

safety information to residents as they transit in the city. This is 
achieved by collecting and providing information about safety 
incidents reported by residents. This information aims to support 
residents’ decision making about paths. The previous version of 
the SCS reported in [5] included the proof-of-concept of a 
mobile application to create and display reports. A detailed 
description of new SCS features follows.  

A. Incident Reports  
The visualization of incident reports has been enhanced by 

sharing the report information at the street level to address 
privacy concerns. The exact location of a report is not shown on 
the map, but rather the street segment where the incident 
happened using the generalizations and suppressions privacy 
concepts [23]. The current categories for reporting include 
criminal activity, suspicious activity, infrastructure, and 
perceived risk. The SCS categories were refined to cover the 
most common reported incidents in Jalisco, Mexico [24] where 
the first scenario of this work is located. The SCS system allows 
incidents to be further refined into subcategories, e.g., the 
criminal activity may be classified into auto theft, and assault. 
Reports in the SCS map are displayed using color-coded 
markers for usability purposes. Each report now contains a 
Severity Weight (SW). The current version of the SCS mobile 
application displays the SW or the report on the map using the 

report’s category (Fig. 1). The greater the SW of the report, the 
less safety of the affected area.  

The following fictional reports were generated as SCS test 
scenarios to illustrate the management of reports and other SCS 
features such as the calculation of the safety index. Fig. 1 shows 
their visualization in the current SCS mobile interface. These 
testing reports were manually generated in the middle of the 
street to illustrate how privacy will be addressed in a future 
version of the system. The functionality to automatically place 
the marker of reports to the middle of the street currently is under 
development in the SCS. 

The SW associated with each testing report is shown in {} 
brackets at the end of each report description: 

1. Perception of risk, reported on 07-17-2020 10:15 a.m. {5} 
2. Infrastructure-graffiti, reported on 07-17-2020 4:18 a.m. 

{5} 
3. Criminal activity-theft, reported on 07-17-2020 10:10 a.m. 

{20} 
4. Suspicious activity- unusual attention to facilities, reported 

on 07-16-2020 2:00 a.m. {10} 
5. Infrastructure-sewage, reported on 07-17-2020 9:37 a.m. 

{5} 
6. Perception of risk, reported on 07-16-2020 6:24 p.m. {5} 
7. Infrastructure-electric system reported on 07-15-2020 3:08 

p.m. {15} 

B. Verification of Reports 
The SCS's main source of data is the crowdsourced resident-

generated reports. Residents create reports as indicated in 
Section III-A. Reports have different weights based on their 
category. In the current implementation, incidents are classified 
in the following categories with the corresponding weights: 
criminal activity {20}, infrastructure {5}, suspicious activity 
{5}, and perceived danger {10}.  The report is then displayed on 
the map at the respective street segment and not using the street 
number. 

The accuracy of reports is addressed in the SCS current 
version to foster trust in residents. A resident may input an 
erroneous report by choosing the wrong type of incident, 
misunderstanding the incident, misplacing the location, or even 
maliciously generating a false report. The SCS has new 
functionality in the mobile application to enable residents to 
verify the accuracy of reports by confirming or denying a report 

Fig. 1. Visualization of testing reports in the SCS mobile application 
with the numbers identifying the reports on the map and a popup 



(i.e., pressing thumb-up/down). The SCS mobile application 
displays the number of confirmations and denials when clicking 
on a report map marker in addition to the category, SW, and 
description (See Fig. 1). For example, when the resident clicks 
on report #2, they will see that the report has ten confirmations 
and one denial. In a future version of the SCS, this verification 
information will be used to affect the weight of the SW by 
considering, for example, the number of confirmations/denials 
of a report within a fixed threshold. Current considerations 
include using the verification status to determine whether or not 
an incident report will be used in the SI calculations and/or 
displayed in the SCS mobile application. To preserve the 
integrity of this verification process, a feature under 
development will implement the restriction that only residents 
that are near the incident location will be able to confirm or deny 
the reports.  

The SCS database has been designed to be updated every 
time a new report is submitted, confirmed, or denied in the 
system. This is an important feature in an application that 
promotes real-time access to safety information. In a future 
version of the SCS, when the database is updated, a new 
calculation of the SI will occur for updating the corresponding 
street-segment safety level.  

There are further considerations when processing 
crowdsourced data. Multiple residents may generate a report that 
describes the same incident, instead of confirming an existing 
report which would create inaccurate indices. The design of the 
SCS has been refined to manage this scenario in a future 
implementation as follows. When the resident submits a report, 
the system checks the surrounding area for similar reports. If a 
similar report has been submitted by another resident, the system 
displays the previously generated report and asks the resident to 
determine if that report is the same as the new report. If the 
resident determines that the new report is the same, the new 
report is not saved and is managed as a verification of the 
previous report adjusting its weight. If the resident determines 
the new report is different, the new report is submitted to the 
database. 

C. Safety Index 
The refined SCS design defines a new derived metric called 

SI to represent the safety of a street segment by aggregating the 
SWs of the reports submitted by residents for that specific street 
segment. The SI of a street segment is space- and time-
dependent and will be used in the SCS to calculate a safety path. 
The SI calculation considers the SW of the submitted reports, 
the frequency of reports, and the decay (i.e., life span) of reports 
within a street segment.  

The SI calculation of a street segment is affected by its 
proximity to a report. Currently, if a street segment is within 40 
meters radius of a report, its corresponding SI will be changed 
based on the SW of the report. A report may affect more than 
one street segment within the affected area. A street segment 
may be affected by many reports based on the affected area of 
these reports.  

The SI calculation also considers the decay of reports by 
classifying reported incidents into current reports and historical 
reports to reflect the relevance of reports over time. The current 

reports include reports submitted within the last twenty-four 
hours. The historical reports include reports submitted after 
twenty-four hours and up to one year. The decay impacts the 
weight of the report by decreasing its value through time. Each 
report has an initial SW based on the type of incident reported, 
as defined in section III. The report’s SW value is affected by a 
decay coefficient through time. of a report is affected by a decay 
coefficient. From now on, when describing formulas and 
algorithms, a street segment is referred to as a link.  

The equation (1) defines how multiple reports, both current 
and historical, aggregate to a Link Weight. Each link has an 
initial weight (wo) that represents the distance to transverse the 
link. The Link Weight also aggregates the SW values of current 
reports which are defined in equation (2). In addition, the 
Historical Weight (HW), described in equation (3), aggregates 
the weight of historical reports over time.  The equation that 
defines how reports are aggregated into a Link Weight is:  

In equation (2),  represents a report’s decayed SW 
where i=1, …, n. The variable ai represents the initial SW of the 
report, bi represents the decay coefficient. ti represents the time 
at which the new report affecting the link is submitted. An 
exponential decay equation is used because it is a common 
numerical model to represent continuous decay in many 
domains such as radioactive half-lives and continuous failure 
rates [25]. Using the testing scenarios, reports #6 and #7 
displayed in Fig. 1 are aggregated into the link representing the 
street segment where report #6 is generated since this link is in 
the 40-meter threshold defined. Since the severity weights are 5 
and 15, the total Link Weight is 20.  

The decay coefficient can change depending on the nature of 
the incident. For example, in the test scenario, report #5 
(infrastructure incident) may have a slower decay than report #3 
(criminal activity) therefore their coefficient decays should be 
different. Decay coefficient values for each incident’s categories 
have been initially defined for the decay formula. To 
demonstrate the decay with the testing scenarios, report #4 was 
reported at 2:00 a.m. Consider a new resident is accessing the 
map at noon. The initial SW of report #4 was 10, but through 
decay, its SW value at 12:00 p.m. is 0.5. This shows that report 
#4 has less relevance to the SI and the generation of safe paths 
due to its decay.  

The historical reports have a much longer time span, 
currently predetermined in the SCS as one year. The HW 
represents the frequency and consistency of reports which have 
affected a link, even if no current reports are affecting the link 
at that time. The greater the frequency of reports in an area, the 
greater the HW. The HW also decays but much more slowly 
compared to the SWi. The calculated HW is updated when there 
is a new report affecting the link. The equation for the HW(t) is 
defined as: 

 
( 1 )

 ( 2 )



The weight factor (wf) and decay factor (DF) are variables 
to control the HW. Further research is needed on how to 
calibrate these variables and determine the frequency to 
recalculate SW and HW to have real-time information used to 
produce safe paths that align with the residents’ needs.  

The equation to calculate the SI converts Link Weight values 
to values between 100 and 0 to be better understood by the 
residents. A value of 100 represents a safe street segment, and 
values closer to 0 represent less safe street segments. The 
equation to convert the values generated from Eq. (1) is:  

  ( 6 ) 

If there are no reports in a street segment (according to the 
information provided to the SCS), the segment is considered 
safe with an SI value of 100. In a street segment with incident 
reports with a high SW, such as report #3 in Fig. 1, the SI will 
have a low value of 13.5. 

The implementation of calculating the SI in the SCS server 
is in progress. The current SCS mobile application shows a 
graphical representation of the initial SW using different colored 
circles as shown in the legend in Fig. 1 and Fig. 2 (left).  

D. Safe Path Algorithm and Index      
The SCS has been designed to generate safe paths from the 

resident’s location to the resident’s desired destination using the 
SPA. The paths generated by the SPA use safety as the routing 
criteria. The SPA generates safe paths by avoiding links with 
low SI values. The more safe a path link is between the origin to 
the destination, the more the system is incentivized to use that 
link. When a link does not have reported incidents, the system 
defaults to use the link travel distance in the SPA.  

The SPA modifies the Dijkstra’s algorithm provided in  [26] 
by adding Link Weight values in addition to the link distance 
values. The SPA designed for the SCS contains four data lists 
(storage structure): visited nodes, unvisited node, distance from 
the source, and previous node. Each list is a vector of dimension 
equal to the total number of nodes that can be visited to create a 
path from the origin to the destination.  

Dijkstra’s algorithm contains the following steps: (1) The 
algorithm starts from the source node and ends when it reaches 
the destination node. Since the distance from the source node to 
itself is 0, the algorithm places a 0 in the source node element in 
the list distance from the source and leave its list previous node 
empty. Given that no other information is available at the first 
step, the algorithm sets all other elements in the distance from 
the source list to infinity; (2)  The algorithm visits the node with 
the smallest distance in the list unvisited list, by setting the 
source node as the distance from source list to the distance from 
the source node to each of them, following the current node path; 
(3) The algorithm selects the node with the smallest distance 
from the source list and sets this node as the current node; (4) 
The steps 2-4 are repeated until the destination node is visited. 

Dijkstra’s algorithm produces a total path length of the 
shortest path. Similarly, the SPA produces a Safe Path Index 
(SPI) which measures the safety of the safest path. This is done 
with the following equation:  

 
 

( 7 ) 

 The summation represents the sum of the links that the path 
takes to get to the destination from the source.   

 As mentioned before, the SPA considers safety as the main 
criteria to create the path from Point A to Point B. If there are no 
incident reports in the area or if different paths have the same 
SPI, then the SPA selects the shortest path.  

The selection of the safe path is explained with an example. 
Consider that a resident named Joe Doe wants to travel from 
Point A to Point B (Fig. 2, left) making use of the Safe Path 
feature of the SCS. From the multiple possible paths the SCS 
can offer, there are two shortest paths. The first shortest path 
(with street segments colored in red) is omitted because of report 

  ( 3 )

 
 

( 4 )

  ( 5 )

Fig. 2. The reports added to the graph with its initial SW and decay coefficient affect the link weights. The affected link weights influence the fastest paths  in 
the simulation (right) and are shown as a mockup (left) using the colors red (unsafe), yellow (safe), and green (safest). 



#3 (identified in Fig. 1) with an SW value of 20. The second 
shortest path is avoided given the recent reports #1 and #2 (also 
identified in Fig. 1) that are close to the path, with segments 
depicted in yellow lines in Fig.2. The third shortest path depicted 
as the green line in Fig. 2, is offered to Joe Doe since it is not 
affected by any incident reports. Please note that other current 
reports in the SCS (i.e., reports #4, #5, #6, and #7 in Fig. 1) are 
not relevant to this scenario because the possible paths are not 
crossing the area affected by these reports. The total distance in 
this scenario increases as the system prioritizes safety over the 
travel distance. In particular, the suggested path visits three more 
segments than the shortest path. However, the suggested path 
has a composed SPI of 100 compared with the shortest route that 
has a composed path safety index of 13.5. 

An agent-based simulation was conducted in MATLAB. 
The goal was to verify the behavior of the SI by using parameters 
for agent locations on the map, types of reports, the frequency 
of report generation, and the report verification. By modifying 
the frequency and number of the reports, the simulation assisted 
in understanding the behavior of the SI values and the effect of 
report decays on the SI values. Moreover, another goal of the 
simulation was to verify the use of the SI to calculate the SPA 
and identify the safest path. The safest path changed based on 
the number of reports added, the report’s SW, and report decay. 
The simulation was successful in assigning safer links with a 
higher SI and providing the safest paths to a destination. In 
addition, in the simulation, the SI can be color mapped to the 
links directly where green segments represent safe links and red 
segments represent less safe links (Fig. 2, right). 

IV. THE SCS IMPLEMENTATION  

A. System Architecture  
The SCS is divided into 3 main components (Fig. 3). The 

first component is the SCS mobile application that serves as the 
interface between the SCS and the resident. The SCS 
functionality to enable the submission and visualization of 
reports was implemented in the previous SCS version described 
in [5]. The current version of the SCS has been further developed 
to include the following new features: defining a report’s SW 
which is automatically assigned when reports submitted, 
verification of reports, the addition of user-friendly guidelines in 
the map, filtering of reports based on category, visual clustering 

of reports when zooming in/out of the map, and displaying of 
report’s additional information such as SW, number of reports 
confirmations and denials, the distance of the incident from the 
resident, and report time. The second component of the SCS is 
the storage of incident reports and resident credentials using 
MongoDB [27], which was not modified from the previous 
version. The third component is the SCS server, which in the 
current version handles the generation of map visualizations 
including the aggregation reports using Leaflet API [28]. The 
implementation of the SW for aggregating reports, the SI at the 
street-level, and the SPA for the generation of safe paths is under 
development at the time of writing this paper.  

B. Safe Path Algorithm Component 
The SPA component is currently under development and is 

evaluating different tools such as QGIS [29] and LeaftLet API 
[28] for the management of street-level data. The SCS server 
will request street-level information of areas of interest, initially 
UTEP and UDG campuses. Said information could come from 
digital maps (i.e., shapefiles or manually created street-level 
data) to be loaded into the database.  

The SCS was designed to generate the Link Weight of street 
segments using the proposed algorithm and update it into the 
SCS database.  In a future SCS version, this feature will be 
implemented to enable a resident to request a safe path using the 
SPA algorithm. The suggested safe path will be sent to the SCS 
Safe Path display generator which is currently envisioned to use 
the Leaflet Routing Machine [30] provided by the LeafLet API, 
but other tools may be tested for this purpose.  

V. DISCUSSION 
The SCS aligns with the principles of Resiliency, Security, 

Scalability, Interoperability, and Modularity defined for Smart 
Cities solutions [31]–[33] as follows. 

• Resiliency: The ability to recover from failure quickly is 
an important characteristic of systems [31]. The SCS 
promotes resiliency as future implementations will 
enable the creation of reports even when there no active 
connection to the server is available, once a connection 
is regained, the report is submitted.  

• Security: This characteristic aims to prevent 
unauthorized access to data and services in the system 
[33]. The SCS implements security features by using the 
NodeJS Crypto module [32] for the encryption and 
decryption of the user information such as a password 
and report coordinates. Salt Hash [34] is used as an extra 
precaution for the safe management of sensitive residents 
and report information. This is done by the mixture of 
said information with a random string, making it harder 
to be deciphered in case of an attack. 

• Scalability: In this work, this concept is interpreted as the 
ability of the SCS system to be functional with a large 
number of residents. The use of third-party tools such as 
the LeafLet API and MongoDB and the processing of 
services on the server-side allows the SCS to scale with 
a larger number of residents. 

• Interoperability: This characteristic refers to the ability 
of a system to exchange data across devices [31]. The 

Fig. 3. SCS Main Services and Components 



SCS complies with this principle by enabling the 
exchange of data between related applications such as 
QGIS [29].  

• Modularity: In this work, this characteristic is interpreted 
as the ability to allocate similar services into modules 
that can work independently. SCS aligns with this 
principle by having low-coupled modules for the front-
end services, which are the SCS mobile application, and 
back-end services, which are MongoDB, NodeJS [32], 
and the SCS server.   

The new SCS version focused on generating a metric to 
better inform residents about safety levels of areas they transit 
to support Smart Mobility, thus the SI and SPA were proposed. 
For these metrics, an important factor is the weights assigned to 
each report. These weights are currently assigned based on the 
category of the incident being reported. These categories will be 
refined once a beta version of the system is tested.  

Given that the SCS relies on crowdsourcing data, verifying 
reports is an important feature of the system to foster the trust of 
residents on the information being provided. One proposed 
approach is to consider all reports accurate and having other 
residents to report as inaccurate. The other option is to consider 
all reports inaccurate and enabling other residents to assess them 
as accurate. The current SCS mobile implementation allows the 
verification of reports as accurate or inaccurate and the 
manipulation of report verification within the SCS is currently 
under development. 

An initial approach for the aggregation of reports was to use 
the individual report value for the SI. Introducing a lifespan to 
reports captured better real scenarios where a recent incident 
may be more important than a past incident. 

The last major decision for the SCS was how to obtain the 
street-level information required for the generation of paths with 
the SPA. The Leaflet API did not provide such information. The 
first option is the use of shapefiles and a system such as QGIS 
to manipulate these files. A second option involves the manual 
creation or importing of street-level information to be stored in 
the SCS database. 

The privacy of data was considered in the SCS design and 
implementation. Thus far, the SCS includes the mobile 
application’s current location in the incident report, encrypts 
them in the database, and only uses them for internal processes 
- the exact location of incidents is not shown on the map. 
Ongoing work to address privacy is the use of generalizations 
and suppressions [23] to display reports at the street level in a 
fixed position depending on the category of the report (e.g., 
middle of the street, left corner of the street). This technique 
aims to balance the tradeoff between privacy and utility by 
keeping the report's location private but usable for finding street 
segments affected by a report.  

The SCS was designed to be used in both Guadalajara and 
El Paso, and thus considered the different needs, data sources, 
and services provided in these cities. The collaboration between 
the two universities was key in the design and development of a 
system that can potentially be used in these two cities.  

VI. CONCLUSIONS 
The SCS aims to provide city residents with real-time 

information about reported safety incidents to support their 
decision making. The creation of a SI and safe paths illustrates 
how this information can support Smart Mobility in urban 
areas. A decay model was proposed to aggregate data from 
multiple reports and capture how the relevance of reports 
decreases through time. SCS makes use of crowdsourced data 
and allows residents to verify the accuracy of the report’s 
information to build trust in the use of the application. 
Applications such as the SCS that provide real-time data have 
the potential to provide better services to city residents and 
ultimately improve their quality of life and contribute to 
converting cities to Smart Cities. 

VII. FUTURE WORK 
An important factor that affects the generation of safe paths 

is the mode of transportation. Some incidents (e.g., a pothole) 
may have less impact on a resident using a bike than another 
using a car. In a future iteration, the SCS  aims to customize the 
mobile application and calculations to recommend residents' 
paths depending on their mode of transportation, which impacts 
the SW of reports. Considerations for data privacy included in 
the discussions will be incorporated in future versions of the 
SCS.  

The testing of the SCS beta version is planned to take place 
after key features such as calculation of SI and safe path 
generation are fully implemented in the system. University 
campuses in the cities of Guadalajara and El Paso Texas will be 
used to evaluate the use of SCS functionality using different 
languages, metric systems, infrastructure, and cultures once 
social distancing regulations are lifted. 

A future research direction includes analyzing the use of 
pictures provided by residents. While images uploaded to the 
SCS by residents can increase the reliability in reports, images 
can be misused or disclose unintended information. Ongoing 
research on the use of images for the SCS includes the use of 
algorithms for blurring faces or car plates for privacy purposes. 

The ongoing work on simulating the behavior of the SCS 
provides insights on the expected results once the system is 
deployed, including the function of a decaying weight, assigning 
SW to links, and display of SI on the street segments. Further 
research in the simulation includes testing of parameters such as 
decay coefficients, severity weights, and weight factors to find a 
set of parameters that will assist in calibrating the SCS.  
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