

Comparison of Cognitive Workload Assessment Techniques in EMG-based Prosthetic Device Studies

Junho Park
*Industrial and Systems
Engineering Department
Texas A&M University
Texas, U.S.A.*
junho.park@tamu.edu

Maryam Zahabi
*Industrial and Systems
Engineering Department
Texas A&M University
Texas, U.S.A.*
mzahabi@tamu.edu

Abstract— Previous studies have found that electromyography (EMG)-based prosthetic devices provide higher grasping force, increase functional performance, and have greater range of motion over conventional prostheses. However, cognitive workload (CW) is still one of the issues that can negatively affect device usability and satisfaction. In order to evaluate CW of prosthetic devices early in the design cycle, it is first necessary to select the most appropriate measures. Therefore, the objectives of this study were to: (1) review the CW measurement techniques used in prior EMG-based prosthetic device evaluations; and (2) provide guidelines to select the most appropriate measurement techniques. The findings suggested that cognitive performance models (CPM), subjective measures, task performance measures, and some physiological measures were sensitive in detecting CW differences among prosthetic device configurations and therefore could be useful tools in usability evaluation of these technologies. However, in order to reduce intrusiveness and cost, methods such as subjective workload measures, task performance, and CPM are more beneficial as compared to physiological measurements. Guidelines proposed in this study can be beneficial to select the most appropriate CW measurement techniques in order to improve sensitivity and accuracy and reduce intrusiveness and cost.

Keywords—mental workload, EMG, prosthetic device, literature review

I. INTRODUCTION

Amputee patients use prosthetic devices to perform activities of daily living (ADLs). These devices can be categorized into four main types including passive, body-powered, externally powered (e.g., advanced prosthetic devices controlled by electromyography (EMG) or muscle activation signals), and hybrid prostheses [1]. Studies have shown that EMG-based prosthetic devices provide higher grasping force, increase functional performance, and have greater range of motion over conventional prostheses [2]. These devices have a natural look, are suitable for light everyday activities, and have been found to be beneficial for individuals experiencing phantom limb pain [2, 3].

Funding for this research was provided by the National Science Foundation (No. IIS-1856676).

Use of prosthetic devices requires substantial amount of cognitive resources. These resources are used to compensate for the lack of sufficient feedback and degrees of freedom from the amputated limb [4], which can also reduce task performance [5]. Furthermore, high cognitive workload (CW) while using the myoelectric prosthesis device can negatively affect patient rehabilitation. Amputee patients often report not using their prosthetic device for performing ADLs due to its high CW and poor usability [6]. Thus, understanding CW and underlying attentional resources in using prosthetic devices can be beneficial in order to improve evaluation and development of future technologies [7].

A. Myoelectric control scheme

Myoelectric prosthetic devices can be categorized based on their control scheme into seven categories including on/off, proportional, direct, finite state machine, pattern recognition, regression-based, and posture-based control schemes [8]. The on/off control is suitable for two degrees of freedom. For example, the prosthetic limb can be operated in both clockwise and counterclockwise directions [9, 10]. In the proportional control scheme, the speed of a servo-motor, moving in one direction, is proportionally controlled by the magnitude of EMG signal captured from one agonist-antagonist muscle pair [11-14]. Direct control (DC) is similar to the proportional control but it maps amplitude of each EMG channel to individual function and corresponding mechanical output [15-17]. Therefore, it is difficult to achieve independent control of the arm due to crosstalk in EMG signals in the DC method [8]. In the finite state machine control, hand gestures are predefined as states. Transition among states is also predefined or decoded from the inputs [8].

The pattern recognition (PR) technique is a data-driven control approach based on machine learning algorithms [18] and has been mainly used for transradial amputees with targeted muscle re-innervation surgeries [19]. There are many approaches such as Bayesian classifiers, fuzzy clustering algorithms, neural networks, and hierarchical control in the PR scheme [8]. The linear regression-based control scheme generates the effort to perform hand grip gesture from the surface EMG of an intact forearm muscle for feature

extraction [20]. In posture control approach, the EMG signals are used as inputs for the principal component domain. Specific postures could then be achieved by linearly transforming those EMG signals. This method provides simultaneous myoelectric control of prosthetic arm [21, 22].

B. Cognitive workload measurement techniques

CW can be measured using physiological measures, subjective rating scales, task performance measures [23], and cognitive performance models (CPM). Physiological measures (e.g., heart rate (HR) and heart rate variability (HRV)) provide information regarding psychological processes and their effect on body [24]. These measures are continuous and objective. However, physiological signals can be affected by head or body movements especially in experiments using prosthetic devices or electrode caps [25].

Subjective ratings quantify humans' understanding and judgments of their experienced mental demand. While these methods have high face validity, their interpretation and prediction performance is uncertain [24]. Performance measures are classified into two major categories including primary and secondary task measures. Primary task measures evaluate participants' performance on the main task. Secondary task measures explain the remaining cognitive capacity under the primary tasks. Secondary task measures are more diagnostic than primary task measurements. Performance measures have advantages in that they evaluate participants' response on the tasks directly. Also, they are useful where subject's capacity cannot afford to process mental demands such that performance degrades from the baseline or ideal level. However, these methods tend to have low scientific rigor which makes the interpretation of the results difficult [24].

CPMs such as Goals, Operators, Methods, and Selection rules (GOMs) can provide representations of human performance (e.g., learning time, execution time, or errors) [26]. These models can predict the amount of time that an expert needs to retrieve information from memory, select from decision options, and execute motor movements. CPMs can be coded, compiled, and run using computer program software such as Cogulator and CogTool [27, 28].

C. Problem statement

High CW of prosthetic devices led to usability issues and device rejection for amputee patients [29]. Considering the advantages of EMG-based prosthetic devices and techniques for measuring CW, it is necessary to understand what measurement techniques are suitable for assessing CW of these devices. Identification of appropriate CW measurement techniques can help researchers and device manufacturers to evaluate CW of prosthetic devices early in the design cycle in order to improve device usability. Thus, the objectives of this study were to: (1) review CW measurement techniques used in prior EMG-based prosthetic device evaluations; and (2) provide a guideline to select the most appropriate CW measurement technique in different conditions.

II. METHOD

A literature review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [30]. Databases including PubMed, Cochrane, Compendex, Inspec, Proquest, IEEE, Engineering Research Database, and Web of Science (WOS) were searched in order to find relevant research published since 2005 (the year in which Defense Advanced Research Projects Agency (DARPA) started the Revolutionizing Prosthetics program) [31]. Additional search was also conducted using manual search in Google Scholar, as it is the most comprehensive search engine [32].

Eligibility criteria included: relevant, English-language papers, and any research studies (manually) identified with a focus on CW in EMG-based prosthetic devices. Keywords included *prosthe** (all words starting with 'prosthe') and *cognitive (or mental) workload* combined with *NASA-TLX*, *EMG*, *electroencephalogram (EEG)*, *heart rate*, *respiratory rate*, *skin conductance (SC)*, *skin temperature (ST)*, *blink rate*, and *pupillometry*. The literature search was completed in 2019. From the initial records found based on the title and abstract ($n = 3,727$), 145 studies were reviewed by the authors. Upon completion of the screening process, 26 studies were included in this study.

III. RESULTS

Table 1 presents a summary of CW measurement techniques in prior studies assessing EMG-based prosthetic devices. These measurements and their sensitivity in assessing CW are explained in detail below.

A. Physiological measurements

Five major physiological measures of CW were used in prior studies including cardiac (e.g., heart rate variability), respiratory (e.g., respiratory rate), skin (e.g., skin conductance level), brain activity (e.g., late positive potential), and pupillometry (e.g., blink rate) measures (Table I). Brain activity and pupillometry measures were the most frequently used measures. Brain activity provides the ability to examine CW with high temporal resolution and a certain degree of freedom for movements during data collection. This facilitates the adaptability to clinical, operational, or real-world settings [33, 34]. Pupillometry responses are continuous and unobtrusive methods for measuring CW. Especially measures such as blink rate, eye-closure intervals, and pupil diameter changes over time were used to compare PR and DC devices in upper-limb prosthetic studies due to their robustness to body movement [25]. Blink rate was also a sensitive measure in comparing CW of prosthetic devices with different feedback modalities [35] as well as cardiac and respiratory measures [35, 36]. While both cardiac and respiratory measurement techniques were sensitive (i.e., showed significant differences in CW among different feedback modalities), results regarding the skin conductance measure were mixed (some studies found skin conductance to be

sensitive while others did not find any significant effect) [35, 36].

B. Subjective measurement

NASA Task Load Index (NASA-TLX) questionnaire was the only subjective measurement technique used in prior studies. NASA-TLX identifies the overall workload as well as

TABLE I. A SUMMARY OF COGNITIVE WORKLOAD MEASUREMENTS IN EMG-BASED PROSTHETIC STUDIES

Ref.	Device configuration	CW Measurements						Significance	
		Physiological					Subjective (NASA-TLX)	Task performance	CPM
		Cardiac	Respiration	Skin conductance	Brain Activity	Pupilometry			
[2]	On/off, proportional					✓			$p < .05$
[47]	On/off					✓			N/A
[34]	On/off					✓			N/A
[22]	Posture					✓			N/A
[12]	Proportional					✓			$p = .024$
[18]	PR					✓			N/A
[53]	DC, PR				✓				P200: $p < .01$ P300: $p < .01$ LPP: $p < .01$
[15]	DC, PR				✓				LPP: $p < .05$
[20]	Regression					✓			N/A
[46]	Posture					✓			N/A
[35]	Posture	✓	✓	✓	✓	✓			NT: $p < .01$ EEG: $p < .05$ HR: $p < .05$ RR: $p < .01$
[36]	Posture			✓		✓	✓		BR: $p < .05$ NT: $p < .05$ SCL: $p < .01$
[40]	DC, PR						✓		N/A
[38]	Proportional, FSM					✓			$p < .05$
[48]	On/off					✓			N/A
[10]	On/off			✓	✓				TLS: $p < .001$ GS: $p < .001$ EEG: $p < .001$
[44]	On/off						✓		$p = .024$
[41]	DC, PR						✓		N/A
[13]	Proportional			✓		✓			EEG: $p < .001$ NT: $p < .001$
[39]	Proportional			✓					EEG: $p < .001$
[14]	Proportional					✓			N/A
[16]	DC					✓			$p < .05$
[17]	DC					✓			$p < .05$
[42]	DC, PR				✓		✓		TP: $p = .0472$ NPI: $p = .0016$
[25]	DC, PR				✓		✓	✓	PS: $p < .0001$ TP: $p < .0001$
[45]	DC, PR				✓		✓		TP: $p < .0001$ PS: $p < .0001$

Note. N/A= No statistical analysis (descriptive statistics only), BR=Blinking rate, CPM=Cognitive performance model, EEG= Electroencephalogram, FSM= Finite state machine, GS=Gaze shifting, HR=Heart rate, HRV=Heart rate variability, LPP=Late Positive Potential, NPI=Number of Pupil Increases Per Second, NT=NASA-TLX, PS=Pupil size, RR= Respiratory rate, SCL=Skin conductance level, TLS=Target locking strategy, TP=Task performance.

the magnitude of each factor (i.e., mental demand, physical demand, temporal demand, performance, effort, and frustration level) in motor tasks [37]. Another reason for frequent use of NASA-TLX is its unobtrusiveness. Unlike some physiological measurements that are sensitive to body motions or environment, subjective workload measures are collected after the trial (or experiment) and therefore do not interfere with the task execution. NASA-TLX was found to be a sensitive measure to assess CW of different EMG-based prosthetic devices in half of the studies [2, 12, 16, 17, 35, 36, 38, 39] (other studies only provided descriptive statistics). These investigations were focused on comparing different device configurations (e.g., on/off, proportional, posture, and direct control), control methods (e.g., linear, non-linear proportional control), sensory feedback (visual, auditory, vibrotactile), and training duration.

C. Task performance

Task performance measures were especially used for comparing the DC and PR control modes [40] (Table I) when the patients were performing ADL tasks (i.e., clothespin relocation task (CRT) [41, 42], Southampton Handness Assessment Procedure (SHAP) [40], Box and Blocks (B&B) task, Jebsen-Taylor test (JT) [40], and Cubbies tasks [40]). These measures included the time to complete the task (TCT) (for the CRT, JT, and Cubbies task), the number of items transported (for the B&B task), and the index of function (IoF) (for the SHAP task; a metric of the operator's hand function compared with that of a peer norm) [43]. Task performance measures such as TCT and number of transported items were found to be sensitive (i.e., led to significant findings) in four out of six studies [25, 42, 44, 45] comparing different prosthetic configurations (e.g., DC, PR, on/off) and feedback modalities.

D. Cognitive performance model

Only one study used CPM to assess CW of prosthetic devices [25]. CPM allows estimation of task performance, working memory chunks (measure of CW), and number of perceptual, cognitive, and motor operators in using prosthetic devices without the need to conduct human-subject experiments. Zahabi et al. [25] found that additional working

memory demands to learn and memorize a certain movement in the DC mode (e.g., mode change or gestures) led to higher CW relative to the PR scheme. This type of analysis is not possible with physiological measurements and is not easy to discriminate in subjective ratings.

IV. DISCUSSION

Four metrics including sensitivity, intrusiveness, cost, and accuracy were established based on the screened studies to identify the most appropriate CW measurement techniques considering a system perspective (e.g., inputs, outputs, and noise). Regarding the inputs, human effort, time and monetary values can be considered as "cost". Regarding outputs, a degree to which the selected technique can generate meaningful outcomes with statistical significance is defined as "sensitivity". In addition, "accuracy" should be used as a common metric for testing the capabilities of a measurement technique. Lastly, for the noise part of the system, "intrusiveness" can be analyzed as a metric for measuring internal validity of the technique.

A. Sensitivity

Distribution of various CW measurement techniques across different studies is presented in Table II. A majority of prior investigations (except some that used NASA-TLX or performance measures) used statistical analysis to compare CW of different EMG-based prosthetic devices. The reasons for relying on descriptive statistics results in some studies were the small sample size [46] or study focus [47, 48]. Among the studies that used statistical analysis, except for one study that used skin conductance level (SCL), all measurements led to significant findings. Therefore, it can be concluded that all CW measurements were sensitive in terms of identifying differences in CW of prosthetic devices, except for the skin conductance level.

To improve sensitivity of SCL, researchers need to pay close attention to the experimental environment, participants' health status and their selection of variables. Environmental factors such as room temperature and humidity can impact the

TABLE II. DISTRIBUTION OF COGNITIVE WORKLOAD MEASUREMENTS ACROSS STUDIES

Category CW Measurement	No. of studies	No. of studies with statistical analysis	No. of studies with descriptive statistics only	No. of studies with significant findings ($p < .05$)	No. of studies that found no statistical difference ($p > .05$)
Cardiac	1	1	0	1	0
Respiratory	1	1	0	1	0
Skin conductance	2	2	0	1	1
Brain activity	6	6	0	6	0
Pupillometry	5	5	0	5	0
NASA-TLX	16	8	8	8	0
Task performance	6	4	2	4	0
Cognitive performance model	1	1	0	1	0

SCL, which can lead to inconsistent results [49]. Medications and hydration can also change the SCL and result in inconsistent findings [49]. Beyond this, studies have found that the accumulative SCL or different time and frequency-domain features of SCL were useful features in assessing CW [50, 51].

B. Intrusiveness

Intrusiveness is an important factor in selecting CW measurement techniques for the study especially in case of experiments with prosthetic devices due to the experiment setup (e.g., use of EMG sensors attached to the muscles, adhesive straps to prevent movements between the device and limb) and human head and body movements during the task. As shown in Table I, a majority of studies used non-physiological measurements which did not require attachments on the human body and were not intrusive. Instead, subjective measures were frequently used since they are usually administered after the experiment. In addition, use of CPM and task performance measures can be useful to measure CW as they do not require any attachments on human body and can be captured automatically or by reviewing the video recordings of the experiment session. Among the physiological measurements, cardiac, respiratory, and pupillometry measures can be less intrusive than using brain activity and EEG signals [25, 52].

C. Cost

The cost for measuring CW of prosthetic devices in laboratory-based experiments can be defined based on time, money, effort and human resources (i.e., experimenter(s) and participants). Among all the CW measurement techniques used in prior studies, the CPM is the most cost-effective approach since it does not require a large number of participants (can be even used in case studies) and experiment setup as compared to other measurement techniques [25]. However, CPM is a time-consuming technique and requires researchers to be familiar with CPM languages (e.g., GOMS family) and software. Beyond the CPM, subjective and task performance measures can also be used as low-cost CW measurement techniques as compared to physiological approaches. These techniques may require simple experiment setups (e.g., paper and pencil for questionnaires, timer, video recorder) and an experimenter(s) familiar with human subject data collection procedures to handle the entire protocol for conducting the test and questionnaire. However, use of physiological measurement techniques require specific equipment (e.g., EMG sensors, HR monitors, etc.) and

software for data collection, processing, and analysis. Furthermore, due to the high sampling rate and frequency of data collection, the post-processing of data can be time-consuming and may require additional training.

D. Accuracy

Comparison of CW measurement techniques in terms of response accuracy was not possible across the studies due to differences in the sample size, device configurations, and experimental tasks. However, some studies used multiple measurement techniques (e.g., combination of physiological and subjective measures) and found similar results [36]. Furthermore, findings of CPM were in line with physiological (e.g., pupillometry data) and task performance measures [45] which indicates that these measures can be used interchangeably. However, some brain activity signals such as P200 and P300 were found to have low accuracy in detecting CW differences among the PR and DC modes [53].

E. Guideline

Based on the findings of the literature review, we created a guideline table for selecting the most appropriate CW measurement techniques in assessing prosthetic devices considering factors such as intrusiveness, cost, accuracy, and sensitivity (Table III). Based on this guideline, researchers can select among the CW measurement techniques.

V. CONCLUSION

The objectives of this study were to: (1) review the CW measurement techniques used in prior EMG-based prosthetic device studies; and (2) provide a guideline to select the most appropriate CW measurement techniques based on the experiment setup and capabilities. Our review revealed that CW has been measured using four main techniques including: (1) physiological measures (cardiac, respiration, skin conductance, brain activity, and pupillometry); (2) subjective measures (i.e., NASA-TLX); (3) task performance; and (4) cognitive performance models. In addition, a majority of these methods (except the SCL) were sensitive in detecting CW differences among prosthetic device configurations and therefore could be useful tools in usability evaluation of these technologies. However, in order to reduce intrusiveness and cost, methods such as subjective workload measures, task performance, and CPM are more beneficial as compared to physiological measurements. The proposed guideline can be beneficial for the researchers to select the most appropriate

TABLE III. GUIDELINES FOR SELECTING APPROPRIATE CW MEASUREMENT TECHNIQUES

CW Measurement	Objective	Improve sensitivity	Reduce intrusiveness	Reduce cost				Increase accuracy
				Post-processing and analysis time	Small sample size	Expertise	Equipment	
Cognitive performance modeling	✓	✓			✓		✓	✓
Subjective measures	✓	✓		✓		✓	✓	✓
Task performance	✓	✓		✓		✓	✓	✓
Physiological measures	✓ (Except SCL)				✓			✓ (Except some brain activity signals)

CW measurement techniques based on their objectives (increasing sensitivity and accuracy, reducing intrusiveness and cost).

One limitation of this study was that the sensitivity analysis was based on the studies included in the literature review and whether they found significant differences or not. Future studies should use quantitative approaches such as meta-analysis to objectively compare different CW measurement techniques. Furthermore, this study was only focused on EMG-based prosthetic devices due to their frequent use and advantages over other configurations. However, to provide a more holistic assessment, future studies should consider all prosthetic device configurations including body-powered and hybrid configurations.

ACKNOWLEDGMENT

Funding for this research was provided by the National Science Foundation (No. IIS-1856676). The views and opinions expressed are those of authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

- [1] E. National Academies of Sciences and Medicine, The promise of assistive technology to enhance activity and work participation. 2017: National Academies Press.
- [2] J. A. Arenas, Evaluation of a Novel Myoelectric Training Device. 2015.
- [3] S. L. Carey, D. J. Lura, and M. J. Highsmith, Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. *Journal of Rehabilitation Research & Development*, 2015. **52**(3).
- [4] B. W. Heller, D. Datta, and J. Howitt, A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees. *Clinical Rehabilitation*, 2000. **14**(5): p. 518-522.
- [5] J. Duysens, Z. Potocanac, J. Hegeman, S. Verschueren, and B. J. McFadyen, Split-second decisions on a split belt: does simulated limping affect obstacle avoidance? *Experimental Brain Research*, 2012. **223**(1): p. 33-42.
- [6] S. M. Engdahl, B. P. Christie, B. Kelly, A. Davis, C. A. Chestek, and D. H. Gates, Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. *Journal of neuroengineering and rehabilitation*, 2015. **12**(1): p. 53.
- [7] C. Gaskins, K. Kontson, E. P. Shaw, I. M. Shuggi, M. J. Ayoub, J. C. Rietschel, M. W. Miller, and R. Gentili, Mental Workload Assessment During Simulated Upper Extremity Prosthetic Performance. *Archives of Physical Medicine and Rehabilitation*, 2018. **99**(10): p. e33.
- [8] S. Mallik and M. Dutta, A Study on Control of Myoelectric Prosthetic Hand Based on Surface EMG Pattern Recognition. *International Journal of Advanced Research in Science and Engineering*, 2017. **6**(7): p. 635-646.
- [9] P. K. Artemiadis and K. J. Kyriakopoulos, A switching regime model for the EMG-based control of a robot arm. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 2010. **41**(1): p. 53-63.
- [10] J. Parr, S. J. Vine, M. R. Wilson, N. Harrison, and G. Wood, Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training. *Journal of neuroengineering and rehabilitation*, 2019. **16**(1): p. 52.
- [11] R. Scott and P. Parker, Myoelectric prostheses: state of the art. *Journal of medical engineering & technology*, 1988. **12**(4): p. 143-151.
- [12] M. L. Davidson, Development of a Novel Prosthetic Wrist Device Incorporating the Dart Thrower's Motion. 2017: University of Colorado at Denver.
- [13] I. M. Rezazadeh, S. Firoozabadi, S. H. Golpayegani, and H. Hu, Controlling a virtual forearm prosthesis using an adaptive and affective Human-Machine Interface. in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011. IEEE.
- [14] E. Ruiz Ramírez, Control of a hand prosthesis using mixed electromyography and pressure sensing. 2016, Universitat Politècnica de Catalunya.
- [15] S. Deeny, C. Chicoine, L. Hargrove, T. Parrish, and A. Jayaraman, A Simple ERP Method for Quantitative Analysis of Cognitive Workload in Myoelectric Prosthesis Control and Human-Machine Interaction. *Plos One*, 2014. **9**(11).
- [16] R. Volkmar, Semi-Autonomous Bimanual Prosthesis Control. 2017, Georg-August-Universität Göttingen.
- [17] R. Volkmar, S. Dosen, J. Gonzalez-Vargas, M. Baum, and M. Markovic, Improving bimanual interaction with a prosthesis using semi-autonomous control. *Journal of neuroengineering and rehabilitation*, 2019. **16**(1): p. 140.
- [18] G. de Andrade and D. Thamils, Development and evaluation of human-machine interfaces for the control and actuation of upper-limb prostheses: Desenvolvimento e avaliação de interfaces homem-máquina para o controle e atuação de próteses de membros superiores. 2018.
- [19] H. Huang, T. A. Kuiken, and R. D. Lipschutz, A strategy for identifying locomotion modes using surface electromyography. *IEEE Transactions on Biomedical Engineering*, 2008. **56**(1): p. 65-73.
- [20] N. Garcia-Hernandez, K. Garza-Martinez, V. Parra-Vega, A. Alvarez-Sánchez, and L. Conchas-Arteaga, Development of an EMG-based exergaming system for isometric muscle training and its effectiveness to enhance motivation, performance and muscle strength. *International Journal of Human-Computer Studies*, 2019. **124**: p. 44-55.
- [21] P. Geethanjali, Myoelectric control of prosthetic hands: state-of-the-art review. *Medical devices (Auckland, N.Z.)*, 2016. **9**: p. 247-255.
- [22] M. Connan, E. Ruiz Ramírez, B. Vodermayer, and C. Castellini, Assessment of a wearable force-and electromyography device and comparison of the related signals for myocontrol. *Frontiers in neurorobotics*, 2016. **10**: p. 17.
- [23] F. Eggemeier and G. Wilson, Workload assessment in multi-task environments. *Multiple task performance*. DL Damos. London, GB. 1991, Taylor & Francis, Ltd.
- [24] B. Cain, A review of the mental workload literature. 2007, Defence Research And Development Toronto (Canada).
- [25] M. Zahabi, M. M. White, W. Zhang, A. T. Winslow, F. Zhang, H. Huang, and D. B. Kaber, Application of Cognitive Task Performance Modeling for Assessing Usability of Transradial Prostheses. *IEEE Transactions on Human-Machine Systems*, 2019. **49**(4): p. 381-387.

[26] S. K. Card, The psychology of human-computer interaction. 2018: Crc Press.

[27] L.-H. Teo, B. John, and M. Blackmon. CogTool-Explorer: a model of goal-directed user exploration that considers information layout. in Proceedings of the SIGCHI conference on human factors in computing systems. 2012.

[28] S. Estes, Cogulator. The MITRE Corporation, 2017.

[29] A. Kannenberg and B. Zacharias. Difficulty of performing activities of daily living with the Michelangelo Multigrip and traditional myoelectric hands. in American Academy of Orthotists & Prosthetists 40th Academy Annual Meeting &Scientific Symposium, FPTH14. 2014.

[30] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Annals of internal medicine*, 2009. **151**(4): p. 264-269.

[31] R. A. Miranda, W. D. Casebeer, A. M. Hein, J. W. Judy, E. P. Krotkov, T. L. Laabs, J. E. Manzo, K. G. Pankratz, G. A. Pratt, and J. C. Sanchez, DARPA-funded efforts in the development of novel brain-computer interface technologies. *Journal of neuroscience methods*, 2015. **244**: p. 52-67.

[32] J.-F. Gehanno, L. Rollin, and S. Darmoni, Is the coverage of google scholar enough to be used alone for systematic reviews. *BMC Medical Informatics and Decision Making*, 2013. **13**(1): p. 7.

[33] A. J. Casson, S. Smith, J. S. Duncan, and E. Rodriguez-Villegas. Wearable EEG: what is it, why is it needed and what does it entail? in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008. IEEE.

[34] T. Carlson, L. Tonin, S. Perdikis, R. Leeb, and J. d. R. Millán. A hybrid BCI for enhanced control of a telepresence robot. in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2013. IEEE.

[35] J. Gonzalez, H. Suzuki, N. Natsumi, M. Sekine, and W. Yu. Auditory display as a prosthetic hand sensory feedback for reaching and grasping tasks. in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012. IEEE.

[36] J. Gonzalez, H. Soma, M. Sekine, and W. Yu, Psychophysiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study. *Journal of neuroengineering and rehabilitation*, 2012. **9**(1): p. 33.

[37] L. Berntsson, Evaluation of cognitive workload using EEG: Investigation of how sensory feedback improves function of osseointegrated upper limb prostheses. 2019.

[38] M. Markovic, M. A. Schweisfurth, L. F. Engels, T. Bentz, D. Wüstefeld, D. Farina, and S. Dosen, The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. *Journal of neuroengineering and rehabilitation*, 2018. **15**(1): p. 28.

[39] I. M. Rezazadeh, M. Firoozabadi, H. Hu, and S. M. R. H. Golpayegani, Co-adaptive and affective human-machine interface for improving training performances of virtual myoelectric forearm prosthesis. *IEEE Transactions on affective computing*, 2012. **3**(3): p. 285-297.

[40] T. A. Kuiken, L. A. Miller, K. Turner, and L. J. Hargrove, A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis. *IEEE journal of translational engineering in health and medicine*, 2016. **4**: p. 1-8.

[41] L. Resnik, H. H. Huang, A. Winslow, D. L. Crouch, F. Zhang, and N. Wolk, Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. *Journal of neuroengineering and rehabilitation*, 2018. **15**(1): p. 23.

[42] M. M. White, W. Zhang, A. T. Winslow, M. Zahabi, F. Zhang, H. Huang, and D. B. Kaber, Usability comparison of conventional direct control versus pattern recognition control of transradial prostheses. *IEEE Transactions on Human-Machine Systems*, 2017. **47**(6): p. 1146-1157.

[43] C. M. Light, P. H. Chappell, and P. J. Kyberd, Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. *Archives of physical medicine and rehabilitation*, 2002. **83**(6): p. 776-783.

[44] E. Raveh, J. Friedman, and S. Portnoy, Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm. *Clinical rehabilitation*, 2018. **32**(10): p. 1308-1316.

[45] W. Zhang, M. White, M. Zahabi, A. T. Winslow, F. Zhang, H. Huang, and D. Kaber. Cognitive workload in conventional direct control vs. pattern recognition control of an upper-limb prosthesis. in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2016. IEEE.

[46] J. Gonzalez and W. Yu. Auditory Display as an Aid for Prosthetic Hand Manipulation: Preliminary Results. 2011. International Community for Auditory Display.

[47] J. M. Bradley, Enhancing Human-Machine Interaction with Wearable Haptic Devices. 2018, Rice University.

[48] S. M. O'Meara, M. C. Shyr, K. R. Lyons, and S. S. Joshi. Comparing Two Different Cursor Control Methods which Use Single-Site Surface Electromyography. in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). 2019. IEEE.

[49] R. W. Picard, S. Fedor, and Y. Ayzenberg, Multiple arousal theory and daily-life electrodermal activity asymmetry. *Emotion Review*, 2016. **8**(1): p. 62-75.

[50] N. Nourbakhsh, F. Chen, Y. Wang, and R. A. Calvo, Detecting users' cognitive load by galvanic skin response with affective interference. *ACM Transactions on Interactive Intelligent Systems (TiiS)*, 2017. **7**(3): p. 1-20.

[51] N. Nourbakhsh, Y. Wang, F. Chen, and R. A. Calvo. Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. in Proceedings of the 24th Australian Computer-Human Interaction Conference. 2012.

[52] P. Sowden and M. Barrett, Psychophysiological methods. 2006.

[53] S. Deeny, M. Barstead, C. Chicoine, L. Hargrove, T. Parrish, and A. Jayaraman, EEG as an outcome measure for cognitive workload during prosthetic use. 2014.