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Abstract— Previous studies have found that 

electromyography (EMG)-based prosthetic devices provide 

higher grasping force, increase functional performance, and 

have greater range of motion over conventional prostheses. 

However, cognitive workload (CW) is still one of the issues that 

can negatively affect device usability and satisfaction. In order 

to evaluate CW of prosthetic devices early in the design cycle, it 

is first necessary to select the most appropriate measures. 

Therefore, the objectives of this study were to: (1) review the 

CW measurement techniques used in prior EMG-based 

prosthetic device evaluations; and (2) provide guidelines to 

select the most appropriate measurement techniques. The 

findings suggested that cognitive performance models (CPM), 

subjective measures, task performance measures, and some 

physiological measures were sensitive in detecting CW 

differences among prosthetic device configurations and 

therefore could be useful tools in usability evaluation of these 

technologies. However, in order to reduce intrusiveness and 

cost, methods such as subjective workload measures, task 

performance, and CPM are more beneficial as compared to 

physiological measurements. Guidelines proposed in this study 

can be beneficial to select the most appropriate CW 

measurement techniques in order to improve sensitivity and 

accuracy and reduce intrusiveness and cost. 

Keywords—mental workload, EMG, prosthetic device, 

literature review 

I. INTRODUCTION 

Amputee patients use prosthetic devices to perform 
activities of daily living (ADLs). These devices can be 
categorized into four main types including passive, body-
powered, externally powered (e.g., advanced prosthetic 
devices controlled by electromyography (EMG) or muscle 
activation signals), and hybrid prostheses [1]. Studies have 
shown that EMG-based prosthetic devices provide higher 
grasping force, increase functional performance, and have 
greater range of motion over conventional prostheses [2]. 
These devices have a natural look, are suitable for light 
everyday activities, and have been found to be beneficial for 
individuals experiencing phantom limb pain [2, 3]. 

Use of prosthetic devices requires substantial amount of 
cognitive resources. These resources are used to compensate 
for the lack of sufficient feedback and degrees of freedom 
from the amputated limb [4], which can also reduce task 
performance [5]. Furthermore, high cognitive workload (CW) 
while using the myoelectric prosthesis device can negatively 
affect patient rehabilitation. Amputee patients often report not 
using their prosthetic device for performing ADLs due to its 
high CW and poor usability [6]. Thus, understanding CW and 
underlying attentional resources in using prosthetic devices 
can be beneficial in order to improve evaluation and 
development of future technologies [7]. 

A. Myoelectric control scheme 

Myoelectric prosthetic devices can be categorized based 
on their control scheme into seven categories including on/off, 
proportional, direct, finite state machine, pattern recognition, 
regression-based, and posture-based control schemes [8]. The 
on/off control is suitable for two degrees of freedom. For 
example, the prosthetic limb can be operated in both 
clockwise and counterclockwise directions [9, 10]. In the 
proportional control scheme, the speed of a servo-motor, 
moving in one direction, is proportionally controlled by the 
magnitude of EMG signal captured from one agonist-
antagonist muscle pair [11-14]. Direct control (DC) is similar 
to the proportional control but it maps amplitude of each EMG 
channel to individual function and corresponding mechanical 
output [15-17]. Therefore, it is difficult to achieve 
independent control of the arm due to crosstalk in EMG 
signals in the DC method [8]. In the finite state machine 
control, hand gestures are predefined as states. Transition 
among states is also predefined or decoded from the inputs [8].  

The pattern recognition (PR) technique is a data-driven 
control approach based on machine learning algorithms [18] 
and has been mainly used for transradial amputees with 
targeted muscle re-innervation surgeries [19]. There are many 
approaches such as Bayesian classifiers, fuzzy clustering 
algorithms, neural networks, and hierarchical control in the 
PR scheme [8]. The linear regression-based control scheme 
generates the effort to perform hand grip gesture from the 
surface EMG of an intact forearm muscle for feature Funding for this research was provided by the National Science 
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extraction [20]. In posture control approach, the EMG signals 
are used as inputs for the principal component domain. 
Specific postures could then be achieved by linearly 
transforming those EMG signals. This method provides 
simultaneous myoelectric control of prosthetic arm [21, 22]. 

B. Cognitive workload measurement techniques 

CW can be measured using physiological measures, 
subjective rating scales, task performance measures [23], and 
cognitive performance models (CPM). Physiological 
measures (e.g., heart rate (HR) and heart rate variability  
(HRV)) provide information regarding psychological 
processes and their effect on body [24]. These measures are 
continuous and objective. However, physiological signals can 
be affected by head or body movements especially in 
experiments using prosthetic devices or electrode caps [25]. 

Subjective ratings quantify humans’ understanding and 
judgments of their experienced mental demand. While these 
methods have high face validity, their interpretation and 
prediction performance is uncertain [24]. Performance 
measures are classified into two major categories including 
primary and secondary task measures. Primary task measures 
evaluate participants’ performance on the main task. 
Secondary task measures explain the remaining cognitive 
capacity under the primary tasks. Secondary task measures are 
more diagnostic than primary task measurements. 
Performance measures have advantages in that they evaluate 
participants’ response on the tasks directly. Also, they are 
useful where subject’s capacity cannot afford to process 
mental demands such that performance degrades from the 
baseline or ideal level. However, these methods tend to have 
low scientific rigor which makes the interpretation of the 
results difficult [24].  

CPMs such as Goals, Operators, Methods, and Selection 
rules (GOMs) can provide representations of human 
performance (e.g., learning time, execution time, or errors) 
[26]. These models can predict the amount of time that an 
expert needs to retrieve information from memory, select from 
decision options, and execute motor movements. CPMs can 
be coded, compiled, and run using computer program software 
such as Cogulator and CogTool [27, 28].   

C. Problem statement 

High CW of prosthetic devices led to usability issues and 
device rejection for amputee patients [29]. Considering the 
advantages of EMG-based prosthetic devices and techniques 
for measuring CW, it is necessary to understand what 
measurement techniques are suitable for assessing CW of 
these devices. Identification of appropriate CW measurement 
techniques can help researchers and device manufacturers to 
evaluate CW of prosthetic devices early in the design cycle in 
order to improve device usability. Thus, the objectives of this 
study were to: (1) review CW measurement techniques used 
in prior EMG-based prosthetic device evaluations; and (2) 
provide a guideline to select the most appropriate CW 
measurement technique in different conditions.   

 

II. METHOD 

A literature review was conducted based on the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines [30]. Databases including PubMed, 

Cochrane, Compendex, Inspec, Proquest, IEEE, Engineering 

Research Database, and Web of Science (WOS) were 

searched in order to find relevant research published since 

2005 (the year in which Defense Advanced Research Projects 

Agency (DARPA) started the Revolutionizing Prosthetics 

program) [31]. Additional search was also conducted using 

manual search in Google Scholar, as it is the most 

comprehensive search engine [32]. 

Eligibility criteria included: relevant, English-language 

papers, and any research studies (manually) identified with a 

focus on CW in EMG-based prosthetic devices. Keywords 

included prosthe* (all words starting with ‘prosthe’) and 

cognitive (or mental) workload combined with NASA-TLX, 

EMG, electroencephalogram (EEG), heart rate, respiratory 

rate, skin conductance (SC), skin temperature (ST), blink 

rate, and pupillometry. The literature search was completed 

in 2019.  From the initial records found based on the title and 

abstract (n = 3,727), 145 studies were reviewed by the 

authors. Upon completion of the screening process, 26 studies 

were included in this study.  

 

III. RESULTS 

Table 1 presents a summary of CW measurement 
techniques in prior studies assessing EMG-based prosthetic 
devices. These measurements and their sensitivity in assessing 
CW are explained in detail below.  

A. Physiological measurements 

Five major physiological measures of CW were used in 
prior studies including cardiac (e.g., heart rate variability), 
respiratory (e.g., respiratory rate), skin (e.g., skin conductance 
level), brain activity (e.g., late positive potential), and 
pupillometry (e.g., blink rate) measures (Table I). Brain 
activity and pupillometry measures were the most frequently 
used measures. Brain activity provides the ability to examine 
CW with high temporal resolution and a certain degree of 
freedom for movements during data collection. This facilitates 
the adaptability to clinical, operational, or real-world settings 
[33, 34]. Pupillometry responses are continuous and 
unobtrusive methods for measuring CW. Especially measures 
such as blink rate, eye-closure intervals, and pupil diameter 
changes over time were used to compare PR and DC devices 
in upper-limb prosthetic studies due to their robustness to 
body movement [25]. Blink rate was also a sensitive measure 
in comparing CW of prosthetic devices with different 
feedback modalities [35] as well as cardiac and respiratory 
measures [35, 36]. While both cardiac and respiratory 
measurement techniques were sensitive (i.e., showed 
significant differences in CW among different feedback 
modalities), results regarding the skin conductance measure 
were mixed (some studies found skin conductance to be 
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sensitive while others did not find any significant effect) [35, 
36].  

B. Subjective measurement 

NASA Task Load Index (NASA-TLX) questionnaire was 
the only subjective measurement technique used in prior 
studies. NASA-TLX identifies the overall workload as well as 

TABLE I. A SUMMARY OF COGNITIVE WORKLOAD MEASUREMENTS IN EMG-BASED PROSTHETIC STUDIES 

Ref. 
Device 

configuration 

CW Measurements 

Significance 
Physiological Subjective 

(NASA-

TLX) 

Task 

performance 
CPM 

Cardiac Respiration 
Skin 

conductance 

Brain  

Activity 
Pupillometry 

[2] 
On/off, 

proportional 
     ✔   p<.05 

[47] On/off      ✔   N/A 

[34] On/off      ✔   N/A 

[22] Posture      ✔   N/A 

[12] Proportional      ✔   p=.024 

[18] PR      ✔   N/A 

[53] DC, PR    ✔     

P200: p<.01 

P300: p<.01 

LPP: p<.01 

[15] DC, PR    ✔     LPP: p<.05 

[20] Regression      ✔   N/A 

[46] Posture      ✔   N/A 

[35] Posture ✔ ✔ ✔ ✔  ✔   

NT: p<.01 

EEG: p<.05 

HR: p<.05 

RR: p<.01 

[36] Posture   ✔  ✔ ✔   

BR: p<.05 

NT: p<.05 

SCL: p<.01 

[40] DC, PR       ✔  N/A 

[38] 
Proportional, 

FSM 
     ✔   p<.05 

[48] On/off      ✔   N/A 

[10] On/off    ✔ ✔    

TLS: p<.001 

GS: p<.001  

EEG: p<.001 

[44] On/off       ✔  p=.024 

[41] DC, PR       ✔  N/A 

[13] Proportional    ✔  ✔   
EEG: p<.001 

NT: p<.001 

[39] Proportional    ✔     EEG: p<.001 

[14] Proportional      ✔   N/A 

[16] DC      ✔   p<.05 

[17] DC      ✔   p<.05 

[42] DC, PR     ✔  ✔  
TP: p=.0472 

NPI: p=.0016 

[25] DC, PR     ✔  ✔ ✔ 
PS: p<.0001 

TP: p <.0001 

[45] DC, PR     ✔  ✔  
TP: p <.0001 

PS: p<.0001 

 Note. N/A= No statistical analysis (descriptive statistics only), BR=Blinking rate, CPM= Cognitive performance model, EEG= Electroencephalogram, FSM= Finite 

state machine, GS=Gaze shifting, HR=Heart rate, HRV=Heart rate variability, LPP=Late Positive Potential, NPI=Number of Pupil Increases Per Second, NT=NASA-

TLX, PS=Pupil size, RR= Respiratory rate, SCL=Skin conductance level, TLS=Target locking strategy, TP=Task performance. 
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the magnitude of each factor (i.e., mental demand, physical 
demand, temporal demand, performance, effort, and 
frustration level) in motor tasks [37]. Another reason for 
frequent use of NASA-TLX is its unobtrusiveness. Unlike 
some physiological measurements that are sensitive to body 
motions or environment, subjective workload measures are 
collected after the trial (or experiment) and therefore do not 
interfere with the task execution. NASA-TLX was found to be 
a sensitive measure to assess CW of different EMG-based 
prosthetic devices in half of the studies [2, 12, 16, 17, 35, 36, 
38, 39] (other studies only provided descriptive statistics). 
These investigations were focused on comparing different 
device configurations (e.g., on/off, proportional, posture, and 
direct control), control methods (e.g., linear, non-linear 
proportional control), sensory feedback (visual, auditory, 
vibrotactile), and training duration.  

C. Task performance 

Task performance measures were especially used for 
comparing the DC and PR control modes [40] (Table I) when 
the patients were performing ADL tasks (i.e., clothespin 
relocation task (CRT) [41, 42], Southampton Handness 
Assessment Procedure (SHAP) [40], Box and Blocks (B&B) 
task, Jebsen-Taylor test (JT) [40], and Cubbies tasks [40]). 
These measures included the time to complete the task (TCT) 
(for the CRT, JT, and Cubbies task), the number of items 
transported (for the B&B task), and the index of function (IoF) 
(for the SHAP task; a metric of the operator’s hand function 
compared with that of a peer norm) [43].  Task performance 
measures such as TCT and number of transported items were 
found to be sensitive (i.e., led to significant findings) in four 
out of six studies [25, 42, 44, 45] comparing different 
prosthetic configurations (e.g., DC, PR, on/off) and feedback 
modalities. 

D. Cognitive performance model 

Only one study used CPM to assess CW of prosthetic 
devices [25]. CPM allows estimation of task performance, 
working memory chunks (measure of CW), and number of 
perceptual, cognitive, and motor operators in using prosthetic 
devices without the need to conduct human-subject 
experiments. Zahabi et al. [25] found that additional working 

memory demands to learn and memorize a certain movement 
in the DC mode (e.g., mode change or gestures) led to higher 
CW relative to the PR scheme. This type of analysis is not 
possible with physiological measurements and is not easy to 
discriminate in subjective ratings. 

 

IV. DISCUSSION 

 Four metrics including sensitivity, intrusiveness, cost, and 
accuracy were established based on the screened studies to 
identify the most appropriate CW measurement techniques 
considering a system perspective (e.g., inputs, outputs, and 
noise). Regarding the inputs, human effort, time and monetary 
values can be considered as “cost”. Regarding outputs, a 
degree to which the selected technique can generate 
meaningful outcomes with statistical significance is defined as 
“sensitivity”. In addition, “accuracy” should be used as a 
common metric for testing the capabilities of a measurement 
technique. Lastly, for the noise part of the system, 
“intrusiveness” can be analyzed as a metric for measuring 
internal validity of the technique. 

A. Sensitivity 

Distribution of various CW measurement techniques 
across different studies is presented in Table II. A majority of 
prior investigations (except some that used NASA-TLX or 
performance measures) used statistical analysis to compare 
CW of different EMG-based prosthetic devices. The reasons 
for relying on descriptive statistics results in some studies 
were the small sample size [46] or study focus [47, 48]. 
Among the studies that used statistical analysis, except for one 
study that used skin conductance level (SCL), all 
measurements led to significant findings. Therefore, it can be 
concluded that all CW measurements were sensitive in terms 
of identifying differences in CW of prosthetic devices, except 
for the skin conductance level.  

To improve sensitivity of SCL, researchers need to pay 
close attention to the experimental environment, participants’ 
health status and their selection of variables. Environmental 
factors such as room temperature and humidity can impact the 

TABLE II. DISTRIBUTION OF COGNITIVE WORKLOAD MEASUREMENTS ACROSS STUDIES 

Category 

 

 

CW Measurement 

No. of 
studies 

No. of studies 
with statistical 

analysis 

No. of studies with 
descriptive statistics 

only 

No. of studies with 
significant findings  

(p<.05) 

No. of studies that found 
no statistical difference  

(p>.05) 

Cardiac 1 1 0 1 0 

Respiratory 1 1 0 1 0 

Skin conductance 2 2 0 1 1 

Brain activity 6 6 0 6 0 

Pupillometry 5 5 0 5 0 

NASA-TLX 16 8 8 8 0 

Task performance 6 4 2 4 0 

Cognitive performance 
model 

1 1 0 1 0 
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SCL, which can lead to inconsistent results [49]. Medications 
and hydration can also change the SCL and result in 
inconsistent findings [49]. Beyond this, studies have found 
that the accumulative SCL or different time and frequency-
domain features of SCL were useful features in assessing CW 
[50, 51].  

B. Intrusiveness 

 Intrusiveness is an important factor in selecting CW 
measurement techniques for the study especially in case of 
experiments with prosthetic devices due to the experiment 
setup (e.g., use of EMG sensors attached to the muscles, 
adhesive straps to prevent movements between the device and 
limb) and human head and body movements during the task. 
As shown in Table I, a majority of studies used non-
physiological measurements which did not require 
attachments on the human body and were not intrusive. 
Instead, subjective measures were frequently used since they 
are usually administered after the experiment. In addition, use 
of CPM and task performance measures can be useful to 
measure CW as they do not require any attachments on human 
body and can be captured automatically or by reviewing the 
video recordings of the experiment session. Among the 
physiological measurements, cardiac, respiratory, and 
pupillometry measures can be less intrusive than using brain 
activity and EEG signals [25, 52].  

C. Cost 

The cost for measuring CW of prosthetic devices in 
laboratory-based experiments can be defined based on time, 
money, effort and human resources (i.e., experimenter(s) and 
participants). Among all the CW measurement techniques 
used in prior studies, the CPM is the most cost-effective 
approach since it does not require a large number of 
participants (can be even used in case studies) and experiment 
setup as compared to other measurement techniques [25]. 
However, CPM is a time-consuming technique and requires 
researchers to be familiar with CPM languages (e.g., GOMS 
family) and software. Beyond the CPM, subjective and task 
performance measures can also be used as low-cost CW 
measurement techniques as compared to physiological 
approaches. These techniques may require simple experiment 
setups (e.g., paper and pencil for questionnaires, timer, video 
recorder) and an experimenter(s) familiar with human subject 
data collection procedures to handle the entire protocol for 
conducting the test and questionnaire. However, use of 
physiological measurement techniques require specific 
equipment (e.g., EMG sensors, HR monitors, etc.) and 

software for data collection, processing, and analysis. 
Furthermore, due to the high sampling rate and frequency of 
data collection, the post-processing of data can be time-
consuming and may require additional training.  

D. Accuracy  

Comparison of CW measurement techniques in terms of 
response accuracy was not possible across the studies due to 
differences in the sample size, device configurations, and 
experimental tasks. However, some studies used multiple 
measurement techniques (e.g., combination of physiological 
and subjective measures) and found similar results [36]. 
Furthermore, findings of CPM were in line with 
physiological (e.g., pupillometry data) and task performance 
measures [45] which indicates that these measures can be 
used interchangeably. However, some brain activity signals 
such as P200 and P300 were found to have low accuracy in 
detecting CW differences among the PR and DC modes [53]. 

E. Guideline 

Based on the findings of the literature review, we created 
a guideline table for selecting the most appropriate CW 
measurement techniques in assessing prosthetic devices 
considering factors such as intrusiveness, cost, accuracy, and 
sensitivity (Table III).  Based on this guideline, researchers 
can select among the CW measurement techniques.  

 

V. CONCLUSION 

The objectives of this study were to: (1) review the CW 
measurement techniques used in prior EMG-based prosthetic 
device studies; and (2) provide a guideline to select the most 
appropriate CW measurement techniques based on the 
experiment setup and capabilities. Our review revealed that 
CW has been measured using four main techniques including: 
(1) physiological measures (cardiac, respiration, skin 
conductance, brain activity, and pupillometry); (2) subjective 
measures (i.e., NASA-TLX); (3) task performance; and (4) 
cognitive performance models. In addition, a majority of 
these methods (except the SCL) were sensitive in detecting 
CW differences among prosthetic device configurations and 
therefore could be useful tools in usability evaluation of these 
technologies. However, in order to reduce intrusiveness and 
cost, methods such as subjective workload measures, task 
performance, and CPM are more beneficial as compared to 
physiological measurements. The proposed guideline can be 
beneficial for the researchers to select the most appropriate 

TABLE III. GUIDELINES FOR SELECTING APPROPRIATE CW MEASUREMENT TECHNIQUES  

Objective 

 

 

CW Measurement 

Improve 

sensitivity 

Reduce 

intrusiveness 

Reduce cost 
Increase 

accuracy Post-processing and 

analysis time 

Small sample 

size 
Expertise  Equipment  

Cognitive performance 

modeling 
✓ ✓  ✓  ✓ ✓ 

Subjective measures ✓ ✓ ✓  ✓ ✓ ✓ 

Task performance ✓ ✓ ✓  ✓ ✓ ✓ 

Physiological measures 
✓ (Except 

SCL) 
  ✓   

✓ (Except some 

brain activity 

signals) 
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CW measurement techniques based on their objectives 
(increasing sensitivity and accuracy, reducing intrusiveness 
and cost). 

One limitation of this study was that the sensitivity 
analysis was based on the studies included in the literature 
review and whether they found significant differences or not. 
Future studies should use quantitative approaches such as 
meta-analysis to objectively compare different CW 
measurement techniques. Furthermore, this study was only 
focused on EMG-based prosthetic devices due to their 
frequent use and advantages over other configurations. 
However, to provide a more holistic assessment, future studies 
should consider all prosthetic device configurations including 
body-powered and hybrid configurations.  
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