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SOME NOVEL RESULTS IN TWO SPECIES COMPETITION∗
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Abstract. We investigate certain two species ODE and PDE Lotka–Volterra competition mod-
els, where one of the competitors could potentially go extinct in finite time. We show that in this
setting, various novel dynamics are possible. In particular competitive exclusion can be avoided, and
the slower diffusing competitor may not win. Numerical simulations are performed to corroborate
our analytical findings.
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1. Introduction. The two species Lotka–Volterra competition model and its
variants have been rigorously investigated in the last few decades. They represent
a simplified scenario of two competing species, taking into account growth and in-
ter/intraspecific competition [1, 2]. They predict well-observed states in ecology of
co-existence, competitive exclusion of one competitor, and bistability and find im-
mense applications in applied mathematics, population ecology, invasion science, evo-
lutionary biology, and economics, to name a few areas [2, 3, 4, 5]. The equilibrium
states are achieved only asymptotically as is the case in many differential equation
population models.

In the current manuscript we consider competitive systems when one of the com-
petitors has the potential to go extinct in finite time. There are various motivations to
study finite time extinction mechanisms (FTEM) in population dynamics. In model-
ing predator-pest densities such as in classical biological control, a very low pest den-
sity need not indicate essential extinction—and pest populations can rebound from
levels as close to extinction as one pleases [6]. An explosive increase in population is
well observed with soybean aphids (Aphis glicines), the chief invasive pest on soybean
crops, particularly in the midwestern United States [7]. Therein the arrival of aphids
in very low density (<< 1) could lead to population levels of several thousand on a
soybean plant in a matter of few months [8].

Another motivation to study the FTEM is its applicability to epidemics. This
is timely and useful in studying the dynamics of the coronavirus disease (COVID19)
global pandemic to curb a mortality increase [9]. Recent work has considered a large
class of susceptible-infected models with nonsmooth incidence functions that can lead
to host extinction in finite time yet are seen to be better fits to data than their smooth
counterparts [10, 11]. This has been observed in disease transmitted by rhanavirus
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among amphibian populations [12] and disease transmission in host-parasitoid models
[13], as well as in virus transmission in gypsy moths [14]. Non-smooth responses
have been considered analytically in the predator-prey literature as well [15, 16, 17];
a careful analysis of this splitting of phase, initial condition dependent extinction,
and all of the rich dynamics and bifurcations involved therein has been made in
[18, 19]. They have also been considered a fair bit in the applied sense, due to the fit
they provide to various data [20, 21, 22, 23]. A two species competition model with
nonsmooth response has been considered in [24], in which one population is highly
socialized, living and wandering in a herd.

The following are demonstrated in the current manuscript:
• A two species ODE Lotka–Volterra competition model with an FTEM can
lead to bistability, via Lemma 2.2 and Theorem 2.7; also see Figure 1. FTEM
can also enable a competitor to avoid competitive exclusion and persist for
various regimes of initial conditions. This is seen via Theorem 2.4 and Lemma
2.5; also see Figure 2.

• FTEM in the spatially homogeneous PDE model can cause diffusion induced
recovery, as opposed to diffusion induced extinction seen in the classical case,
via Theorem 3.2; see Figure 8.

• FTEM in the spatially inhomogeneous PDE model can cause the slower dif-
fuser to lose, via Theorem 3.6; see Figure 11. It can also bring about a rich
bifurcation structure in the space of diffusion parameters; see Figure 10.

2. The ODE case.

2.1. The extinction/competitive exclusion case. Consider the classical two
species Lotka–Volterra competition model,

du

dt
= u(a1 − b1u− c1v),

dv

dt
= v(a2 − b2v − c2u),

(2.1)

where u and v are the population densities of two competing species, a1 and a2 are the
intrinsic (per capita) growth rates, b1 and b2 are the intraspecific competition rates,
and c1 and c2 are the interspecific competition rates. All parameters considered are
positive.

We consider first the competitive exclusion case,

a1
a2

> max

{
b1
c2

,
c1
b2

}
.(2.2)

In this setting as t → ∞, the solutions (u(t), v(t)) converge uniformly to (a1/b1, 0)
irrespective of initial conditions. Without loss of generality (WLOG) we consider the
case when (a1/b1, 0) is globally asymptotically stable, thus u is the stronger competitor
and drives v to extinction, and v is said to be competitively excluded [25].

We posit that including FTEM can alter the above classical dynamics. To this
end consider 

du

dt
= a1u− b1u

2 − c1u
pv, 0 < p ≤ 1,

dv

dt
= a2v − b2v

2 − c2uv
q, 0 < q ≤ 1.

(2.3)
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We see that the classical model is a special case of the above, when p = q = 1.
Note that 0 < p < 1, q = 1, allows for finite time extinction of u, and p = 1, 0 < q < 1,
allows for finite time extinction of v.

Remark 2.1. There is also the more complex case when 0 < p < 1, 0 < q < 1.
This case is not within the scope of the current work; however, it is discussed in some
detail in the conclusion section.

We state the following result.

Lemma 2.2. Consider (2.3), q = 1, and a1

b1
> a2

c2
hold; then for any p ∈ (0, 1),

there exists an interior equilibrium, which is a saddle under the parametric restriction
(A.8).

Proof. The u and v nullclines are given by

v = f(u) = u1−p

(
a1
c1

− b1
c1

u

)
, v = g(u) =

a2
b2

− c2
b2
u.(2.4)

Now the graph of f(u) is parabolic shaped with zeroes at u = 0, u = a1

b1
. Also we

have a1

b1
> a2

c2
with g(a1

b1
) < 0, g(0) > 0. Thus continuity of f and the intermediate

value theorem will ensure that the curve f intersects g or the oblique boundary of the
triangle, at some value of u ∈ [0, a1

b1
] creating an interior equilibrium. Standard linear

analysis proves this is a saddle; see section A.

Remark 2.3. Note the condition a1

b1
> a2

c2
as used in the proof of Lemma 2.2 is

necessary for (2.2). Thus one can now compare the models (2.1) and (2.3). If (2.2) is
satisfied, then u is the stronger competitor and v is competitively excluded. However,
if u possesses FTEM, 0 < p < 1, q = 1, then for initial conditions lying above the
stable manifold of the interior saddle equilibrium E3, it is u that goes extinct; see
Figure 1. This is perhaps expected as we are reducing the competitive advantage of
u by speeding up the process to its extinction, via the FTEM. Also since this result

Fig. 1. Here we see the competitive exclusion case, that is, if (2.2) is assumed in model (2.3).
We choose a1 = 1.8, a2 = 3, b1 = 1.1, b2 = 1.03, c1 = 0.5, c2 = 3.5. (a) The classical result
when p = 1, q = 1, that is, (u∗, 0) is globally asymptotically stable, and v is said to be competitively
excluded. (b) An FTEM in u is assumed with p = 0.7, q = 1. We see that this mechanism can
induce co-existence. Here W s(E3) denotes the stable manifold of the interior saddle equilibrium E3.
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is qualitatively similar for any value of p ∈ (0, 1), we can infer that any increase in
the extinction rate of u, as long as it happens in finite time, will yield bistability.

We next present results where v possesses the finite time extinction dynamic.

Theorem 2.4. Consider (2.3), with p = 1, a1

c1
> a2

b2
, (a2)

2b1+2a2c1c2 > 4a1b2c2.
Then there exists a q∗ ∈ (0, 1) s.t. for any q∗ < q < 1 there is no interior equilibrium,
for q = q∗ there is a unique nonhyperbolic equilibrium, and for 0 < q < q∗ there exist
two interior equilibria, a saddle and a nodal sink.

Proof. We consider the nullclines as functions of v. These are given by

u = f1(v) =
a1
b1

− c1
b1
v, u = g1(v) = v1−q

(
a2
c2

− b2
c2

v

)
.(2.5)

f1 is a straight line, with v and u intercepts at a1

b1
and a1

c1
, and the graph of g1 is

parabolic shaped with zeroes at 0 and a2

b2
. A sufficient condition for the occurrence

of two equilibria is if there exists a 0 ≤ v ≤ a2

b2
where

sup
0≤v≤ a2

b2

g1(v) ≥ f1(v).(2.6)

The maximum of g1 occurs when

g
′

1(v) = v1−q

(
−b2
c2

)
+ (1− q)

(
a2
c2

− b2
c2

v

)
v−q = 0,(2.7)

and this maximum is attained at v = (1−q)a2

(2−q)b2
. Thus,

g1

(
(1− q)a2
(2− q)b2

)
=

(
(1− q)a2
(2− q)b2

)1−q (
a2
c2

− b2
c2

(
(1− q)a2
(2− q)b2

))
≥ f1

(
(1− q)a2
(2− q)b2

)
=

(
a1
b1

− c1
b1

(
(1− q)a2
(2− q)b2

))
(2.8)

will suffice to have two equilibria. Note (a2)
2b1 + 2a2c1c2 > 4a1b2c2 <=> g1(

a2

2b2
) >

f1(
a2

2b2
), and so this condition ensures that we have two interior equilibria, as q → 0.

Next we need to show that g1 will decrease sufficiently as q ↗ s.t. g1 and f1
touch to form one equilibrium. We proceed by contradiction. Assume not, then

g1(v) ≥ f1(v), v =
(1− q)a2
(2− q)b2

∀ q ∈ (0, 1).(2.9)

Note a2

c2
< a1

b1
, since when q = 1 we are in the classical case. Thus there exists a

δ > 0 s.t. a2

c2
≤ a1

b1
− δ. Now consider q = 1− ϵ, for any given 0 < ϵ << 1, s.t.

ϵ < min

(
b2

a2 + b2
,

a2c1c2
a2c1c2 + b2(a1c2 − b1a2)

)
.(2.10)
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We obtain

g1

(
(1− q)a2
(2− q)b2

)
= g1

(
(ϵ)a2

(1− ϵ)b2

)
=

(
(ϵ)a2

(1− ϵ)b2

)ϵ(
a2
c2

− b2
c2

(
(ϵ)a2

(1− ϵ)b2

))
≤ (1)ϵ

(
a2
c2

− b2
c2

(
(ϵ)a2

(1− ϵ)b2

))
≤ a2

c2
≤ a1

b1
− δ

=
a1
b1

−
(

(ϵ)a2
(1− ϵ)b2

(
c1
b1

))
= f1

(
(ϵ)a2

(1− ϵ)b2

)
= f1

(
(1− q)a2
(2− q)b2

)
.(2.11)

This follows from (2.10) as ϵ < b2
a2+b2

and if we choose δ = ( (ϵ)a2

(1−ϵ)b2
( c1b1 )). Note from

(2.10) we have ϵ < a2c1c2
a2c1c2+b2(a1c2−b1a2)

and so δ = ( (ϵ)a2

(1−ϵ)b2
( c1b1 )) <

a1

b1
− a2

c2
. Thus we

arrive at a contradiction. So there must exist a q ∈ (0, 1) where g1(v) < f1(v) for

a v = (1−q)a2

(2−q)b2
. Thus by continuity of g1 and the intermediate value theorem, there

must exist a q∗ where f1 and g1 meet to form one nonhyperbolic equilibrium. Also
by continuity for q∗ < q < 1, there will be no equilibrium.

We next provide a bound on q∗ in terms of the parameters in the problem. We
state the following result.

Lemma 2.5. Consider (2.3) with p = 1, a1

c1
> a2

b2
, (a2)

2b1 + 2a2c1c2 > 4a1b2c2,
a2 > 2b2. The critical q = q∗ where there is a unique nonhyperbolic equilibrium
satisfies 0 < q∗ < a2−2b2

a2−b2
< 1.

Proof. Note

d

dq

(
g1

(
(1− q)a2
(2− q)b2

))
=

a2
c2(q − 2)

log

(
(1− q)a2
(2− q)b2

)(
(1− q)a2
(2− q)b2

)1−q

< 0(2.12)

when q ∈ (0, a2−2b2
a2−b2

) and so g1 ↘ for q ∈ (0, a2−2b2
a2−b2

), whereas we have shown via
Theorem 2.4 that there exists a q∗ where g1 and f1 touch to form one equilibrium.

For q ∈ (a2−2b2
a2−b2

, 1), d
dq (g1(

(1−q)a2

(2−q)b2
)) > 0. Thus g1 ↗ for q ∈ (a2−2b2

a2−b2
, 1), and g1

would never touch f1 to form one equilibrium. This would then imply a contradiction
to Theorem 2.4. Thus we must have q∗ < a2−2b2

a2−b2
.

Remark 2.6. Note the condition a1

b1
> a2

c2
as used in the proof of Theorem 2.4 is

necessary for (2.2). Thus one can now compare the models (2.1) and (2.3). If (2.2)
is satisfied and p = q = 1, then u is the stronger competitor and v is competitively
excluded. If, however, we let v possess FTEM, p = 1, 0 < q < 1, and (a2)

2b1 +
2a2c1c2 > 4a1b2c2, then for initial conditions lying above the stable manifold of the
interior saddle E1

3 , v could coexist with u; see Figure 2. This is counterintuitive, as
v can seemingly improve its competitive ability and avoid competitive exclusion for
various regimes of initial conditions by speeding up the process to its own extinction.
Note, however, that an advantage to the weaker competitor or the co-existence result
occurs only if 0 < q < q∗ < 1. Thus we can infer that co-existence depends on
increasing the extinction rate of v to be sufficiently fast. This is qualitatively different
from placing FTEM in the stronger competitor, where any increase of extinction rate
will yield bistability—hence an advantage to the weaker competitor.
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Fig. 2. Here we explore the effect of FTEM in v, in the competitive exclusion case. We choose
a1 = 1.8, a2 = 3, b1 = 1, b2 = 1, c1 = 0.5, c2 = 1.8, p = 1. We note that depending on the
value of q, various dynamics are possible. (a) FTEM when q = 0.3. We see that co-existence is
now possible. The saddle interior equilibrium when it occurs is denoted by E1

3 , and the locally stable
interior equilibrium when it occurs is denoted by E2

3 . Here W s(E1
3) denotes the stable manifold of

E1
3 . (b) When q = q∗ = 0.48946. (c) When q = 0.8, thus for values of q > q∗, the FTEM in v

cannot induce co-existence.

Example 1. We provide a numerical example to corroborate Lemma 2.5 by using
the following set of parameter values: a1 = 1.8, a2 = 3, b1 = 1, b2 = 1, c1 = 0.5, c2 =
1.8, and p = 1. We note that a1

c1
= 3.6 > 3 = a2

b2
, (a2)

2b1 + 2a2c1c2 = 14.4 > 12.96 =
4a1b2c2, and a2 = 3 > 2 = 2b2.

Additionally, from Figure 2(b), we obtain that q∗ = 0.48946 < 0.5 = a2−2b2
a2−b2

.

Note that when 0 < p, q < 1 the kinetic terms are nonsmooth, causing issues for
uniqueness. Linearization at interior equilibrium is not affected. However, stan-
dard linearization methods do not work for boundary equilibria due to the non-
smootheness. WLOG if p = 1, 0 < q < 1, (u∗, 0) would be attained by v → 0 in
a finite time, followed by an asymptotic rate of attraction to u∗. So initial data taken
on the u-axis can lead to nonuniqueness backward in time. This can be circumvented
if we avoid data on the u-axis. Such and related issues have been dealt with in
[6, 10, 18, 19]. We thus derive an explicit sufficient condition on the initial data that
yields finite time extinction of the stronger competitor u. This is stated and proved
via the following theorem.

Theorem 2.7. Consider the competition model given by (2.3) for any 0 < p <
1, q = 1, and suppose a1

b1
> a2

c2
holds. Then for positive initial conditions (u(0), v(0))

s.t. u(0) ≤ a1

b1
, and

v(0) >

(
a1c2 + (1− p)a1b1 + a2b1

(1− p)c1b1

)
(u(0))1−p,(2.13)

u will go extinct in finite time and trajectories will approach (0, a2/b2). However, if
(u(0), v(0)) lies below the stable manifold W s(E3) of the interior saddle equilibrium
E3, then all trajectories initiating from them will approach (a1/b1, 0) asymptotically.

Proof. Consider the equation for initial condition 0 < u(0) ≤ a1

b1
. Then

dv

dt
≥ −b2v

2 − c2uv ≥ −b2

(
a2
b2

)
v − c2

(
a1
b1

)
v.(2.14)
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This follows as u ≤ a1

b1
, v ≤ a2

b2
, by comparison to the logistic equation. Thus,

v(t) ≥ v(0)e
−
(
a2+

a1c2
b1

)
t

(2.15)

for all time t ≥ 0.
Note that

du

dt
= a1u− b1u

2 − c1u
pv,

≤ a1u− c1u
pv.(2.16)

Now we can divide the above by up since u is positive to obtain

du

dt

1

up
≤ a1u

1−p − c1v.(2.17)

Using the lower bound on v yields

d

dt
(u1−p) ≤ (1− p)a1u

1−p − (1− p)c1v(0)e
−
(
a2+

a1c2
b1

)
t
.(2.18)

Multiplying both sides by the integrating factor e−(1−p)a1t, and subsequently inte-
grating the above in the time interval [0, t], we obtain

e−(1−p)a1tu1−p

≤ (u(0))1−p −

(
(1− p)c1v(0)

(1− p)a1 + a2 +
a1c2
b1

)(
1− e

−
(
(1−p)a1+a2+

a1c2
b1

)
t
)
,(2.19)

which then implies the finite time extinction of u if

(u(0))1−p <

(
(1− p)c1v(0)

(1− p)a1 + a2 +
a1c2
b1

)
.(2.20)

Thus it suffices to choose initial data such that v(0) > ( (1−p)a1b1+a2b1+a1c2
(1−p)c1b1

)(u(0))1−p

for u to go extinct in finite time. This proves the theorem.

We provide some simulation next to elucidate.

Remark 2.8. We can similarly compare the situation with FTEM to the classical
case, when there is coexistence or the weak competition case, that is, if

b1
c2

>
a1
a2

>
c1
b2
.(2.21)

The classical theory for p = 1, q = 1 is that all initial conditions would be
attracted to an interior equilibrium. In this setting the competitors u and v coexist.
In the case of FTEM, 0 < p < 1, q = 1, or 0 < q < 1, p = 1, the situation can change
qualitatively. We provide some simulations in Figure 4 to elucidate. Note in all of
the numerical simulations in Figures 1–5, we are interested only in the first quadrant,
as this is what is most relevant for population dynamic applications. Furthermore
standard theory yields positivity for the systems under consideration [19].
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Fig. 3. Here we demonstrate our results for Theorem 2.7. Here a1 = 1.8, a2 = 3, b1 = 1, b2 =
1, c1 = 0.5, c2 = 1.8, p = 0.4, q = 1. Here W s(E3) denotes the stable manifold of the interior

saddle equilibrium E3. Also f(u) = (
a1c2+a2b1+(1−p)a1b1

(1−p)c1b1
)u1−p and the dotted blue line on the

right is u = a1
b1

, the boundary of Theorem 2.7. The dotted blue line does not affect the larger result

regardless of the theorem’s limitations. Note any initial data lying above W s(E3) is attracted to
(0, v∗); however, we are only able to prove this for initial data lying above f(u). Thus there is some
wiggle room between all of the initial data that will be driven to (0, v∗) and the data that we can
prove will be driven to (0, v∗) at present.
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Fig. 4. Here we explore the effect of FTEM in u or v in the weak competition or co-existence
case. So (2.21) is assumed in model (2.3). We choose a1 = 1, a2 = 2, b1 = 1, b2 = 1, c1 = 0.3, c2 =
1.8. The saddle interior equilibrium when it occurs is denoted by E1

3 , and the locally stable interior
equilibrium when it occurs is denoted by E2

3 . Here W s(E1
3) denotes the stable manifold of E1

3 . We
notice that depending on the values of p or q various dynamics are possible: (a) classical case when
p = 1, q = 1, (b) FTEM when p = 0.6, q = 1, (c) p = 0.01, q = 1, (d) FTEM when p = 1, q = 0.9,
(e) p = 1, q = 0.97.
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Fig. 5. Here we explore the effect of FTEM in the strong competition case, that is, (3.3) is
assumed in model (2.3). We choose a1 = 1, a2 = 1, b1 = 1, b2 = 1, c1 = 2, c2 = 2. The saddle
interior equilibrium is denoted by E3. Here W s(E3) denotes the stable manifold of the interior saddle
equilibrium E3. We observe the qualitative behavior of the system cannot be changed by FTEM in
u or v. That is, there are two locally stable boundary equilibria and one saddle interior equilibrium
whether p = 1, 0 < q < 1 or 0 < p < 1, q = 1. (a) Classical when p = 1, q = 1. (b) FTEM when
p = 0.6, q = 1. (c) FTEM when p = 1, q = 0.5.

3. The PDE case.

3.1. The case of strong competition. The spatially explicit two species com-
petition model has been intensely investigated [3, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36]. We consider a generalized version{

ut = d1∆u+ a1u− b1u
2 − c1u

pv, 0 < p ≤ 1,

vt = d2∆v + a2v − b2v
2 − c2uv

q, 0 < q ≤ 1,
(3.1)

∇u · n = ∇v · n = 0, on ∂Ω , u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0,(3.2)

where we consider a bounded domain Ω ⊂ Rn, n = 1, 2. Under the strong competition
setting,

b1
c2

<
a1
a2

<
c1
b2
.(3.3)

When p = q = 1, classical results show that in the absence of diffusion, there is
a stable manifold of the saddle equilibrium (separatrix) denoted as h that splits the
phase space into two regions, WB the region above the separatrix. Note that for initial
data (u(x, 0), v(x, 0)) ∈ WB ∀x ∈ Ω, the solution converges to (0, a2

b2
). Likewise, WA

is the region below the separatrix, and for initial data (u(x, 0), v(x, 0)) ∈ WA ∀x ∈ Ω,
the solution converges to (a1

b1
, 0). We recap a classical result from [26, 37] of diffusion

induced extinction.

Theorem 3.1. Let (u, v) be a solution of (3.1)–(3.2), b1
c2

< a1

a2
< c1

b2
, and p = q =

1. Suppose that h
′′ ≤ 0. Then there exists initial data such that (u(x, 0), v(x, 0)) ∈ WB

∀x ∈ Ω, but the solution initiating from this data converges uniformly to (a1

b1
, 0).

These dynamics can change when FTEM are present in u and we can have finite
time extinction induced recovery. To this end we state and prove the following result.

Theorem 3.2. Consider (3.1)–(3.2) with b1
c2

< a1

a2
< c1

b2
. Then ∃ 0 < p < 1, q = 1,

and initial data (u0(x), v0(x)) ∈ WB ∀x ∈ Ω, that converges uniformly to (0, a2

b2
), as

long as
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a1c2 + (1− p)a1b1 + a2b1

(1− p)c1b1

)
≤
(
c2a1 − b1a2
c1a2 − a1b2

)(
c1a2 − a1b2
c2c1 − b1b2

)p

.

Proof. For the constant coefficient case as we are dealing with herein, solutions
are spatially homogeneous [26, 37], thus our system is reduced to{

ut = a1u− b1u
2 − c1u

pv,

vt = a2v − b2v
2 − c2uv.

(3.4)

Standard estimates as in Theorem 2.7 yield the finite time extinction of u for
initial data chosen s.t.(

a1c2 + (1− p)a1b1 + a2b1
(1− p)c1b1

)
(u0(x))

1−p = f1(u0) ≤ v0(x).(3.5)

Note that analysis of the ODE/kinetic system, via a simple modification of Lemma
2.2 (see Figure 1), clearly shows that when p < 1, the interior equilibrium is lowered
and so is the separatrix. We refer to the separatrix for the 0 < p < 1 case as h1. Now
consider when p = 1, initial data (u0(x), v0(x)) ∈ WB , for which diffusion induced
extinction occurs. Since (u(x, 0), v(x, 0)) ∈ WB , it lies above the separatrix h, and by
the concavity assumption on h, h lies above the line segment connecting (0, 0) and
(u∗, v∗), which is given by the equation

v0(x) = f2(u0) =

(
c2a1 − b1a2
c1a2 − a1b2

)
u0(x).(3.6)

Thus if we choose p s.t. h1 is lowered enough s.t. f1(u0) < f2(u0), for certain u∗
0,

then there exists data (u∗
0, v

∗
0) ∈ WB (for which diffusion induced extinction occurs if

p = 1), but that lies above the separatrix h, which in turn lies above f2(u0), which
by the appropriate choice of p < 1 lies above f1(u0), which lies above h1—and so will
converge uniformly to (0, v∗)—and diffusion induced extinction does not occur when
p < 1. To this end it is sufficient that f1(u0(x)) ≤ v0(x) ≤ f2(u0(x)), or(

a1c2 + (1− p)a1b1 + a2b1
(1− p)c1b1

)
(u0(x))

1−p ≤ v0(x) ≤
(
c2a1 − b1a2
c1a2 − a1b2

)
u0(x)(3.7)

and

u0(x) ≤ u∗ =

(
c1a2 − a1b2
c2c1 − b1b2

)
.(3.8)

A sufficient parametric restriction for which the above is true is given by(
a1c2 + (1− p)a1b1 + a2b1

(1− p)c1b1

)
≤
(
c2a1 − b1a2
c1a2 − a1b2

)(
c1a2 − a1b2
c2c1 − b1b2

)p

.(3.9)

This proves the theorem.

Remark 3.3. This enables us to compare the model with p < 1, when there is an
FTEM, to the classical case. One sees that we can construct initial data s.t. when
p = 1, solutions initiating from this data converge to (a1

b1
, 0), but when p < 1, they

converge to (0, a2

b2
). See Figures 6–8.

Remark 3.4. We note similar results are possible when there is an FTEM in v.
Herein initial data lying above the separatrix can go to a coexistence state, or one
could have diffusion induced extinction. See Figure 9.
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(a) (b)

Fig. 6. Diffusion induced extinction is seen. Here we consider parameters a1 = 1.1, b1 = 1, c1 =
1.2, a2 = 1, b2 = 1, c2 = 2, p = 1, d1 = 1, d2 = 0.001 for (3.1)–(3.2). We choose Ω = [0, 0.071429].
The initial data is chosen as per the estimates of Theorem 3.2; see Figure 8.

(a) (b)

Fig. 7. Finite time extinction induced recovery of superior species. We choose a1 = 1.1, b1 =
1, c1 = 1.2, a2 = 1, b2 = 1, c2 = 2, p = 0.1, d1 = 1, d2 = 0.001, and Ω = [0, 0.071429] for (3.1)–(3.2).
The initial data is chosen as per the estimates of Theorem 3.2; see Figure 8.
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v

separatrix ( p=1 )
f1(u0(x))
separatrix ( p=0.1 )
f2(u0(x))

(u*,v*)
(u(x,0),v(x,0))

Fig. 8. Plot corroborating Theorem 3.2. Parameters used are a1 = 1.1, b1 = 1, c1 = 1.2, a2 =
1, b2 = 1, c2 = 2, p = 0.1. We choose Ω = [0, 0.071429]. Here, (u∗, v∗) = (0.071429, 0.85714). The
red dots are the data that lie above the separatrix when p = 1; we see diffusion induced extinction
occur, that is, we approach (a1

b1
, 0) in this case—see Figure 6. When p < 1, the same data converges

to (0, a2
b2

); see Figure 7.
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Fig. 9. Here we consider parameters for the extinction case in Figure 2 with q = 0.3. We
choose our domain as Ω = [0, 1]. (a) Initial data (blue) (u0(x), v0(x)) = (x2 + 1, 1.15x2 + 1.242)
chosen above the separatrix (red). (b) Initial data (blue) (u0(x), v0(x)) = (x2 + 0.05, 1.25x2 + 1)
above separatrix (red). We see solutions converging to (u∗, 0) in (c) and (d) with initial data in (a)
and diffusion coefficients chosen as d1 = 15, d2 = 0.03. Plots (e) and (f) show solutions converging
to (u∗, v∗) with initial data chosen from (b) and diffusion coefficients d1 = 0.5, d2 = 1.

3.2. The spatially inhomogeneous problem. The spatially inhomogeneous
problem has been intensely investigated in the past two decades [3, 27, 28, 31, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. The premise here is that u, v do not have
resources that are uniformly distributed in space; rather there is a spatially dependent
resource function m(x). We consider again a normalized generalization of the classical
formulation, where there are two parameters b and c for inter/intraspecific kinetics
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as opposed to six kinetic parameters in (3.1) from earlier. The parameter choice
0 < p < 1 enables an FTEM in u.{

ut = d1∆u+m(x)u− u2 − cupv, 0 < p ≤ 1,

vt = d2∆v +m(x)v − v2 − buv,
(3.10)

∇u · n = ∇v · n = 0 on ∂Ω , u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0.(3.11)

Note that p = 1 is the classical case. We consider m to be nonnegative on Ω and
bounded. We recap a seminal classical result [50, 51], which shows that the slower
diffuser wins.

Theorem 3.5. Consider (3.10)–(3.11), when b = c = p = 1, and d1 < d2,
solutions initiating from any positive initial data (u0(x), v0(x)) converge uniformly to
(u∗(x), 0).

That is, the slower diffuser wins, in the case of equal kinetics. However, a dif-
ference in the interspecific kinetics via FTEM can cause the slower diffuser to lose,
depending on the initial conditions. We now state the following result in one spatial
dimension.

Theorem 3.6. Consider (3.10)–(3.11), where Ω ⊂ R, is a bounded domain, and
when b = c = p = 1, d1 < d2. There exists positive initial data (u0(x), v0(x)), for
which solutions converge to (u∗(x), 0), but solutions with the same diffusion coeffi-
cients, initiating from the same data, will converge to (0, v∗(x)) in finite time, for a
sufficiently chosen p ∈ (0, 1).

Proof. Via comparison with the logistic equation [3], we see that u ≤ Cm(x),
∀x, t ∈ Ω× [0,∞). Now from the equation for v in (3.10), we have

vt = d2vxx +m(x)v − v2 − uv ≥ d2vxx − v2 − C||m||∞v,(3.12)

and via comparison we have

v(x, t) ≥ C1v0(x)e
−C2t,(3.13)

where C1, C2, are independent of u. We now multiply the u equation in (3.10) by u
and integrate by parts to obtain

1

2

d

dt
||u||22 + d1||ux||22 +

∫
Ω

u1+pvdx+

∫
Ω

u3dx =

∫
Ω

m(x)u2dx.(3.14)

Using the estimate on v from (3.13) we obtain

1

2

d

dt
||u||22 + d1||ux||22 + C3e

−C2t

∫
Ω

u1+pdx+

∫
Ω

u3dx ≤
∫
Ω

m(x)u2dx.(3.15)

Here C3 = C1 min v0(x) > 0; then it follows that

1

2

d

dt
||u||22 +min(d1, C3)e

−C2t

(
||ux||22 +

∫
Ω

u1+pdx

)
+

∫
Ω

u3dx ≤
∫
Ω

m(x)u2dx.

Thus we have that

1

2

d

dt
||u||22 + C4e

−C2t

(
||ux||22 +

∫
Ω

u1+pdx

)
+

∫
Ω

u3dx ≤ ||m(x)||∞||u||22dx.
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Our goal is to show that(
||u||22

)α ≤ C4

(
||ux||22 +

∫
Ω

u1+pdx

)
,(3.16)

where 0 < α < 1; then we will have the finite time extinction of u in analogy with the
ODE

dy

dt
= C5y − C4e

−C2tyα, 0 < α < 1, C2, C4, C5 > 0.(3.17)

Now recall the Gagliardo–Nirenberg–Sobolev (GNS) inequality [52],

||ϕ||
Wk,p

′
(Ω)

≤ C||ϕ||θ
Wm,q

′
(Ω)

||ϕ||1−θ
Lq(Ω)(3.18)

for ϕ ∈ Wm,q(Ω) provided p
′
, q

′
, q ≥ 1, 0 ≤ θ ≤ 1, and

k − n

p′ ≤ θ

(
m− n

q′

)
− (1− θ)

n

q
.(3.19)

Now consider exponents s.t.

W k,p
′

(Ω) = L2(Ω), Wm,q
′

(Ω) = W 1,2(Ω), Lq(Ω) = L1+p(Ω)(3.20)

for 0 < p < 1. This yields

||u|L2(Ω) ≤ C||u||θW 1,2(Ω)||u||
1−θ
Lq(Ω),(3.21)

as long as

2− q

2 + q
≤ θ ≤ 1.(3.22)

We raise both sides of (3.21) to the power of l, 0 < l < 2, to obtain(∫
Ω

u2dx

) l
2

≤ C

(∫
Ω

(ux)
2dx

) lθ
2
(∫

Ω

uqdx

) l(1−θ)
q

.(3.23)

Using Young’s inequality on the right-hand side (for ab ≤ ar

r + bm

m ), with r = 2
lθ , m =

q
l(1−θ) , yields (∫

Ω

u2dx

) l
2

≤ C

(∫
Ω

(ux)
2dx+

∫
Ω

uqdx

)
.(3.24)

We notice that given any 1 < q < 2, it is always possible to choose 0 < l < 2, s.t.
1
r + 1

m = 1,

1

r
+

1

m
=

lθ

2
+

l(1− θ)

q
= 1,(3.25)

by choosing

θ =

1
l −

1
q

1
q − 1

2

=
2(q − l)

l(2− q)
,(3.26)
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thus we need to choose l s.t.

2(q − l)

l(2− q)
≥ 2− q

2 + q
(3.27)

or

1

l
≥ (2− q)2

2q(2 + q)
+

1

2q
.(3.28)

This enables the application of Young’s inequality above, within the required restric-
tion (3.22), enforced by the GNS inequality.

Thus we have

1

2

d

dt
||u||22 + C4e

−C2t
(
||u||22

) l
2 ≤ C5||u||22dx.

Let α = l
2 < 1. We have that ||u||22 → 0 as t → T ∗ < ∞, for appropriately chosen

initial data, in analogy with the ODE

dy

dt
= C5y − C4e

−C2tyα, 0 < α < 1, C2, C4, C5 > 0.(3.29)

We set y = g(t)eC5t to obtain

dg

dt
= −C4e

−C6t(g(t))α, 0 < α < 1, C6, C4, C5 > 0.(3.30)

Solving (3.30) yields

g(t) =

(
(1− α)C4e

−C6t

C6
+K

) 1
1−α

,K a constant.(3.31)

Here K = (g0)
(1−α) − ((1−α))C4

C6
. Thus for initial data chosen such that g(0) <

( (1−α)C4

C6
)

1
1−α , then g goes extinct at finite time T ∗ = ln( C6

(1−α)C4−C6(g0)1−α ), and so

does y(t). Thus we need to choose the initial data such that ||u0||22 < ( (1−α)C4

C6
)

1
1−α .

Since L2(Ω) convergence implies uniform convergence on Ω, which is closed and
bounded, we see that for sufficiently chosen data (u, v) → (0, v∗(x)) uniformly, and
this occurs in finite time. However, if p = 1, classical results [50] would imply the
same data would have converged to (u∗(x), 0). This completes the proof.

Remark 3.7. In the event that 0 < b, c < 1 in (3.10)–(3.11), and p = 1, we are
in the weak competition case. Herein, if d1 < d2, the slower diffuser could win or
coexistence can occur [41, 42]. Once we bring in FTEM, that is, 0 < p < 1, numerical
simulations illustrate interesting scenarios in the bifurcation plots in (d1, d2) space.
See Figure 10(a) for the classical result [41, 42]—however, when 0 < p < 1, the
bifurcation plot changes qualitatively, in that one can have the additional dynamic
where the slower diffuser could lose; see Figure 10(b).

4. Discussions and conclusions. The current manuscript considers the two
species ODE and PDE Lotka–Volterra competition model, where one competitor pos-
sesses the dynamic of finite time extinction. As mentioned this is of immense interest
currently to mathematicians and ecologists alike; in particular there is effort to under-
stand in what capacity species will “optimize” [35, 53, 54, 55]. We see that bringing in
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Fig. 10. Plots of d1 versus d2 for (3.10)–(3.11). We choose Ω = [0, 1] and m(x) = x(1 − x).
We use the following parameters: b = c = 0.999. The red region shows that u prevails, i.e., (u∗, 0),
the blue region shows coexistence (u∗, v∗), and the green region shows v prevailing, i.e., (0, v∗).
The classical result [41, 42] is seen in (a); however, FTEM show different results in (b)—here we
see that the faster diffuser could also prevail. The initial condition used for each simulation is
(u0(x), v0(x)) = (0.363027 + 0.1(cos(πx))2, 0.290947 + 0.1(cos(πx))2).

(a) (b)

Fig. 11. Simulation for (3.10)–(3.11) with Ω = [0, 1] and m(x) = x(1− x). Simulations in (a)
and (b) show solutions converging to (0, v∗) in finite time with parameters b = c = 1, d1 = 0.01, d2 =
1, p = 0.7 and initial data (u0(x), v0(x)) = (0.199+(cos(πx))2, 0.199+0.001(cos(πx))2). The slower
diffuser loses herein.

FTEM can change (albeit counterintuitively) certain classical ecological scenarios, see
also Figure 11. Most notably in the ODE case, we see that the weaker competitor can
avoid competitive exclusion with FTEM present—this is counterintuitive as it posits
that speeding up its extinction enables it to turn the tables on a stronger competitor
and coexist for various regimes of initial data. Note that a possible ecological expla-
nation for this seemingly counterintuitive phenomenon is that increasing the weaker
competitors rate to extinction may cause its population to fall rapidly, decreasing
intraspecific competition among the weaker competitor, but increasing intraspecific
competition among the stronger competitor—as the stronger competitor has fewer of
the weaker competitors to contend with. Theorem 2.4 shows this under the sufficient
restriction (a2)

2b1+2a2c1c2 > 4a1b2c2. It would be interesting to investigate weaken-
ing this condition and also to think about this condition in ecological settings. Note
that such counterintuitive ecological mechanisms, such as the “hydra effect,” have
been considered in the ecology literature [56, 57].

These results suggest interesting consequences for biocontrol applications [58],
as well as motivate the use of such mechanisms in insect resistance management
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strategies, where two competing biotypes of a pest species are preferred to coexist
[8]—our results could be used to develop tactics in these directions. Note that from
an applied point of view, the FTEM can be engineered by self-regulating mechanisms
or external control as well as via (4.1); thus a future direction could be a detailed
investigation of such models. Also interesting would be considering models where the
stronger competitor counters the FTEM in the weaker competitor with its own FTEM
dynamic. Here one would consider (2.3) with both 0 < p < 1, 0 < q < 1. Here, various
further interesting dynamics could be possible. For example, if one considers the
classical case of strong competition, where there is an internal equilibrium, which is a
saddle, so there is always initial condition dependent extinction (see Figure 5(a)), the
FTEM in one competitor does not change the dynamics in the phase qualitatively (see
Figure 5(b)–(c)). However, if an FTEM mechanism were added in both competitors,
one sees geometrically that two interior equilibria may form with one being a saddle
and the other a stable equilibrium. Thus co-existence now may be possible in certain
initial data regimes. Proving this rigorously is a future objective. Note also, via
Theorem 2.7, we are only able to prove that initial data lying above f(u) will be
driven to (0, v∗). However, any data lying above W s(E3), the stable manifold of
the interior saddle equilibrium E3, is attracted to (0, v∗). Bridging the gap between
W s(E3) and f(u) via analytical estimates remains a goal for future investigations.
Note that we believe that the interior equilibrium formed in Lemma 2.2 is always
a saddle simply if 0 < p < 1, q = 1. Proving this in general via planar dynamical
systems methods remains a future endeavor.

We also aim to consider various self-regulating or external mechanisms of control
in future work. We could consider the case where some proportion of the weaker
competitor is harvested by an external controller or self-regulates its population by
an action such as cannibalism [58]. We ask if this “strategy” might make it possible
for stabilization of a weaker population. We choose parametric restrictions according
to the extinction case. Let v = dv + ev, where d + e = 1, and e is the proportion of
the population that will possess the FTEM dynamic. If e = 0, d = 1, we are in the
competitive exclusion case (2.2). This leads us to the model

du

dt
= a1u− b1u

2 − c1auv,

dv

dt
= a2v − b2v

2 − c2duv − c2ev
q.

(4.1)

We see that even in this setting v can avoid competitive exclusion and persist, thus
coexist with the stronger competitor u—see Figure 12.

In the PDE case, Figure 10 is immensely interesting from both a mathematical
and an evolutionary point of view. Mathematically we aim to focus to prove in full
generality the results seen in Figure 10(b). From an evolutionary point of view, what
we see is that the FTEM takes away some of the competitive advantage the slower
diffuser has, in that if d1 < d2, but close to d2, the faster diffuser may win and thus
be selected for. This is the “green” band seen in Figure 10(b). It would be interesting
if we could prove that one can move from a (u∗, 0) state to a state of coexistence,
when d1 < d2, and p = 1, and q < 1, that is, in the weak competition case. This
would show that FTEM in the weaker competitor (v in this case) could actually be
competitively advantageous for v, leading to coexistence. We see similar results in
the ODE case; see Figure 4(e).

Note that the FTEM could hinder well-posedness due to the nonsmooth term
up, 0 < p < 1, in (3.1). Two species semilinear reaction diffusion systems have
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Fig. 12. External mechanisms of control (4.1): extinction case (2.2) for a1 = 1.8, a2 = 3, b1 =
1, b2 = 1, c1 = 0.5, c2 = 1.7, a = 1, d = 0.45, e = 0.55, q = 0.1.

been considered in [59], where there are nonsmooth terms in one of the equations—
such as in our case. The key tool used to show existence of bounded global in time,
classical solutions is a weak comparison principle method [59]. This is for the Dirichlet
boundary condition, however. Recently such problems have also been investigated
in the case of more complicated boundary conditions [60]. In general, there could
be data that lead to nonunique solutions; however, for certain given data, one has
weak/classical solutions to the class of problems considered herein [61], even for the
Neumann problem. Our goal is not to demonstrate well (or ill) posedness here but
more to focus on the dynamical changes that the 0 < p < 1 can bring about, and
the many ecological consequences therein. Another worthwhile future direction will
be an extensive numerical simulation across a broader parameter range to investigate
how these dynamics might be affected. Also, such results may/may not hold in time
varying environments [32]; this is also worthy of future investigations in light of the
finite time extinction dynamic.

Appendix A..

A.1. Equilibrium analysis. We present analytic guidelines in this section to
analyze the equilibria of model (2.3). Consider the solutions to the steady state
equations:

u
[
a1 − b1u− c1u

p−1v
]
= 0,(A.1)

v
[
a2 − b2v − c2uv

q−1
]
= 0.(A.2)

The above equations, (A.1) and (A.2), have four types of nonnegative equilibria:
(i) E0(0, 0),
(ii) E1(a1/b1, 0),
(iii) E2(0, a2/b2),
(iv) E3(u

∗, v∗).
For q = 1, we have

u∗ =
1

c2
[a2 − b2v

∗] ,(A.3)

v∗ =
1

c1

[
a1(u

∗)1−p − b1(u
∗)2−p

]
,(A.4)
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and for p = 1, we have

v∗ =
1

c1
[a1 − b1u

∗] ,(A.5)

u∗ =
1

c2

[
a2(v

∗)1−q − b2(v
∗)2−q

]
.(A.6)

The possible existence of a unique interior or multiple equilibria is shown in
Figures 2, 4, and 5.

Now we discuss the local stability of an interior equilibrium point. The Jacobian ma-
trix J of the model (2.3) evaluated at any of the possible interior equilibria E3(u

∗, v∗)
is

J =

[
a1 − 2b1u

∗ − pc1u
∗p−1v∗ −c1u

∗p

−c2v
∗q a2 − 2b2v

∗ − qc2u
∗v∗q−1

]
.(A.7)

The characteristic equation corresponding to J is given by

λ2 − tr (J)λ+ det (J) = 0,

where

tr (J) = a1 + a2 − 2b1u
∗ − 2b2v

∗ − pc1u
∗p−1v∗ − qc2u

∗v∗q−1

and

det (J) =
(
a1 − 2b1u

∗ − pc1u
∗p−1v∗

)(
a2 − 2b2v

∗ − qc2u
∗v∗q−1

)
− c1c2u

∗pv∗q.

Here, tr (J) and det (J) represent the trace and determinant of the Jacobian matrix.
Hence the stability of E3(u

∗, v∗) is determined by the sign of det (J) and tr (J).
The above results are summarized in the following theorem.

Theorem A.1. The interior equilibrium E3(u
∗, v∗) of model (2.3) is a saddle

equilibrium if (
a1
b1

)1−p

+
c1c2(1− p)

b1b2
<

a2c1(1− p)

a1b2
+

c1c2
b1b2

.

Proof. We consider the case p < 1, q = 1; then

det (J)

=
(
a1 − 2b1u

∗ − pc1u
∗p−1v∗

)
(a2 − 2b2v

∗ − c2u
∗)− c1c2u

∗pv∗

=
(
a1 − 2b1u

∗ − pc1u
∗p−1v∗

)
(a2 − b2v

∗ − c2u
∗ − b2v

∗)− c1c2u
∗pv∗

=
(
a1 − b1u

∗ − b1u
∗ − pc1u

∗p−1v∗
)
(−b2v

∗)− c1c2u
∗pv∗

=
(
c1v

∗u∗p−1 − b1u
∗ − pc1u

∗p−1v∗
)
(−b2v

∗)− c1c2u
∗pv∗

=
(
(1− p)c1v

∗u∗p−1 − b1u
∗
)
(−b2v

∗)− c1c2u
∗pv∗.

This follows from using the equilibrium equations (A.3)–(A.4). Now dividing the
above by b1b2u

∗pv∗, using the comparisons u∗ < a1

b1
, thus 1

u∗ > b1
a1
, and the equilibrium

equation for v∗ via (A.3) we obtain
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(
1

b1b2u∗pv∗

)
det (J)

= (u∗)1−p − (1− p)c1
b1

v∗

u∗ − c1c2
b1b2

≤
(
a1
b1

)1−p

− (1− p)c1
b1

b1v
∗

a1
− c1c2

b1b2

=

(
a1
b1

)1−p

− (1− p)c1
b1

b1

(
1
b2

[a2 − c2u
∗]
)

a1
− c1c2

b1b2

=

(
a1
b1

)1−p

+
(1− p)c1

b1

b1
a1

c2
b2
u∗ − (1− p)c1

b1

b1
a1

a2
b2

− c1c2
b1b2

≤
(
a1
b1

)1−p

+
(1− p)c1

a1

c2a1
b2b1

− (1− p)c1a2
a1b2

− c1c2
b1b2

< 0

as long as (
a1
b1

)1−p

+
c1c2(1− p)

b1b2
<

a2c1(1− p)

a1b2
+

c1c2
b1b2

.(A.8)

Thus the above is a sufficient condition for det (J) < 0 which yields a saddle equilib-
rium. This proves the theorem.

Example 2. We provide a numerical example for Theorem A.1 by using the fol-
lowing set of parameter values: a1 = 1.8, a2 = 3, b1 = 1.1, b2 = 1.03, c1 = 0.5, c2 =
3.5, p = 0.7, q = 1. The interior equilibrium point E3(0.26182, 2.02294) emerges and
the Jacobian J is given by

J =

[
0.16560 −0.19569
−7.08029 −2.08363

]
.

Here, tr (J) = −1.91803 < 0 and det (J) = −1.73017 < 0, thus conditions for the
saddle are satisfied. In addition, note here that(

a1
b1

)1−p

+
c1c2(1− p)

b1b2
= 1.62 < 1.79 =

a2c1(1− p)

a1b2
+

c1c2
b1b2

.

Thus, the parametric restriction (A.8) is satisfied. We provide simulation in Figure
1(b) to corroborate.

A.2. Lambert W -function. Note there is a numerical approach to calculating
the critical q∗. At q = q∗, the slopes of the tangents of the u and v nullclines coincide
instantaneously, and by the implicit function theorem, det (J) = 0 (see (A.7) for the
Jacobian matrix J). Thus,

(a1 − 2b1u− c1v)
(
a2 − 2b2v − q∗c2uv

q∗−1
)
− c1c2uv

q∗ = 0.

With the help of Mathematica software, we obtain

q∗ =
1

ln(v)
W

(
(a2 − 2b2v) v

a1−2b1u
a1−2b1u−c1v ln(v)

c2u

)
− c1v

a1 − 2b1u− c1v
,(A.9)
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where W is the Lambert W -function or product logarithm (see [62] and references
therein for a definition of the Lambert W -function). Thus one can obtain the critical
q∗ by plugging the nonhyperbolic equilibrium into the above expression.

Example 3. We provide an example to substantiate q∗ given in (A.9) by using the
following set of parameter values: a1 = 1.8, a2 = 3, b1 = 1, b2 = 1, c1 = 0.5, c2 = 1.8,
and p = 1. We note that the unique nonhyperbolic equilibrium point occurs at
(u, v) = (0.89465, 1.81070). Thus

q∗ =
1

ln(1.81070)
W

(
(−0.62140)(0.99292) ln(1.81070)

1.61037

)
+ 1.01196

=
1

ln(1.81070)
W (−0.22748) + 1.01196

=
1

ln(1.81070)
(−0.310214) + 1.01196

= 0.48946.

The critical q∗ obtained here is the same as in Figure 2(b).
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[47] Y. Lou, S. Martinez, and P. Poláčik, Loops and branches of coexistence states in a Lotka-
Volterra competition model, J. Differential Equations, 230 (2006), pp. 720–742.

[48] K. Nagahara, Y. Lou, and E. Yanagida, Maximizing the total population with logistic growth
in a patchy environment, J. Math. Biol., 82 (2021), 2, DOI:10.1007/s00285-021-01565-7.

[49] K. Nagahara and E. Yanagida, Maximization of the total population in a reaction-diffusion
model with logistic growth, Calc. Var. Partial Differential Equations, 57 (2018), 80.

[50] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski, The evolution of slow
dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), pp. 61–83.

[51] A. Hastings, Can Spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol.,
24 (1983), pp. 244–251.

[52] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Appl. Math. Sci. 143, Springer,
New york, 2020.

[53] X. Bai, X. He and F. Li, An optimization problem and its application in population dynamics,
Proc. Amer. Math. Soc., 144 (2016), pp. 2161–2170.

[54] F. Caubet, T. Deheuvels, and Y. Privat, Optimal location of resources for biased movement
of species: The 1D Case, SIAM J. Appl. Math., 77 (2017), pp. 1876–1903.

[55] W. Ding, H. Finotti, S. Lenhart, Y. Lou, and Q. Ye, Optimal control of growth coefficient
on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), pp. 688–
704.

[56] P. A. Abrams, When does greater mortality increase population size? The long history and
diverse mechanisms underlying the hydra effect, Ecology Lett., 12 (2009), pp. 462–474.

[57] M. Sieber and F. M. Hilker, The hydra effect in predator–prey models, J. Math. Biol., 64
(2012), pp. 341–360.

[58] J. Lyu, P. J. Schofield, K. M. Reaver, M. Beauregard, and R. D. Parshad, A comparison
of the Trojan Y chromosome strategy to harvesting models for eradication of nonnative
species, Natural Resource Modeling, 33 (2020), e12252.

[59] N. Bedjaoui and P. Souplet, Critical blowup exponents for a system of reaction-diffusion
equations with absorption, Z. Angew. Math. Phys., 53 (2002), pp. 197–210.

[60] K. Fellner, E. Latos, and B. Q. Tang, Well-posedness and exponential equilibration of a
volume-surface reaction–diffusion system with nonlinear boundary coupling, Ann. Inst. H.
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