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Abstract—  Previous  studies have found that
electromyography (EMG)-based prosthetic devices provide
higher grasping force, increase functional performance, and
have greater range of motion over conventional prostheses.
However, cognitive workload (CW) is still one of the issues that
can negatively affect device usability and satisfaction. In order
to evaluate CW of prosthetic devices early in the design cycle, it
is first necessary to select the most appropriate measures.
Therefore, the objectives of this study were to: (1) review the
CW measurement techniques used in prior EMG-based
prosthetic device evaluations; and (2) provide guidelines to
select the most appropriate measurement techniques. The
findings suggested that cognitive performance models (CPM),
subjective measures, task performance measures, and some
physiological measures were sensitive in detecting CW
differences among prosthetic device -configurations and
therefore could be useful tools in usability evaluation of these
technologies. However, in order to reduce intrusiveness and
cost, methods such as subjective workload measures, task
performance, and CPM are more beneficial as compared to
physiological measurements. Guidelines proposed in this study
can be beneficial to select the most appropriate CW
measurement techniques in order to improve sensitivity and
accuracy and reduce intrusiveness and cost.

Keywords—mental workload, EMG, prosthetic device,
literature review

I. INTRODUCTION

Amputee patients use prosthetic devices to perform
activities of daily living (ADLs). These devices can be
categorized into four main types including passive, body-
powered, externally powered (e.g., advanced prosthetic
devices controlled by electromyography (EMG) or muscle
activation signals), and hybrid prostheses [1]. Studies have
shown that EMG-based prosthetic devices provide higher
grasping force, increase functional performance, and have
greater range of motion over conventional prostheses [2].
These devices have a natural look, are suitable for light
everyday activities, and have been found to be beneficial for
individuals experiencing phantom limb pain [2, 3].
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Use of prosthetic devices requires substantial amount of
cognitive resources. These resources are used to compensate
for the lack of sufficient feedback and degrees of freedom
from the amputated limb [4], which can also reduce task
performance [5]. Furthermore, high cognitive workload (CW)
while using the myoelectric prosthesis device can negatively
affect patient rehabilitation. Amputee patients often report not
using their prosthetic device for performing ADLs due to its
high CW and poor usability [6]. Thus, understanding CW and
underlying attentional resources in using prosthetic devices
can be beneficial in order to improve evaluation and
development of future technologies [7].

A. Myoelectric control scheme

Myoelectric prosthetic devices can be categorized based
on their control scheme into seven categories including on/off,
proportional, direct, finite state machine, pattern recognition,
regression-based, and posture-based control schemes [8]. The
on/off control is suitable for two degrees of freedom. For
example, the prosthetic limb can be operated in both
clockwise and counterclockwise directions [9, 10]. In the
proportional control scheme, the speed of a servo-motor,
moving in one direction, is proportionally controlled by the
magnitude of EMG signal captured from one agonist-
antagonist muscle pair [11-14]. Direct control (DC) is similar
to the proportional control but it maps amplitude of each EMG
channel to individual function and corresponding mechanical
output [15-17]. Therefore, it is difficult to achieve
independent control of the arm due to crosstalk in EMG
signals in the DC method [8]. In the finite state machine
control, hand gestures are predefined as states. Transition
among states is also predefined or decoded from the inputs [8].

The pattern recognition (PR) technique is a data-driven
control approach based on machine learning algorithms [18]
and has been mainly used for transradial amputees with
targeted muscle re-innervation surgeries [19]. There are many
approaches such as Bayesian classifiers, fuzzy clustering
algorithms, neural networks, and hierarchical control in the
PR scheme [8]. The linear regression-based control scheme
generates the effort to perform hand grip gesture from the
surface EMG of an intact forearm muscle for feature
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extraction [20]. In posture control approach, the EMG signals
are used as inputs for the principal component domain.
Specific postures could then be achieved by linearly
transforming those EMG signals. This method provides
simultaneous myoelectric control of prosthetic arm [21, 22].

B. Cognitive workload measurement techniques

CW can be measured using physiological measures,
subjective rating scales, task performance measures [23], and
cognitive performance models (CPM). Physiological
measures (e.g., heart rate (HR) and heart rate variability
(HRV)) provide information regarding psychological
processes and their effect on body [24]. These measures are
continuous and objective. However, physiological signals can
be affected by head or body movements especially in
experiments using prosthetic devices or electrode caps [25].

Subjective ratings quantify humans’ understanding and
judgments of their experienced mental demand. While these
methods have high face validity, their interpretation and
prediction performance is uncertain [24]. Performance
measures are classified into two major categories including
primary and secondary task measures. Primary task measures
evaluate participants’ performance on the main task.
Secondary task measures explain the remaining cognitive
capacity under the primary tasks. Secondary task measures are
more diagnostic than primary task measurements.
Performance measures have advantages in that they evaluate
participants’ response on the tasks directly. Also, they are
useful where subject’s capacity cannot afford to process
mental demands such that performance degrades from the
baseline or ideal level. However, these methods tend to have
low scientific rigor which makes the interpretation of the
results difficult [24].

CPMs such as Goals, Operators, Methods, and Selection
rules (GOMs) can provide representations of human
performance (e.g., learning time, execution time, or errors)
[26]. These models can predict the amount of time that an
expert needs to retrieve information from memory, select from
decision options, and execute motor movements. CPMs can
be coded, compiled, and run using computer program software
such as Cogulator and CogTool [27, 28].

C. Problem statement

High CW of prosthetic devices led to usability issues and
device rejection for amputee patients [29]. Considering the
advantages of EMG-based prosthetic devices and techniques
for measuring CW, it is necessary to understand what
measurement techniques are suitable for assessing CW of
these devices. Identification of appropriate CW measurement
techniques can help researchers and device manufacturers to
evaluate CW of prosthetic devices early in the design cycle in
order to improve device usability. Thus, the objectives of this
study were to: (1) review CW measurement techniques used
in prior EMG-based prosthetic device evaluations; and (2)
provide a guideline to select the most appropriate CW
measurement technique in different conditions.
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II. METHOD

A literature review was conducted based on the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [30]. Databases including PubMed,
Cochrane, Compendex, Inspec, Proquest, IEEE, Engineering
Research Database, and Web of Science (WOS) were
searched in order to find relevant research published since
2005 (the year in which Defense Advanced Research Projects
Agency (DARPA) started the Revolutionizing Prosthetics
program) [31]. Additional search was also conducted using
manual search in Google Scholar, as it is the most
comprehensive search engine [32].

Eligibility criteria included: relevant, English-language
papers, and any research studies (manually) identified with a
focus on CW in EMG-based prosthetic devices. Keywords
included prosthe* (all words starting with ‘prosthe’) and
cognitive (or mental) workload combined with NASA-TLX,
EMG, electroencephalogram (EEG), heart rate, respiratory
rate, skin conductance (SC), skin temperature (ST), blink
rate, and pupillometry. The literature search was completed
in 2019. From the initial records found based on the title and
abstract (n = 3,727), 145 studies were reviewed by the
authors. Upon completion of the screening process, 26 studies
were included in this study.

III. RESULTS

Table 1 presents a summary of CW measurement
techniques in prior studies assessing EMG-based prosthetic
devices. These measurements and their sensitivity in assessing
CW are explained in detail below.

A. Physiological measurements

Five major physiological measures of CW were used in
prior studies including cardiac (e.g., heart rate variability),
respiratory (e.g., respiratory rate), skin (e.g., skin conductance
level), brain activity (e.g., late positive potential), and
pupillometry (e.g., blink rate) measures (Table I). Brain
activity and pupillometry measures were the most frequently
used measures. Brain activity provides the ability to examine
CW with high temporal resolution and a certain degree of
freedom for movements during data collection. This facilitates
the adaptability to clinical, operational, or real-world settings
[33, 34]. Pupillometry responses are continuous and
unobtrusive methods for measuring CW. Especially measures
such as blink rate, eye-closure intervals, and pupil diameter
changes over time were used to compare PR and DC devices
in upper-limb prosthetic studies due to their robustness to
body movement [25]. Blink rate was also a sensitive measure
in comparing CW of prosthetic devices with different
feedback modalities [35] as well as cardiac and respiratory
measures [35, 36]. While both cardiac and respiratory
measurement techniques were sensitive (i.e., showed
significant differences in CW among different feedback
modalities), results regarding the skin conductance measure
were mixed (some studies found skin conductance to be
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sensitive while others did not find any significant effect) [35,

B. Subjective measurement

36]. NASA Task Load Index (NASA-TLX) questionnaire was
the only subjective measurement technique used in prior
studies. NASA-TLX identifies the overall workload as well as

TABLE I. A SUMMARY OF COGNITIVE WORKLOAD MEASUREMENTS IN EMG-BASED PROSTHETIC STUDIES
CW Measurements
Device Physiological Subjective o
Ref. . fi
e configuration Cardi Resoirati Skin Brain puoillomet (NASA- erf”(l)":;l;nce CPM Significance
ardiac espiration | Guctance | Activity upillometry TLX) p
On/off,

[2] proportional v p<.05
[47] On/off N/A
[34] On/off v N/A
[22] Posture v N/A
[12] Proportional v p=.024
[18] PR v N/A

P200: p<.01
[53] DC, PR v P300: p<.01
LPP: p<.01
[15] DC, PR v LPP: p<.05
[20] Regression N/A
[46] Posture N/A
NT: p<.01
EEG: p<.05
[35] Posture v v (4 v v HR: p<.05
RR: p<.01
BR: p<.05
[36] Posture (4 v v NT: p<.05
SCL: p<.01
[40] DC, PR v N/A
Proportional,
[38] oM <05
[48] On/off N/A
TLS: p<.001
[10] On/off v v GS: p<.001
EEG: p<.001
[44] On/off p=.024
[41] DC, PR N/A
) EEG: p<.001
[13] Proportional (4 NT: p<.001
[39] Proportional EEG: p<.001
[14] Proportional N/A
[16] DC p<.05
[17] DC p<.05
TP: p=.0472
[42] DC, PR v v NPL p=.0016
PS: p<.0001
[25] DC, PR v v v TP. <0001
TP: p <.0001
[45] DC, PR v v PS: <0001

Note. N/A= No statistical analysis (descriptive statistics only), BR=Blinking rate, CPM= Cognitive performance model, EEG= Electroencephalogram, FSM= Finite
state machine, GS=Gaze shifting, HR=Heart rate, HR V=Heart rate variability, LPP=Late Positive Potential, NPI=Number of Pupil Increases Per Second, NT=NASA-
TLX, PS=Pupil size, RR= Respiratory rate, SCL=Skin conductance level, TLS=Target locking strategy, TP=Task performance.
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the magnitude of each factor (i.e., mental demand, physical
demand, temporal demand, performance, effort, and
frustration level) in motor tasks [37]. Another reason for
frequent use of NASA-TLX is its unobtrusiveness. Unlike
some physiological measurements that are sensitive to body
motions or environment, subjective workload measures are
collected after the trial (or experiment) and therefore do not
interfere with the task execution. NASA-TLX was found to be
a sensitive measure to assess CW of different EMG-based
prosthetic devices in half of the studies [2, 12, 16, 17, 35, 36,
38, 39] (other studies only provided descriptive statistics).
These investigations were focused on comparing different
device configurations (e.g., on/off, proportional, posture, and
direct control), control methods (e.g., linear, non-linear
proportional control), sensory feedback (visual, auditory,
vibrotactile), and training duration.

C. Task performance

Task performance measures were especially used for
comparing the DC and PR control modes [40] (Table I) when
the patients were performing ADL tasks (i.e., clothespin
relocation task (CRT) [41, 42], Southampton Handness
Assessment Procedure (SHAP) [40], Box and Blocks (B&B)
task, Jebsen-Taylor test (JT) [40], and Cubbies tasks [40]).
These measures included the time to complete the task (TCT)
(for the CRT, JT, and Cubbies task), the number of items
transported (for the B&B task), and the index of function (IoF)
(for the SHAP task; a metric of the operator’s hand function
compared with that of a peer norm) [43]. Task performance
measures such as TCT and number of transported items were
found to be sensitive (i.e., led to significant findings) in four
out of six studies [25, 42, 44, 45] comparing different
prosthetic configurations (e.g., DC, PR, on/off) and feedback
modalities.

D. Cognitive performance model

Only one study used CPM to assess CW of prosthetic
devices [25]. CPM allows estimation of task performance,
working memory chunks (measure of CW), and number of
perceptual, cognitive, and motor operators in using prosthetic
devices without the need to conduct human-subject
experiments. Zahabi et al. [25] found that additional working

memory demands to learn and memorize a certain movement
in the DC mode (e.g., mode change or gestures) led to higher
CW relative to the PR scheme. This type of analysis is not
possible with physiological measurements and is not easy to
discriminate in subjective ratings.

IV. DiscussiON

Four metrics including sensitivity, intrusiveness, cost, and
accuracy were established based on the screened studies to
identify the most appropriate CW measurement techniques
considering a system perspective (e.g., inputs, outputs, and
noise). Regarding the inputs, human effort, time and monetary
values can be considered as “cost”. Regarding outputs, a
degree to which the selected technique can generate
meaningful outcomes with statistical significance is defined as
“sensitivity”. In addition, “accuracy” should be used as a
common metric for testing the capabilities of a measurement
technique. Lastly, for the noise part of the system,
“Intrusiveness” can be analyzed as a metric for measuring
internal validity of the technique.

A. Sensitivity

Distribution of various CW measurement techniques
across different studies is presented in Table II. A majority of
prior investigations (except some that used NASA-TLX or
performance measures) used statistical analysis to compare
CW of different EMG-based prosthetic devices. The reasons
for relying on descriptive statistics results in some studies
were the small sample size [46] or study focus [47, 48].
Among the studies that used statistical analysis, except for one
study that used skin conductance level (SCL), all
measurements led to significant findings. Therefore, it can be
concluded that all CW measurements were sensitive in terms
of identifying differences in CW of prosthetic devices, except
for the skin conductance level.

To improve sensitivity of SCL, researchers need to pay
close attention to the experimental environment, participants’
health status and their selection of variables. Environmental
factors such as room temperature and humidity can impact the

TABLE II. DISTRIBUTION OF COGNITIVE WORKLOAD MEASUREMENTS ACROSS STUDIES

Category No. of No. of studies No. of studies with No. of studies with No. of studies that found
s tu(iies with statistical | descriptive statistics significant findings no statistical difference
CW Measurement analysis only (p<.05) (p>.05)
Cardiac 1 1 0 1
Respiratory 1 1 0 1 0
Skin conductance 2 2 0 1 1
Brain activity 6 6 0 6 0
Pupillometry 5 5 0 5 0
Task performance 6 4 ) 4 0
Cognitive performance 1 1 0 | 0
model
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SCL, which can lead to inconsistent results [49]. Medications
and hydration can also change the SCL and result in
inconsistent findings [49]. Beyond this, studies have found
that the accumulative SCL or different time and frequency-
domain features of SCL were useful features in assessing CW
[50, 51].

B. Intrusiveness

Intrusiveness is an important factor in selecting CW
measurement techniques for the study especially in case of
experiments with prosthetic devices due to the experiment
setup (e.g., use of EMG sensors attached to the muscles,
adhesive straps to prevent movements between the device and
limb) and human head and body movements during the task.
As shown in Table I, a majority of studies used non-
physiological measurements which did not require
attachments on the human body and were not intrusive.
Instead, subjective measures were frequently used since they
are usually administered after the experiment. In addition, use
of CPM and task performance measures can be useful to
measure CW as they do not require any attachments on human
body and can be captured automatically or by reviewing the
video recordings of the experiment session. Among the
physiological measurements, cardiac, respiratory, and
pupillometry measures can be less intrusive than using brain
activity and EEG signals [25, 52].

C. Cost

The cost for measuring CW of prosthetic devices in
laboratory-based experiments can be defined based on time,
money, effort and human resources (i.e., experimenter(s) and
participants). Among all the CW measurement techniques
used in prior studies, the CPM is the most cost-effective
approach since it does not require a large number of
participants (can be even used in case studies) and experiment
setup as compared to other measurement techniques [25].
However, CPM is a time-consuming technique and requires
researchers to be familiar with CPM languages (e.g., GOMS
family) and software. Beyond the CPM, subjective and task
performance measures can also be used as low-cost CW
measurement techniques as compared to physiological
approaches. These techniques may require simple experiment
setups (e.g., paper and pencil for questionnaires, timer, video
recorder) and an experimenter(s) familiar with human subject
data collection procedures to handle the entire protocol for
conducting the test and questionnaire. However, use of
physiological measurement techniques require specific
equipment (e.g., EMG sensors, HR monitors, etc.) and

software for data collection, processing, and analysis.
Furthermore, due to the high sampling rate and frequency of
data collection, the post-processing of data can be time-
consuming and may require additional training.

D. Accuracy

Comparison of CW measurement techniques in terms of
response accuracy was not possible across the studies due to
differences in the sample size, device configurations, and
experimental tasks. However, some studies used multiple
measurement techniques (e.g., combination of physiological
and subjective measures) and found similar results [36].
Furthermore, findings of CPM were in line with
physiological (e.g., pupillometry data) and task performance
measures [45] which indicates that these measures can be
used interchangeably. However, some brain activity signals
such as P200 and P300 were found to have low accuracy in
detecting CW differences among the PR and DC modes [53].

E. Guideline

Based on the findings of the literature review, we created
a guideline table for selecting the most appropriate CW
measurement techniques in assessing prosthetic devices
considering factors such as intrusiveness, cost, accuracy, and
sensitivity (Table III). Based on this guideline, researchers
can select among the CW measurement techniques.

V. CONCLUSION

The objectives of this study were to: (1) review the CW
measurement techniques used in prior EMG-based prosthetic
device studies; and (2) provide a guideline to select the most
appropriate CW measurement techniques based on the
experiment setup and capabilities. Our review revealed that
CW has been measured using four main techniques including:
(1) physiological measures (cardiac, respiration, skin
conductance, brain activity, and pupillometry); (2) subjective
measures (i.e., NASA-TLX); (3) task performance; and (4)
cognitive performance models. In addition, a majority of
these methods (except the SCL) were sensitive in detecting
CW differences among prosthetic device configurations and
therefore could be useful tools in usability evaluation of these
technologies. However, in order to reduce intrusiveness and
cost, methods such as subjective workload measures, task
performance, and CPM are more beneficial as compared to
physiological measurements. The proposed guideline can be
beneficial for the researchers to select the most appropriate

TABLE III. GUIDELINES FOR SELECTING APPROPRIATE CW MEASUREMENT TECHNIQUES

Objective Reduce cost
Improve Reduce Increase
sensitivity intrusiveness | Post-processing and Small sample . . accuracy
CW Measurement analysis time size Expertise Equipment
Cognitive per‘formance v v v v v
modeling
Subjective measures v v v v v v
Task performance v v v v v v
v (Except some
Physiological measures v (Except v brain activity
SCL) .
signals)
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CW measurement techniques based on their objectives
(increasing sensitivity and accuracy, reducing intrusiveness
and cost).

One limitation of this study was that the sensitivity
analysis was based on the studies included in the literature
review and whether they found significant differences or not.
Future studies should use quantitative approaches such as
meta-analysis to objectively compare different CW
measurement techniques. Furthermore, this study was only
focused on EMG-based prosthetic devices due to their
frequent use and advantages over other configurations.
However, to provide a more holistic assessment, future studies
should consider all prosthetic device configurations including
body-powered and hybrid configurations.
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