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Abstract Polymeric materials have a broad range of
mechanical and physical properties. They have been
widely used in material science, biomedical engineer-
ing, chemical engineering, and mechanical engineer-
ing. The introduction of active elements into the soft
matrix of polymers has enabled much more diversi-
fied functionalities of polymeric materials, such as self-
healing, electroactive, magnetosensitive, pH-responsive,
and many others. To further enable applications of
these multifunctional polymers, a mechanistic model-
ing method is required and of great significance, as
it can provide links between materials’ micro/nano-
structures and their macroscopic mechanical behav-
iors. Towards this goal, molecular simulation plays an
important role in understanding the deformation and
evolution of polymer networks under external loads
and stimuli. These molecular insights provide physi-
cal guidance in the formulation of mechanistic-based
continuum models for multifunctional polymers. In
this perspective, we present a molecular simulation-
guided and physics-informed modeling framework for
polymeric materials. Firstly, the physical theory for
polymer chains and their networks is briefly intro-
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duced. It serves as the foundation for mechanistic-
models of polymers, linking their chemistry, physics,
and mechanics together. Secondly, the deformation of
the polymer network is used to derive the strain energy
density functions. Thus, the corresponding continuum
models can capture the intrinsic deformation mecha-
nisms of polymer networks. We then highlight sev-
eral representative examples across multiphysics cou-
pling problems to describe in detail for this proposed
framework. Last but not least, we discuss potential
challenges and opportunities in the modeling of mul-
tifunctional polymers for future research directions.

Keywords Molecular simulation - Multiphysics
modeling - Multiscale modeling - Multifunctional
polymers - Soft Matter

1 Introduction

Over recent years, there have been extensive research
efforts and progress in soft matter, with a broad range
of applications in flexible and stretchable electronics
in wearable devices [130, 153, 208, 206], deformable
lighting or display devices [83, 78], actuators for soft
robotics [171, 68, 84], artificial skin [150, 167, 56], and
hydrogels in biomedical devices [8, 145, 61, 184, 88], to
name a few. These devices take advantage of polymeric

materials, such as polydimethylsiloxane (PDMS), poly(vinyl

alcohol) (PVA), and poly(glycerol sebacate) (PGS),
as the polymer matrix can provide desired mechan-
ical properties in operation and biocompatibility for
biomedical applications. Under external loadings, these
materials display many typical mechanical behaviors
such as strain softening/hardening, state-dependent,
nonlinearity, and Mullins effect, etc. [35]. Besides, for
many other applications, these polymers are further
designed to be stimulus-responsive with multifunction-
ality, triggered by different mechanisms, such as an
electric field [49, 142], magnetic field [106, 129], chem-
icals (e.g. pH) [143, 33], and thermal input [125, 85],
among others. The multi-physics induced mechanical
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behaviors are even more complicated with typical ex-
amples summarized in Fig. 1.

The increasing demand for these polymers calls for
the fast and accurate evaluation of their mechanical
properties under multi-physics coupling effects, even
before they actually deployed or manufactured [16].
Mechanical modeling allows for cheaper and faster
predictions than experimental approaches alone, and
thus, facilitates rapid evaluation of material proper-
ties and materials design. Historically, phenomenolog-
ical models have been widely used for simulations of
rubber-like polymers at the continuum level [117], which
has been very successful to certain degrees. For exam-
ple, it has inspired the development of hyperelastic-
ity theories for elastomers [116, 62, 14]. Nevertheless,
the material parameters in these phenomenological
models usually do not have direct physical meanings.
They are mostly defined based on internal variables for
the mathematical fitting of experimental stress-strain
curves, and thereby losing connections to underlying
material’s chemistry and microstructure [62, 146]. As
a result, phenomenological models can only enable the
evaluation of material properties [90].

Mechanistic models, on the other hand, can facil-
itate inverse materials design, as they contain the in-
trinsic micro/nanostructures and physical mechanisms
[97, 212, 98, 16]. Usually, the material parameters in
these mechanistic models bear physics meanings, which
are signatures of polymer chemistry, physics, or dy-
namics. Thus, they can be further utilized to guide the
inverse design of high-performance materials with tai-
lored properties. To develop a mechanistic-based and

physics-informed model across various physics and scales,

the intrinsic micro/nanostructural features of poly-
mers should be considered, leading to a meaningful
structure-property relationship[75, 16]. Thus, it is very
crucial that the microscopic features of polymer chains
and networks are studied and integrated into a contin-
uum constitutive model through multiscale modeling
methods.

At the molecular level, polymers are composed of
long-chain molecules, covalently bonded by a large
number of repeat units. They have diverse physical
and mechanical properties, due to the almost infinite
combinations of chemical elements, molecular struc-
tures, and synthesis conditions [48, 82, 23]. Thus, de-
tailed understandings of polymer structure, compo-
sition, and dynamics are essential to accurately pre-
dict their deformation behaviors under complex load-
ing conditions [17], such as combined mechanical and
electrical loading.

To link the polymer chains/networks to a contin-
uum model, a multiscale modeling strategy is needed.
Multiscale modeling approaches include two types: con-
current scale-bridging approaches and hierarchical ap-
proaches [102]. The former approach tries to model the
system with different yet coupled resolutions (atom-
istic and continuum scales) simultaneously; while the

latter focuses on the modeling of a continuum scale
with knowledge informed from the atomistic scale [97,
91, 98]. Since the concurrent scale-bridging approach
is computationally demanding, in this work, we only
focus on the hierarchical multiscale approach. That is,
the deformation mechanisms of polymer chains and
networks are studied through molecular simulations,
and the information obtained is passed to the consti-
tutive model at the continuum level.

Molecular simulations provide an effective way to
study the polymer chains and networks on micro and
nanoscales [91, 93, 94, 92], which cannot be easily ap-
proached by experimental techniques. It has flourished
enormous breakthroughs in mechanics and material
science fields. The success of these molecular simula-
tions is twofold: on one hand, they can be used to vali-
date the assumptions made in classical theories at the
continuum level [98]; on the other hand, it brings new
insights into the intrinsic deformation mechanism of
polymeric materials and provides material parameters
for continuum models [97]. Therefore, these molec-
ular simulation-guided and physics-informed models
are more robust and efficient in the evaluation of me-
chanical properties for different polymeric materials.
Eventually, they can be used for the design of novel
functional devices with tailored material properties.

This work aims to present a perspective on molec-
ular simulation-guided and physics-informed mecha-
nistic modeling of polymeric materials. We first in-
troduce the physics of polymer chains and networks
at the molecular level. Then, we compare the phe-
nomenological models with mechanistic-based models,
considering the physical behaviors of polymeric mate-
rials. By highlighting a few representative works, we
discuss how to formulate mechanistic models for mul-
tifunctional polymers, based on their molecular defor-
mation mechanisms. We envision that, with the help
of molecular simulations, mechanistic models of poly-
meric materials across different scales and physics can
be formulated. These models will enable a broad range
of applications of multifunctional polymers, such as
soft robotics, protective coatings, damping materials,
drug-eluting stents, and many others.

2 Polymer Physics and Chemistry

Physics-informed mechanistic models tend to corre-
late the microscopic deformation behaviors of poly-
mer chains and networks to their macroscopic me-
chanical behaviors [4, 14, 36]. Therefore, it is crucial
that the properties of polymer chains and networks
are fully examined, to develop a mechanistic-based
model for polymeric materials. We should emphasize
that since most of the aforementioned applications re-
quire the matrix to be rubber-like (highly deformable
and stretchable), we only focus on the polymers with
a low cross-linking degree, namely elastomers. In this
section, the polymer composition, topology, statistics,
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Fig. 1 Mechanistic modeling of polymeric materials, such as elastomers, semi-crystalline polymers, magnetorheological
elastomers (the images are adapted from Ref. [138] with CCBY 3.0 license, copyright 2019 The Royal Society of Chemistry),
electroactive polymers, filled elastomers, hydrogels (the image is adapted from Ref. [58] with CCBY 4.0 license, copyright
2018 MDPI publishing group), liquid crystal polymer (the image is reproduced from Ref. [100] with permission, copyright
2014 The American Chemical Society), and self-healing polymers (the images are adapted from Ref. [204] with permission,

copyright 2018 Elsevier).

and dynamics will be briefly presented and is followed
by the hyperelasticity formulation. With polymer hy-
perelasticity as the foundation, we can then incorpo-
rate more physical mechanisms and models to study
the multifunctional polymers.

2.1 Polymer chains and networks

Different from metals and alloys, which are dominated
by the internal energy change, the elasticity of poly-
mers mainly originates from entropy change. This en-
tropy change is a result of the conformation change
of chains during deformation within the polymer net-

it is not needed to consider the absolute location of
each monomer, rather than the statistics of the whole
chain. An important quantity describing the chain is
the end-to-end vector R.. = Zf[ R;. Since each bond
is randomly oriented following the random walk, the
statistical value (ensemble average over all possible
conformations) of end-to-end vector is (R..) = O.

However, the mean squared end-to-end distance is nonzero

but (R2) = ni?, because there is no correlation be-
tween any two bond vectors. It must note that for lin-
ear chains using R.. to quantify a polymer system is
reasonable, but for nonlinear chains, e.g. ring chains,
it is not suitable. Therefore, the radius of gyration

(R2) = 3= S S ((Ri — R;)?) is more applica-

work. When a polymer sample, e.g. elastomer, is stretched, ble.

the conformation change gives rise to the elastic de-
formation; after the loading is removed, the sample
goes back to its initial state due to the effects of cross-
linkers. Thus, the polymer network model plays a very
important role in understanding polymer hyperelastic-
ity.

The simplest model of a single polymer chain is
the freely jointed chain (FJC), which ignores the inter-
actions between monomers [132], as shown in Fig.2a.
This long chain is formed by polymerization of n (poly-
merization degree) monomers with a bond length I.
Since the chain’s conformation is like a random walk,

FJC is an ideal polymer chain model. For real poly-
mer chains, however, the motion of each bond may be
constrained. In this case, other chain models have to
be applied, such as the freely rotating chain (FRC)
model, in which neighboring bonds have a constant
angle. The characteristic ratio C,, = (R2,)/ni? is used
to express the rigidity of the chain. This real chain
can be converted to the equivalent FJC characterized
by Kuhn length b and Kuhn steps N by maintain-
ing the same mean squared end-to-end distance and
maximum end-to-end distance Ry,.x [132]. In what fol-
lows, the chains considered are the converted to Kuhn
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Fig. 2 Polymer networks and models. a: the conformation of a single freely jointed chain; b: polymer cross-links and
entanglements in a polymer network; c: tube model for polymer entanglement analysis; d: eight-chain model for polymer
network at undeformed configuration; e: Davidson-Goulbourne model for the decomposition of polymer network into cross-
links and entanglements; f: Microsphere model for polymer network.

chains using Kuhn steps N and Kuhn length b from
real chains (linear or nonlinear).

The Polymer network is composed of multiple chains.
Fig.2b demonstrates a schematic of the polymer net-
work. The individual chains are cross-linked together
by cross-linkers (junction points) and can entangle to-
gether for long chains to form entanglements, which
serve as physical cross-linkers. Due to the presence
of neighboring chains, the motion of a single chain
is restrained and characterized by a reptation motion
constrained in a tube-like region [40], as illustrated in
Fig. 2c. Cross-linkers and entanglements have signifi-
cant roles in determining polymer elasticity, which will
be presented in the next Section.

To quantify the conformation change of polymer
network, the Gaussian chain statistics and Langevin
chain statistics have been widely used, while the for-
mer is applied to describe the polymer network that is
not extensively stretched (end-to-end distance R.. <
Nb) and the latter is for highly deformed polymer net-
work. The Gaussian chain statistics [132] states that:

3R?
SN2 (1)

Ue(N, Ree) = Cexp(—

where Wg(Re.) is the probability of the chain con-
formation with a end-to-end distance R.. and C is
a normalization constant. However, for polymer net-
work experiencing large deformations, the Gaussian
chain statistics does not hold anymore. In this case,

the Langevin statistics establish:

Ree , Ree B(5e)
UL (N, Ree) = Cexp[——=B(=2) = Nln ——Nb 2]
b Nb sinh 8 Iji;b)

(2)

where 3(z) = L~!(z) is the inverse of Langevin func-
tion L(z) = coth(z) — 1/x. This formulation enforces
that the chains cannot be stretched excess the con-
tour length Nb. Note that when R.. is significantly
less than the contour length Nb, the Langevin statis-
tics in Eq. (2) reduces to the Gaussian statistics in Eq.

(1).

2.2 Hyperelasticity of polymers

Rubber-like polymers are featured by significant re-
versibility and large stretchability. Phenomenological
hyperelastic models have been widely employed to de-
scribe the deformation behavior of elastomers. For ex-
ample, Ogden’s model writes, for the strain energy
density [116]:

N
pyOsden = % %(A’{ + A5+ A5 - 3)

p=1 P

3)

where \; are macroscopic principal stretches with Ay Aa A3 =

1 to accommodate the incompressibility constraint, j,
denotes the shear modulus, and o, are material con-
stants. Note that in these phenomenological models,
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the material parameters are not related to its intrin-
sic molecular or microstructures, and thus the model
is phenomenological.

To construct a mechanistic-based model, it is im-
portant to link the polymer microstructures using e.g.
polymer chain statistics to the Helmholtz free energy
(F'), which can be expressed by:

F(N7 Ree) = U(N, Ree) —TS(N, Ree) (4)

where U is the internal energy, S the entropy of the
system, and T the absolute temperature. The entropy
of the system is calculated by:

S(N, Ree) = kpln 2(N, R) (5)

where kg is the Boltzmann constant and {2 the num-
ber of possible chain conformations. The chain statis-
tics ¥ relates to {2 through:

B 2(N, Re.)
~ [ 2(N, Ree)dRee

U(N, Ree) (6)

One notices that the denominator in the above equa-
tion is a constant by the integration of R.. and there-
fore is unrelated to Re.. Thus, Eq. (5) can be rewritten
as:

S(N, Ree) = kpInW (N, Re) + S(N,0) (7)
Substituting Eq. (7) into Eq. (4), one derives:
F(N,R..) = —kpTIn¥(N, R..) + F(N,0) (8)

where F'(N,0) is the free energy of the chain with zero
end-to-end distance, which is the summation of the
other terms in Eq. (4). In arriving at Eq. (8), the as-
sumption of incompressibility constraint of polymers
is applied, so that the internal energy change is ne-
glected. Note that F(N,0) is only a constant irrele-
vant to the conformation and thus will be removed
by taking a derivative to the deformation. Therefore,
the free energy F'(N, Re.) is linked to the statistics
U(N, Re.) of polymer chains.

Several micromechanics models, linking polymer
chemistry and physics (kinematic variables in a sin-
gle chain elasticity) to the macroscopic deformation
measures, are summarized as follows. The most impor-
tant postulation to develop these models is that the
total free energy of the polymer network is the sum-
mation of free energy from all single strands [113, 34].
One will see that all the material parameters in these
models have polymer physics or chemistry meanings.
Note that though these micromechanics models en-
close the molecular physics or chemistry of polymers,
the assumptions made on the polymer system and de-
formation may not be realistic. Thus, they are only
valid and generalizable to a certain extent and may
not hold for other real polymer systems.

Affine network model. This model assumes that
the junction points (cross-linkers) are fixed in an elas-
tic non-fluctuating background [132]. Therefore, poly-
mer chains deform affinely as to the macroscale de-
formation of the system, hence micro- stretch equals
to macro-stretch homogeneously and isotropicly [187].
Additionally, it adopts the Gaussian chain statistics
[14]. Considering a chain strand between two junction
points and let N, be the number of Kuhn steps be-
tween the two points, the deformed length and the
underformed length are denoted as r and R. Then
the following equations hold r; = AR/v/3 (i = 1,2,3)
by decomposing the chain into three orthogonal di-

. 3r2 A2 . .
rections, so that NT 45 = 5, where X is microstretch

ratio. Thus, the strain energy density (free energy per
unit volume) is contributed by all strands, which reads
[36]):

kBTpm
2N,

G.
pyaffine _ (AFHA3+A5-3) = T2 (423445 -3)

9)

where G. = kT ppm /N, is the cross-link modulus, p;,
is the monomer number density and A; (i = 1,2,3) is
the principal stretch of the polymer system in three
principal directions. Since the affine network model is
constructed upon Gaussian chain statistics, it does not
work well for polymers undergoing large deformations
[113].

Phantom network model. Different from the Affine
network model, the phantom network model considers
the fact that the junction points are subject to fluctu-
ations, rather than fixed in the elastic non-fluctuating
background [132]. Thus, the strand level deformation
is not affine as the macro level. It assumes that there
are two additional effective chains with length n, =
N/(¢—2) (¢ is the cross-linking functionality) partic-
ipating in deformation along with the original chain
[74, 133, 134]. The corresponding strain energy den-
sity is:

kBTpm 1 — g

thantom _
2N, ( ¢

JAT+ A3+ A3 -3)  (10)

G. = kpTpm(1 — %)/Nc is the cross-linking modu-
lus. One can see that, due to the fluctuations of the
junction points, the modulus in this model is smaller
(network is softer) than that in the Affine network
model. Note that both the Affine network model and
Phantom network model do not consider the topolog-
ical entanglement constraint to polymer chains, and
thus the modulus predicted in both models are less
than that obtained from experiments.

Arruda-Boyce model. Arruda-Boyce model [4] is
developed using Langevin chain statistics based on the
eight-chain polymer network as shown in Fig. 2d. In
this model, the affine deformation assumption holds.
Namely, each chain in the network shares the same
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stretch as Achain = %(A% + A2 + A2 = %\/ﬁ,
where I; is the first stretch invariant [4]. The strain
energy density has the form of:

WAB = 37 Goai( 5 ) (1 - ) (11)

max

where the first five coeflicients are a1 = 1/2, ay =
1/20, ag = 11/1050, ag = 19/7000, a5 = 519/673750
for numerical approximation of Langevin equation. The
finite chain extensibility is Amax = v/Ne. Note that in
this model, the chains are considered to move freely
over each other. As a result, it cannot capture the

topological constraint effect due to entanglements formed

in long-chain polymers [113, 36, 98].

Davidson-Goulbourne model. This model consid-
ers both cross-linking effect by nonaffine phantom net-
works and the entanglement effect by the nonaffine
tube model [36], which is simple in the formulation
yet effective to capture large deformation behavior of
elastomers. In this model, the strain energy density is
formulated as:

> 1
ln(g)\?nax—ll)-i-Ge Z()\Z—i-):)

- (12)

where G = $G.N./N. is the entanglement modulus
[40, 98] and N, is the entanglement length. Note that
this model decouples the network into cross-links and
entanglements and does not consider the interactions
between them.

1
WmGZEQL—QV

max

Micro-sphere model. This model [113] considers both

affine and nonaffine deformations as well as entan-
glements effect but treats them differently from the
Davidson-Goulbourne model. It assumes that the chains
are oriented on the surface of a sphere, as shown in
Fig. 2f. On the chain level, the model considers the
stretch of each chain constrained by a microtube. The
microscopic deformation (both affine and nonaffine)
is accommodated by the homogenization procedure
of the micro-variables on the microsphere. The total
macroscopic response is the contributions from both
the stretch and tube deformation. Note that in this
model, there are five material parameters related to
the network [113].

In summary, several representative mechanistic-based

polymer network models are introduced. Note that
there are requirements or limitations for these mod-
els to hold since they work under certain assumptions.
For example, the transition between affine and phan-
tom network models was observed in polymer gels [2].
Nevertheless, with the strain energy density function
at hand, the stress can be easily derived by the re-
lation between strain energy density and the strain
measures. Consequently, constitutive modeling can be
feasibly employed accordingly.

3 General Principles in Molecular
Simulation-Guided and Physics-Informed
Mechanistic Modeling

The micromechanics modeling approaches of polymer
networks have been widely adopted. However, when
the new physics is involved, e.g. external electric field,
the development of a coupled electro-elastic strain en-
ergy density function is not trivial. In this case, the
multiphysics coupling effects have to be incorporated.
Then, the model can accurately capture the macro-
scopic deformation behaviors. Again, the key aspect
is to examine the microscale deformation mechanism
under multiphysics loading conditions, which can pro-
vide the intrinsic deformation mechanism and guide
the formulation of continuum models. Thus, molecu-
lar simulations are particularly effective towards this
goal.

3.1 Molecular simulations in mechanistic modeling of
polymers

Molecular simulations offer an effective way to study
down the atomic resolution of materials and link ma-
terial chemistry to their mechanical properties [50].
They provide a beneficial strategy to deal with com-
plex physical problems for which analytical solutions
are not available. As a virtual laboratory platform,
molecular simulations can be used to understand the
contributions of each possible factor involved in a com-
plicated system by well-controlled variables and de-
signed systems. Therefore, we can leverage the physi-
cal mechanisms informed from molecular simulations
to develop mechanistic-based models for polymeric ma-
terials.

In a molecular dynamics (MD) simulation, the sys-
tem is composed of a set of particles carrying physi-
cal information, such as atoms in an all-atom system.
The particles in the system follow Newton’s second
law of motion under the interaction forces from other
particles, which includes bonded and non-bonded in-
teractions. The force field derived from the potential
energy defines the interaction between particles. The
governing equation of motion can be formulated as:

oU (r)
- or

where m and r are the mass and position of a particle,
respectively. U(r) is the energy function determining
interactions between particles. F' is the total force ap-
plied on the particle from other particles. In an MD
simulation, this equation is solved by a numerical time
integration so that the positions and velocities of all
particles can be updated till a given time scale. Note
that to capture specific motions of atoms or bonds
with good numerical stability, the time step should be
carefully selected, and mostly it is a very small number
in the scale of femtosecond.

mit = F = (13)
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In an all-atom (AA) MD simulation, if a large num-
ber of atoms and a longer simulation time are required,
the large number of time steps to do time integration
and particle interactions to calculate the force make
the computation prohibitively challenging, despite the
usage of techniques to reduce the number of interac-
tions to consider, such as cut-off distance and link-list
[54, 80]. To address this issue, the coarse grain (CG)
technique is applied, which pays attention to a coarser
resolution of the system rather than the atomic resolu-
tion. Consequently, the number of degrees of freedom
can be reduced and a larger time step can be chosen
to accelerate the simulation [91, 202].

A key point to note is that since the chain in a poly-
mer network is very random and has many possibilities
of conformation, accurate modeling should include all
the possibilities, which however is impossible to do.
Nonetheless, the use of MD simulations for modeling
of polymer systems has been very successful, which is
attributed to the ergodicity theorem which states that
the time average equals to ensemble average. There-
fore, material properties can be obtained from MD
simulations using the dynamics of the system.

The application of MD simulations has enabled
numerous novel insights and knowledge in the gen-
eral field of mechanics, for example, the deformation
mechanism of plasticity [27, 199, 76], the nanomechan-
ical mechanism of strength, deformation, strength in
spider silk [20, 21, 115], biomechanics of biological sys-
tems such as cells [148, 210], to name a few.

Overall, MD simulation is a feasible way to un-
derstand the multiphysics deformation mechanism of
polymers [10]. For example, for cross-linked polymers,
the degree of cross-linkages may be different, which
classifies polymers into thermoplastics and thermosets.
This intrinsic difference of cross-linkages grants dis-
tinct mechanical properties to them, which can be ac-
curately captured by MD simulations [185, 64, 89].

3.2 Bridging MD simulation with a continuum model

A general rule to incorporate multiphysics mechanisms
into the strain energy density function is to introduce
new state variables associated with the new physics.
The general expression of the total strain energy den-
sity is assumed additively as:

W(F,§) = Wr(F) + We(S) (14)

where F' is the macroscopic deformation gradient, and
£ is the state variable for additional physics.

At the microscopic level, the macro-deformation
F has to be connected to the chain-level kinematic
state variables via affine deformation or nonaffine de-
formation assumption, which has been discussed pre-
viously. At the continuum level, this can be done by
the second law of thermodynamics. For example, Hong
et.al. developed a continuum model considering cou-
pled diffusion and large deformation in polymer gels

following the second law of thermodynamics principles
by decomposing the total strain energy density into a
stretching part and a mixing part without a coupling
term [63].

In general, however, it is relatively unguaranteed
that the complete decomposition is valid after intro-
ducing new physics. That is, it may involve a coupled
term due to the coupling effect in nonlinear defor-
mation [45], viz., the new physics added may change
the statistics of a polymer network. Therefore, to ver-
ify the assumptions or develop new models, it is im-
portant to study the microscopic deformation using
molecular mechanics methods, such as MD simula-
tions, which will be explained in detail by the following
subsections and briefly by the representative examples
in the next Section.

3.3 MD verification of affine deformation assumption

As discussed previously, the affine model assumes that
all the junction points of a network are pinned to the
elastic background, which is very strict. Thus, it would
overestimate the elasticity when fluctuations of the
junction points of a network are very strong. In that
case, the phantom model seems to be a more appro-
priate choice. But the level of fluctuation the phantom
model permits may not remain the same as the predic-
tion of the model when states of the material system
change, making the transition between phantom and
affine models possible [2]. Therefore, it is not difficult
to realize that the success of a continuum model relies
on an accurate link from the microscopic evolution of
the materials to the total strain energy density.

To demonstrate to which degree affine deformation
assumption holds, two different polymer systems with
distinctive chain lengths are prepared for MD simula-
tions [98]. Specifically, the chain lengths are N = 20
for short chains and N = 500 for long chains, where N
represents the polymerization degree. The systems are
then subject to mechanical tests under uniaxial ten-
sile, pure shear, and equal-biaxial tensile loading. The
end-to-end distance change with respect to the first
stretch invariant (I7) is plotted in Fig. 3. For affine de-
formation, it would predict that Re./Reeco = /11/3.
As can be seen from Fig. 3, for systems with long
chains, this assumption is satisfied very well; while for
that with short chains, the true case deviates away
from the assumption. Additionally, one can see that
the affinity of the polymer network is loading-dependent.
The affinity of polymer systems with longer chains is
more susceptible to loading conditions.

From this simulation result, one can see that when
the chain is short, the fluctuation of the junction points
is not negligible, rendering the invalidity of affine de-
formation. On the contrary, for long chains, the affine
deformation assumption suffices very well. In this ex-
ample, molecular simulation provides an unambiguous
quantification of the affinity.



Guang Chen et al.

8
25| o Uniaxial Tensile :,
O  Shear ‘;
¢ Equil-biaxial ',:’,ﬁ’
A —— Affine limit {j.’
< 2 ‘;1/’"/
% N=500 % &
~
N ”
$15F v
< -
\% “p
N=20
’.i
1F
1 1.5 2 2.5
L/3

Fig. 3 Affinity of two polymer networks with chain length
N = 500 and N = 20 under different loading conditions.
Network with N = 500 follows the affine deformation, while
network with N = 20 is described by phantom model.

3.4 MD simulation of polymer rheology

Material parameters from phenomenological models
are usually obtained by curve fitting of experimen-
tal data. These material parameters have little to do
with the intrinsic material composition and thus can-
not guide materials design. With MD simulations, one
can measure the material parameters of the polymer
system of interest, which are connected to the polymer
network composition. An example using MD simula-
tions to calculate the polymer rheological properties
is demonstrated here.

Viscous behavior of polymeric material is a major
focus in polymer rheology [151]. The viscosity of poly-
meric materials has essentially two origins: the intra-
chain connectivity and inter-chain entanglements. The
former dominates dynamics of the polymer chains by,
e.g., the diffusive Rouse model when the chains are
short while the latter governs relaxation of the poly-
mer chains when the chain length exceeds the criti-
cal entanglement chain length, making the inter-chain
topological constraint significant [132]. Although the
analytic solution to the Rouse model is available, it
is nontrivial to understand the dynamics subject to
entanglement. Polymeric materials with long chains
share a great portion of industrially applied materi-
als. Therefore, accurate examinations of the dynamics
subject to entanglement are of great importance. The
most successful model is the tube model originally pro-
posed by de Gennes [38] and enriched by Doi and Ed-
wards [40]. However, dynamics of the polymer chains
deviates from the solution to tube model when fac-
tors like chemistry of constituents and polydispersity
are considered [151]. Although efforts of carefully de-
signed experiments have been devoted to gain a clear
picture of the tube-like dynamics [151], molecular sim-
ulation plays a more significant role in terms of effi-
ciency and cost. MD simulations can be used to study

the tube-like dynamics by directly tracing details of
the relaxation of polymer chains in melts [151].

Stephanou et.al. [151] applied MD simulations to
calculate the rheological properties of polymer melts.
The authors employed geometric-operation-based Z1
code [87] to analyze the microscopic dynamics of poly-
mer chains, or the so-called primitive path analysis
(PP analysis). The relaxation is quantified by tube
survivability function directly estimated from trajec-
tories generated by the MD simulations. The authen-
tic relaxation behaviors are compared with predictions
by a modified tube-like model, as shown in Fig. 4a.
The discrepancy clearly suggests the limitations of
the tube-like models in providing quantification of the
chain dynamics even though they draw a conceptually
appealing description. The tube survivability function
from MD simulation corresponds to the prediction of
double reptation model at the beginning but shows
significantly faster relaxation over 1 nanosecond scale,
which is attributed to the effect of constraint release
(CR), the extra relaxation of the probed chain as a
result of independent relaxation of the chain in the
background. The insufficiency of the double reptation
model is caused by its mean-field tube-like assumption
about inter-chain topological entanglement although
the assumption is the origin of the model’s concep-
tual elegance. Estimation of zero-rate shear viscosity
is compared with experimental data as shown in Fig.
4b. In addition, corresponding storage and loss moduli
are compared with model predictions in Fig. 4c and
Fig. 4d, respectively.

In this example, one can see that MD simulations
can be used to characterize the rheological properties
of polymer melts, such as viscosity, and the viscoelas-
tic moduli. It’s worthy of note that these material pa-
rameters are related to the chemistry and connectivity
of polymers. As will be illustrated, these results are
very helpful in developing a mechanistic continuum
model of polymer viscoelasticity.

4 Representative Examples of
Mechanistic-based Modeling of Polymers

4.1 Viscoelasticity of elastomers

Viscoelasticity is a significant mechanical property for
elastomers undergoing large deformation, which is at-
tributed to the diffusion process of the polymer chains
[9, 59,112,163, 97, 216, 196, 197]. In a loading-unloading
cycle, there is hysteresis in the stress-strain curve, ren-
dering energy dissipation during the deformation pro-
cess. There are many different approaches to develop a
viscoelasticity model of elastomers, e.g., see the sum-
mary in Refs. [216, 195] and references therein.

Here we present an earlier work from one of the
authors, in which the viscoelasticity is decomposed
into hyperelasticity, and viscosity from the polymer
network [98]. The hyperelasticity originates from the
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cross-linked network with entanglements, while the
viscosity emerges from the diffusion of superimposed
free chains. Fig. ba demonstrates the schematic of this
decomposition. The total true stress was assumed to
be the summation of the hyperelastic stress and the
viscous stress, as shown in Fig. 5b. For the hypere-
lasticity, the Davidson-Goulbourne model was applied
to capture the nonlinear deformation behaviors in-
duced by cross-linkages and entanglements, as verified
by MD simulations. For the viscous stress, a modified
reptation model was proposed to capture the viscous
forces, since the classical one does not account for the
energy dissipation in a finite strain very well [40]. This
modification was further confirmed by MD simulations
[98].

The diffusion of free chains was described by the
tube model of reptation motion due to uncrossability
constraints of neighboring chains. In large deforma-
tion, however, this model does not work well since in
the original model, the tube diameter and the prim-
itive chain (the center axis of the tube) length were
constant while it actually changes in large deformation
[154, 126, 118]. In addition to these two modifications,
it further considered the change of chain orientations
and fractional order viscoelasticity. All these modifi-
cations were confirmed by MD simulations. So that
the modified tube model can model finite strain vis-
cous stresses as shown in Fig. 5b. The details can be
referred to in the original paper [98]. The predictions
were then made on both unvulcanized and vulcanized
natural rubber and compared with experimental data,
as shown in Fig. 5c. It can be seen that the model can
capture the strain-rate dependence, strain hardening,
and strain softening effects qualitatively well.

Last but not least, it is worthy of note that when
fillers, such as carbon black and silica, are added into
the elastomer matrix (see Fig. 1), the mechanical prop-
erties especially the inelasticity can be significantly
improved [163, 35, 95]. Besides the reinforcement ef-
fects and viscoelasticity, the anisotropic effect, Mullins
effect, hysteresis, and permanent set have been widely
studied in filled elastomers [44, 111, 127, 81, 35, 124],
while few models are mechanistic-based and can model
all these phenomena simultaneously. A mechanistic-
based multiscale model incorporating chain level mech-
anism remains to be developed for filled elastomers
[178].

4.2 Thermomechanical-coupled viscoplasticity in
polymers

For many polymers, the chains are randomly oriented
and thus they are named amorphous polymers. In
some cases, the polymer chains can be partially aligned
and folded to form ordered regions called lamellae
or crystallite. This process is called crystallization,
which can be induced by cooling from a melting state
[194, 86], stretching [105, 110] or solvent evaporation

[160, 96]. Crystallites, considered as physical cross-
links [144], can significantly change the mechanical be-
haviors of polymers [123, 13, 108, 144], such as on the
yield stress [66], and the disentanglement [209].

In a work by Bouvard et. al. [11], MD-guided hier-

archical multiscale modeling was applied to the thermomechanical-

coupled viscoplastic modeling of polymers. The stress-
strain curve obtained by MD simulation is shown in
Fig. 6a, which captured the elastic regime, yield, strain
softening, and strain hardening regime. Based on the
MD results, they proposed three physics-based inter-
nal state variables (ISV) to model the viscoplastic-
ity of polymers [12]. The first strain-like scalar &; is
to capture chain entanglement slippage which causes
strain softening. The second strain-like scalar &; is to
capture the strain hardening induced by chain align-
ment and coiling at a large strain state. And the last
strain-like tensor E? captures the strain hardening in-
duced by chain stretching. The evolutions of the ma-
terial parameters were monitored by MD simulations,
as shown in Fig. 6a. The material constants were also
calibrated using MD simulations. Therefore, the plas-
tic flow and hardening law can be informed from these
MD simulations. This model was shown to be able
to capture temperature effect, strain-rate dependence,
and stress-state dependence in the polymers.

At the continuum level, the decomposition of the
deformation gradient is carried out to deal with elas-
ticity, rate-dependent plasticity, and thermal compo-
nent, as depicted in Fig. 6b. The comparison between
the model prediction and experimental tests at differ-
ent temperatures and loading rates is shown in Fig.
6c. One can see that the model can capture the typi-
cal mechanical behaviors, such as strain softening and
strain hardening, very well.

4.3 Self-healing polymers

Self-healing polymers have been revolutionizing the
man-made engineering society via bringing in the au-
tonomous intelligence that widely exists in nature.
They have been applied to a wide range of engineer-
ing applications, including flexible electronics [167],
energy storage [177], biomaterials [18], and robotics
[168]. Motivated by these applications, various self-
healing polymers have been synthesized during the
past years [201, 186, 169, 193]. They typically fall into
two categories. The first category is “extrinsic self-
healing” that harnesses encapsulates of curing agents
[188, 170]. The second category is “intrinsic self-healing”
that harnesses dynamic bonds, such as dynamic cova-
lent bonds [24, 53, 69, 107], hydrogen bonds [31, 25],
and ionic bonds [182, 157]. The dynamic bonds can
autonomously reform after fractures or dissociations.
Here we primarily focus on the second category.
Despite the success in syntheses and applications,
the theoretical understanding of self-healing polymers
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has left behind [201]. Back in the 1980s, scaling mod-
els were proposed for the interpenetration of polymer
melts [191, 192]. After entering the 21st century, MD
simulations were employed to understand the healing
behaviors of polymers [155, 5, 214, 47]. It remains
long-term overdue how to analytically model the in-
terfacial healing of self-healing polymers. The missing
of this theoretical understanding would significantly
drag down the innovation of self-healing polymers to
achieve optimal healing performance.

Recently, Wang et al. have developed a series of
theoretical models to understand the self-healing me-

chanics of soft polymer networks [179, 180, 204, 205,
198]. They consider the healing process of a poly-
mer network linked by dynamic bonds shown in Fig.
7a. The polymer is cut into two parts and then con-
tact back. After a period of healing time, the sam-
ple is stretched until rupture. The self-healed sample
is composed of two segments (Fig. 7a): a small “self-
healed segment” with re-bridged polymer chains (pur-
ple) and two “virgin segments” with intact polymer
networks (light pink). The modeling effort is devoted
to theoretically quantifying the relationship between
the healing percentage and the healing time. The heal-
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ing percentage is indicated by the ratio between the
tensile strengths of the healed and the original samples
[201, 186, 169, 193, 55].

To theoretically model the interfacial healing of
self-healing polymers cross-linked by dynamic bonds,
two technical challenges need to be addressed: (1) how
to understand the mechanics of dynamic-bond-linked
polymer networks, and (2) how to understand the net-
work evolution during the healing process. To address
the first challenge, an interpenetrating network model
is employed to consider many types of networks that
interpenetrate each other in the material space (Fig.
7b) [181]. Each type of network is composed of poly-
mer chains of the same length and linked by dynamic
bonds, similar to the covalently cross-linked polymer
networks. The chain-lengths among different networks
follow an inhomogeneous statistic distribution. Under
stretch, dynamic bonds obey force-dependent chemi-
cal kinetics to transform between the associated state
and the dissociated state (Fig. 7c). The force-dependent
chemical kinetics can be described by a Bell-like model
[7]. To address the second challenge, the healing pro-
cess is considered as a coupled behavior of inter-diffusion
of dissociated chains and re-binding of dissociated dy-
namic bonds (Fig. 7d-e). The curvilinear motion of
the polymer chain can be explained by a reptation-
like model [38, 39], and the binding kinetics by the
Bell-like model [7]; therefore, the interpenetration of
the polymer chain across the fracture interface can
be modeled as a diffusion-reaction system [180, 204],
which has been recently confirmed by large-scale MD
simulations [147]. After addressing the above two chal-
lenges, stress-strain behaviors of the original and the
healed self-healing polymers can be theoretically cal-
culated (Fig. 7f). As the applied stretch increases,
more and more dynamic bonds are dissociated, and
the corresponding stress increases and then decreases.
The maximal stress (tensile strength) is corresponding
to the material rupture. With increasing healing time,
the tensile strength of the healed polymer increases
until reaching a plateau that is the tensile strength of
the original polymer. In this way, the relationship be-
tween the healing percentage (healed/original strength)
and the healing time is calculated (Fig. 7g). The the-
ory can be used to explain the self-healing behaviors of
polymers cross-linked by various dynamic bonds, such
as dynamic covalent bonds [69, 107, 203, 67], hydrogen
bonds [31], and ionic bonds [157, 67].

4.4 Another mechanistic modeling of multifunctional
polymers

Electroelasticity in polymers. Electro-active poly-
mers (EAPs) are soft elastomers coated with elec-
trodes, which are sensitive to the external electric fields
with significant size and shape changes. They have
found wide applications such as polymeric transduc-
ers [46, 128] and polymeric actuators [183]. Contin-

uum mechanics theory has been well developed to ac-
count for the electromechanical coupling of this ma-
terial [42, 43, 101, 159, 158]. In recent years, several
works have been done based on molecular chain statis-
tics, which are connected to the continuum models
[28, 70]. The work worthy of note by Cohen et.al. con-
sidered the change of statistics of polymer chains un-
der electric fields and derived new formulations for
electroelasticity [28, 29], which can serve as references
for further MD simulations to study the validity of
the theories as MD-based studies are very few on this
topic.

Magnetoelasticity in polymers. The magneto-responsive

polymers are usually designed by adding hard or soft
magnetic composites into the polymer matrix (e.g.
elastomers) [6]. Under the influence of external mag-
netic fields, these materials demonstrate significant
magnetoelastic behavior. They have been designed to
work as soft actuators [37, 149], and soft robotics [65,
3]. Continuum mechanics theories have been formu-
lated very well to understand and design these materi-
als [15, 41, 141, 213]. In addition, MD simulations have
been extensively applied to study chain-level statistics
and dynamics under the influence of magnetic forces
[136, 137, 131, 139]. In the near future, we expect
that these MD simulations and continuum models can
be well integrated together to formulate mechanistic-
based models for these magnetorheological elastomers
[51].

Hydrogels. A hydrogel is a type of cross-linked poly-
mers which have rich hydrophilic structures that can
contain a large number of water molecules within the
polymer network [1, 156, 211]. Due to the similarities
(soft and wet) and thereby the compatibility between
hydrogels and biological tissues, they have emerged
as a very promising material for bioelectronics devices
[57,207], and ionotronics devices [200, 176]. Continuum-
level mechanics theory has been developed to account
for the mechanical behaviors of polymeric gels and hy-
drogels [63, 22, 104]. On the molecular level, MD sim-
ulations have also widely applied to study the struc-
ture and dynamics of hydrogels [161, 162, 26, 175].
However, the connections between MD studies and
the continuum modeling of hydrogels have not been
extensively investigated [88].

Liquid crystal polymers. Liquid crystal polymers
(LCPs) are a kind of polymers with sufficient rigid
rodlike monomers (also known as mesogens) as either
side groups or incorporated in the backbone chains
[73, 72, 132]. Due to the extremely unreactive and in-
ert features, they have exceptional properties, such as
chemical resistance, heat resistance, and electrical re-
sistance [140, 77]. Additionally, for its light-sensitive
feature, they have been used for light-activated actu-
ators and soft robotics [119, 103, 32]. Mechanically,
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they demonstrate significant anisotropy in deforma-
tion because of the intermediate state order between
crystalline solids and amorphous liquids [132], and also
because of the phase transitions between the nematic
phase and the smectic phase [189]. Continuum level
modeling has been extensively carried out [30, 172,
79]. MD simulations have also been applied to study
LCPs [120, 19, 152, 190]. However, mechanistic-based
studies are still very limited, which calls for further
studies.

5 Summary and Outlook

Polymers are long-chain organic molecules. Their me-
chanical behaviors are dominated by configurational
entropy changes. Additionally, the introduction of ad-
ditional active elements into the polymer networks
makes their mechanical behaviors even more compli-
cated. The conventional way to deal with this coupled
problem is to decompose the multiphysics responses
into single components and consider the entire re-
sponse as the summation of the decoupled elements.
For instance, the mechanical response of hydrogels can
be decomposed into two parts: the swelling of the poly-
mer network and mixing between polymer chains and
solvents [63].

In this work, we demonstrated that molecular sim-
ulations can be very useful to study the intrinsic defor-
mation mechanisms of polymer chains and networks
in the multiphysics context. Taking advantage of MD
simulations, the contributions of each component in
polymeric materials and their evolution can be ex-
plicitly quantified. Thus, molecular simulations can
link the polymer network deformation and continuum
model across scales, leading to the formulation of a
physics-informed continuum model. It can also serve
as an effective way to verify the assumptions made
in the continuum models, and study the applicable
ranges of these models. Namely, it can be used as vir-
tual experiments to check the validity of the direct
decomposition made for a multiphysics problem. By
highlight several examples in mechanistic modeling of
multifunctional polymers, this concept and philosophy
have been further elucidated.

However, there are still scientific challenges and
limitations, which are mainly summarized as follows:

(i) Despite simple, direct decomposition of multi-
physics mechanisms into single components might
introduce potential issues since it neglects the
coupling effects without explicitly considering the
applicable range of the decomposition. It could
be valid in a certain range, such as small defor-
mation, but maybe not in other situations. For
example, under strongly coupled conditions in-
volving material instabilities, these interactions
may not be easily decomposed. In addition, the
scale effect can also make the coupling effect

(iii)

(iv)

more intricate, since the coupling effect might
be scale-dependent [114].

The statistical mechanics of polymer networks
assumes perfect network, while real polymer sys-
tem contains significant defects, such as loops
and dangling chains [60] which have little contri-
bution to the polymer elasticity. How to account
for defects using statistical mechanics and molec-
ular mechanics modeling is a challenge. Recently,
Zhong et. al. combined experiments and simula-
tions to study the influence of loops on hydro-
gel elasticity [215]. They developed a theoretical
model of polymer elasticity (shear elastic mod-
ulus) on the loop fractions, which was validated
by Monte Carlo simulations very well. This work
provided a good reference to address this chal-
lenge.

Real polymer systems are synthesized by poly-
merization, which usually results in nonuniform
polymer chain-length distributions, so-called poly-
dispersed polymer systems. How to account for
the influence of chain-length distributions on poly-
mer elasticity is a challenge. There are several
recent efforts on this problem. Wang et. al. con-
sidered five different chain-length distributions
(Dirac Delta, uniform, normal, log-normal, and
Weibull distribution) and combined them with
the Arruda-Boyce model to derive the polymer
elasticity model [181]. Their results showed that
the difference in the stress-strain curve under
these five distributions is very small for stretch
ratio in the range of 1 ~ 3, compared to ex-
periments. Itskov and Knyazeva studied the de-
pendence of rubber elasticity and softening on
chain-length distributions (geometric probability
density function) [71]. Later, Verron and Gros
developed a theory for polymer elasticity con-
sidering arbitrary chain-length distributions un-
der the equal force assumption in the polymer
networks [173]. Despite these efforts, theoretical
work is still needed. Research questions include:
which chain-length distribution is more consis-
tent with real systems? Do all kinds of polymers
share the same chain-length distributions? Do
chain-growth polymerization and step-growth poly-
merization give the same chain-length distribu-
tions? How much influence does chain-length dis-
tribution have on polymer elasticity and viscoelas-
ticity?

It is a challenge when polymer systems undergo
extremely large deformation and even fracture.
Very recently, Lin and Zhao developed a theoret-
ical model to shed light on the influence of poly-
mer defects on the fracture of the polymer sys-
tem [99]. They showed that these defects toughen
the polymer network while weakening the poly-
mer network at the same time. These competing
effects depend on the densities and types of de-
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fects. The theoretical results were validated well
with experiments. However, it remains to be fur-
ther explored and quantified from molecular sim-
ulations.

(v) Despite its effectiveness, MD simulation has built-
in limitations in polymer modeling. It is not sur-
prising that a molecular model with hundreds
of thousands or millions of degrees of freedom
is usually necessary for accurate sampling of the
microscopic properties of interests. As a result,
the computational cost of molecular simulation
could be sometimes intimidating, leading to an
intrinsic tempo-spatial limitation, which is usu-
ally around hundreds of nanometers and nanosec-
onds respectively, for the all-atomic model. It
would be very difficult for long-time dynamics
simulations, like reptation of long linear poly-
mer chains in the melt. Although coarse-grained
models are widely used, attempting to circum-
vent the tempo-spatial limitation, its deficiency
is the inevitable entropic changes of the system,
resulting in altered structural or dynamics prop-
erties. Special care is needed in order to compen-
sate for the side-effect, which remains a challenge
to be addressed [202].

In summary, we discussed how to formulate the

molecular simulation-guided and physics-informed mech-

anistic models for multifunctional polymers. A physics-
based continuum model, with material parameters re-
lated to the molecular and microstructures, can dra-
matically facilitate the design of multifunctional poly-
mers to meet the high demand of soft materials in
numerous fields, especially on (i) using this mecha-
nistic framework to address the aforementioned chal-
lenges, as there are usually assumptions made in de-
veloping theoretical models. Thus, it is very helpful
to apply this mechanistic method to study the real
polymer systems with defects, chain-length distribu-
tions, and fractures. (ii) Recently, data-driven compu-
tational techniques are emerging to predict the com-
plex mechanical behaviors of materials without ex-
plicit constitutive modeling [166, 164, 165, 135]. These
data-driven methods also open a promising avenue
to directly use the molecular information of polymer
chains and networks, e.g. configurations of chains, for
predicting their mechanical behaviors [52]. Therefore,
using MD simulations as numerical experiments and
combined with data-driven methods, novel constitu-
tive relations may be discovered. We anticipate that
this work can provide some useful insights in mecha-
nistic modeling of polymers, and inspire future studies
in the near future.
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