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Abstract

Motivation: Anti-cancer drug sensitivity prediction using deep learning models for individual cell line is
a significant challenge in personalized medicine. Recently developed REFINED (REpresentation of Fea-
tures as Images with NEighborhood Dependencies) CNN (Convolutional Neural Network) based models
have shown promising results in improving drug sensitivity prediction. The primary idea behind REFINED-
CNN is representing high dimensional vectors as compact images with spatial correlations that can benefit
from CNN architectures. However, the mapping from a high dimensional vector to a compact 2D image
depends on the a-priori choice of the distance metric and projection scheme with limited empirical proce-
dures guiding these choices.
Results: In this article, we consider an ensemble of REFINED-CNN built under different choices of dista-
nce metrics and/or projection schemes that can improve upon a single projection based REFINED-CNN
model. Results, illustrated using NCI60 and NCI-ALMANAC databases, demonstrate that the ensemble
approaches can provide significant improvement in prediction performance as compared to individual
models. We also develop the theoretical framework for combining different distance metrics to arrive at a
single 2D mapping. Results demonstrated that distance-averaged REFINED-CNN produced comparable
performance as obtained from stacking REFINED-CNN ensemble but with significantly lower computatio-
nal cost.
Availability: The source code and scripts used in the paper have been deposited in GitHub
(https://github.com/omidbazgirTTU/IntegratedREFINED).
Contact: ranadip.pal@ttu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
A primary objective of precision medicine for cancer is the selection of an
anti-cancer drug or a drug combination that is most effective for the indivi-
dual patient (Garnett, 2012). A multitude of methods have been proposed
to address the issue of anti-cancer drug sensitivity prediction using high-
dimensional genomics or chemical drug descriptors data, but there exists
room for achieving significant improvement (Chiu, 2019; Barretina, 2012;
Costello, 2014; Wan and Pal, 2014; Romm and Tsigelny, 2020). To offer
enhanced predictive performance, numerous deep learning based models
have been introduced recently (Chiu, 2019; Xia, 2018; Chang, 2018; Liu,
2019; Keshavarzi Arshadi, 2019; Yu, 2019), that are primarily either deep

neural network (DNN) or 1D convolutional neural network (CNN) based
approaches. These methods take the input data as a 1-D vector (Mostavi,
2020a), whereas the 2D CNN based method reshape the 1-D vector into
a 2D matrix, using some form of lexicographic ordering, which does not
preserve the embedded pattern of the data (Mostavi, 2020b).

We developed the REFINED (REpresentation of Features as Images
with NEighborhood Dependencies) (Bazgir, 2020) procedure as a general
unsupervised isometric mapping to convert high-dimensional vectors into
images for training CNN models. We considered a collection of chemical
descriptors associated with a drug (or the set of gene expressions associ-
ated with a cell line) as a d− dimensional vector of features predicting
the efficacy of the drug on a cell line. Thus for n independent drugs (or
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cell lines), it is a standard univariate high dimensional regression pro-
blem. The novelty of our REFINED projection, however, is to represent
the foregoing p− dimensional feature vectors (chemical decriptors or gene
expressions) as compact images where locally-adjusted Bayesian Multi-
dimensional Scaling, (MDS) solution is used to infer the location of each
coordinate of the original high dimensional vector on a bounded subspace
of R2. The dependence among the coordinates of the high dimensional
vector induces spatial association in 2D images that is then exploited by
the CNN based architecture of the predictive model. We note that REFI-
NED is a general framework that can be applied to any prediction problem
involving scalar responses and high dimensional correlated regressors.

For illustrative purpose, we demonstrated that REFINED-CNN model
provided better predictive performance as compared to DNN or 2D random
projection based CNN models in publicly available pharmacogenomics
data- the NCI60 and GDSC datasets. In the NCI60, we used the chemical
descriptors of each drug as input features. For GDSC dataset, both gene
expressions and drug descriptors were used input features (Bazgir, 2020).

However, in the original form of REFINED, we need to choose a
distance metric a-priori to define the “observed” distances among the coor-
dinates of the original high dimensional vector and, based on that choice,
choose an appropriate projection scheme. For instance, if Euclidean (geo-
desic) distance is chosen to measure the distances in ambient dimension,
MDS (Isomap) is usually chosen to initialize the dimension reduction pro-
cess. In Figure 1 (a), we show the distribution of Euclidean distances
among chemical descriptors of drugs in ambient dimension and distribu-
tion of distances in 2D under various choices of projection schemes for
NCI-60 dataset. Observe that, distribution of projected distances obtained
under local non-linear dimension reduction approach (LE and LLE) are
very different when Euclidean distance is chosen to measure the distance
in ambient dimension. If a natural distance metric is not available for the
problem at hand, then, ideally, we need to obtain REFINED projections for
different distance measures (local versus global, Euclidean versus Geode-
sic etc.); obtain the predictions for each candidate distance measure, and
choose the one that produces the best cross-validated prediction perfor-
mance. Even if an a-priori dissimilarity measure among the coordinates
are supplied, we need to choose an appropriate projection scheme (MDS,
Isomap etc.) to begin the process of REFINED projection and choose the
best initial projection scheme via cross-validation. Evidently, the predi-
ctive CNN needs to be fitted for each candidate distance metric/ initial
projection schemes, resulting in high computational cost.

Since limited guidelines are available to identify an appropriate choice
of distance metric/initial projection schemes in an unsupervised setting,
multiple REFINED-CNNs have to be fitted regardless, resulting in the
availability of an ensemble of REFINED-CNNs. Therefore, a model
averaging could be performed which can improve upon the best single
REFINED-CNN prediction. The goal of this study is to investigate the
performance of such ensemble learners. We illustrate the advantages of
three different ensemble methods: (a) model stacking, (b) image stacking,
and (c) integrated-REFINED (iREFINED) over the foregoing best single
REFINED-CNN predictions. Our key contribution here is the theoreti-
cal and methodological development of iREFINED-CNN that produces
predictive performance comparable to REFINED-CNN model stacking,
but at a considerably lower computation cost. We apply this methodology
on NCI60 and NCI-ALMANAC datasets to compare the performance of
iREFINED-CNN with several competing methods. Figure 2 illustrates the
framework utilized to train each deep CNN model.

2 Methodology
In its original form, REFINED is an unsupervised technique that proje-
cts from Rd to a compact subspace of R2, d >> 2. These images are

then passed on to a CNN to obtain supervised prediction. Thus, using
REFINED images to train a CNN (REFINED-CNN) is, broadly, a 2-step
process. This offers an opportunity to deploy ensemble learning in various
different ways. In this article, we investigate three such ensembling appro-
aches. We begin with briefly describing the process of creating REFINED
images (for more details we direct the audience to (Bazgir, 2020)). Next,
we describe three ensemble learning approaches we used in this study.
Finally, for the sake of completeness, we define the CNN architectures
and Bayesian optimization framework that we utilized to select the CNNs’
hyper-parameters.

2.1 REFINED CNN

REFINED maps high dimensional vectors to mathematically justifiable
images for training CNN models. It first uses a user-specified distance
metric to obtains the initial pairwise distance matrix for the features in their
original space. Then uses Bayesian multidimensional scaling (BMDS) to
project the features in 2D that approximately preserve pairwise feature
distances in the original space. The resulting initial feature map is then
subjected to hill-climbing algorithm with the constraint that each pixel
can contain at most one feature. The hill-climbing algorithm essentially
provides local adjustements to arrive at a locally optimal configuration
which does not produce more distortion as compared to the automorphic
solution that BMDS produces. The REFINED algorithm, therefore, uses
all the samples to arrive at a set of coordinates that are used to map the
features into the target 2D space. Once these locations are fixed, the value
of each feature, associated with a particular sample, provide the intensity
at the pixel reserved for that feature. For each sample, the algorithm thus
produces unique REFINED image associated with the feature vector for
that sample.

By using different initial distance metric to estimate feature dissimi-
larity, or choosing different projection schemes to initialize REFINED
procedure, different REFINED images could be obtained and consequen-
tly the REFINED-CNN’s predictive performance vary across the foregoing
choices. As shown in (Bazgir, 2020), REFINED CNN initialized with
MDS provides better prediction error as compared to Isomap (Tenen-
baum, 2000), Locally linear embedding (LLE) (Roweis and Saul, 2000),
and Laplacian eigenmaps (LE) (Belkin and Niyogi, 2003) on the NCI60
dataset. Therefore, in absence of a natural measure to identify feature dis-
similarities and project them to target 2D space, REFINED-CNN needs to
be trained for different choices of distance metrics and initial projection
schemes.

2.2 Model stacking

An immediate consequence of having REFINED-CNN being trained on
different choices of distance metrics and initial projection schemes is that
we have at our disposal several outputs from the CNN predictive model
each associated with a different choice we made a-priori. Clearly, a linear
combination of these predictions, with linear weights estimated from a
separate validation set, produces the REFINED-CNN model stacking.
More precisely, let ỹa be the prediction of a REFINED-CNN associated
with the choice of a distance metric (or projection scheme) a = 1, 2, ...A.
Then, the final prediction REFINED-CNN model stacking Yf is given by
the linear regression equation

Yf =

A∑
a=1

γaỹa + b+ ε (1)

whereγa is the linear weight associated with the choicea, b is the intercept
term and ε is the error. MLE for regression coefficient could be estima-
ted if the ε is non-Gaussian, but following (Costello, 2014; Wan and Pal,
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Fi g. 1. D e nsit y of dist a n c es. K er n el d e nsit y esti m at e of b et w e e n f e at ur es’ o bs er v e d ( E u cli-

d e a n) dist a n c e v ers us dist a n c es of pr oj e cti o n i n 2 D s p a c e b y t h e 4 D R t e c h ni q u es i n r e g ul ar

a n d l o g s c al e.

2 0 1 4) w e si m pl y us e t h e l e ast s q u ar e s ol uti o ns f or t h e r e gr essi o n c o ef-

f ci e nts. ( K o n dr at y u k, 2 0 2 0) r e c e ntl y s h o w e d t h at, i n t h e c o nt e xt of C N N

pr e di cti o ns, e ns e m bl e of m o d els us u all y pr o vi d e b ett er p erf or m a n c e t h a n

a si n gl e c a n di d at e m o d el. We t h er ef or e us e t h e m o d el st a c ki n g a p pr o a c h

t o b e n c h m ar k t h e p erf or m a n c e of ot h er c a n di d at e m o d els.

2. 3 I m a g e st a c ki n g

E vi d e ntl y, i n m o d el st a c ki n g a p pr o a c h ( 1), f or e a c h c h oi c e a , pr o d u ci n g

t h e R E FI N E D i m a g es I a , s e p ar at e C N Ns n e e d t o b e tr ai n e d. Si n c e c o m-

p ut ati o n al c ost ass o ci at e d wit h C N N tr ai ni n g is c o nsi d er a bl y m or e t h a n

pr o d u ci n g I a , o n e i m m e di at e a v e n u e t o r e d u c e c o m p ut ati o n c ost is t o

c o n c at e n at e t h e R E FI N E D i m a g es { I 1 , I2 , · · · , IA } t o pr o d u c e a 3 D

t e ns or f or e a c h s a m pl e. T his 3 D t e ns or c a n b e p ass e d o n t o t h e C N N

ar c hit e ct ur e t o tr ai n a si n gl e C N N m o d el usi n g all t h e i m a g es pr o d u c e d b y

c a n di d at e c h oi c es. T h e r es ulti n g 3 D c o n v ol uti o n bl o c ks ess e nti all y l e ar ns

t o e xtr a ct f e at ur es fr o m t h e t e ns ors vi a t h e b a c k pr o p a g ati o n pr o c ess (Ji,

2 0 1 2; M at ur a n a a n d S c h er er, 2 0 1 5). T his a p pr o a c h g ets ri d of t h e li n e arit y

ass u m pti o n i n ( 1) a n d m o d el a v er a gi n g is d o n e i m pli cit y. A d diti o n all y, it

r e q uir es tr ai ni n g of a si n gl e C N N t h er e b y r e d u ci n g t h e c o m p ut ati o n c ost

si g ni fi c a ntl y. I n t h e c o nt e xt of t his st u d y, a gr a p hi c al r e pr es e nt ati o n of a nti-

c a n c er dr u g s e nsiti vit y pr e di cti o n wit h 3 D c o n v ol uti o n bl o c ks is s h o w n i n

Fi g ur e 2.

Alt h o u g h t his t e c h ni q u e off ers c o m p ut ati o n al b e n e fits, it still r e q uir es

g e n er ati o n of ” A ” R E FI N E D i m a g es. M or e i m p ort a ntl y, si n c e e a c h I a

is cr e at e d i n d e p e n d e ntl y f or e a c h c h oi c e, a n d b e c a us e l o c ati o ns ar e n ot

u ni q u el y i d e nti fi a bl e i n B M D S s ol uti o n, t h er e is n o g u ar a nt e e t h at a p arti-

c ul ar f e at ur e will o c c u p y t h e s a m e c o or di n at e i n e a c h I a , a = 1 , 2 , ..., A.

C o ns e q u e ntl y, w h e n t h e i m a g es ar e c o n c at e n at e d, a p arti c ul ar c o or di n at e

oft e n d o es n ot c orr es p o n d t o a n u ni q u e f e at ur e a cr oss I a , t h er e b y s e v e-

r el y aff e cti n g C N N’s a bilit y t o e xtr a ct f e at ur es fr o m t h e i n p ut t e ns ors.

L a c k of c o or di n at e-s p e ci fi c ass o ci ati o n of pi x el i nt e nsiti es a cr oss I a als o

p ot e nti all y i m p a cts t h e pr e di cti v e p erf or m a n c e of t h e C N N.

T o p arti all y a d dr ess t h e l a c k of u ni q u e n ess i n f e at ur e l o c ati o ns a cr oss

R E FI N E D i m a g es, w e st a c k t h e f e at ur e m a ps e xtr a ct e d b y t h e c o n v ol uti o n

l a y ers i nst e a d of st a c ki n g t h e r a w R E FI N E D i m a g es. T o w ar ds t h at e n d,

f or e a c h R E FI N E D i m a g e, w e d esi g n t h e c o n v ol uti o n l a y er u n d er diff er e nt

c h oi c es of t h e n u m b er a n d si z e of k er n els. B y all o wi n g t h e k er n el si z es

t o v ar y a cr oss R E FI N E D i m a g es w e c a n p ot e nti all y c a pt ur e t h e i m p a ct of

dist a n c e m etri cs d e fi n e d o v er diff er e nt s c al e, i. e., t h e gl o b al vs l o c al n at ur e

of M D S/Is o m a p a n d L E/ L L E, r es p e cti v el y. T h e f e at ur e m a ps e xtr a ct e d b y

t h es e c o n v ol uti o n l a y ers ar e t h e n c o n c at e n at e d a n d p ass e d o n t o t h e d e ns e

l a y ers. T h e d et ails of t h e f e at ur e m a p st a c ki n g is pr o vi d e d i n t h e S e cti o n 4

of t h e s u p pl e m e nt ar y i nf or m ati o n.

R e g ar dl ess, t o f ull y all e vi at e t his c o nt e xt-s p e ci fi c n o n- u ni q u e n ess pr o-

bl e m, w e n e e d t o e nf or c e t h e c o n diti o n t h at l o c ati o n of e a c h f e at ur e r e m ai ns

s a m e f or all i n p ut R E FI N E D i m a g es. T h e i nt e gr at e d R E FI N E D m et h o d o-

l o g y aris es w h e n t his c o n diti o n is e nf or c e d t o i nf er t h e l o c ati o n of e a c h

f e at ur e.

2. 4 I nt e gr at e d R E FI N E D

C o nsi d er t h e pr e di ct or m atri x X = { x i j } , i = 1 , 2 , ..., n; j =

1 , 2 , ..., p wit h x i j b ei n g t h e v al u e of t h e j t h f e at ur e f or t h e it h s a m-

pl e. T h e g o al of R E FI N E D w as t o o bt ai n t h e l o c ati o n of t h e f e at ur es i n a

c o m p a ct s u bs et of R 2 , m or e s p e ci fi c all y i n [ 0, 1] 2 . I n t h e f oll o wi n g f or-

m ul ati o n, w e ass u m e e a c h c h oi c e of i niti al dist a n c e m etri c is u ni q u el y

ass o ci at e d wit h a pr oj e cti o n s c h e m e l e a di n g t o a t ot al of A c h oi c e of dist a-

n c e m etri c- pr oj e cti o n s c h e m es p airs. L et d j k , a b e t h e o bs er v e d dist a n c e

b et w e e n t h e j t h a n d t h e k t h f e at ur e o bt ai n e d usi n g t h e dist a n c e m etri c a

a n d δ j k b e t h e u n k n o w n E u cli d e a n dist a n c e b et w e e n t h es e t w o f e at ur es

i n u nit s q u ar e. H e n c e, δ j k = l ( s j, l − s k , l ) 2 , w h er e s is n o w 2 D

c o or di n at e s yst e m d e n oti n g t h e u ni q u e l o c ati o n of t h e f e at ur es j a n d k i n

u nit s q u ar e o bt ai n e d b y s y nt h esi zi n g d j k , a , a = 1 , 2 , ..., A. O ur g o al is

t o esti m at e s j ∈ [ 0, 1] 2 t h at r e m ai ns i n v ari a nt f or all c a n di d at e dist a n c e

m etri c.

U n d er t h e ass u m pti o n of tr u n c at e d n or m al distri b uti o n of d j k , a ( O h

a n d R aft er y, 2 0 0 1), t h e d at a m o d el ass o ci at e d wit h t h e dist a n c e m etri c a

is gi v e n b y d j k , a ∼ N ( δ j k , σ2a ) I ( d j k , a > 0 ) . F or t h e l o c ati o n pr o c ess,

w e s p e cif y a s p ati al H o m o g e n e o us P oiss o n Pr o c ess ( H P P) wit h c o nst a nt

i nt e nsit y λ = p / [ 0, 1] 2 w hi c h ess e nti all y distri b ut es l o c ati o ns of p pr e-

di ct ors r a n d o ml y i n a n u nit s q u ar e. Si n c e t his c orr es p o n ds t o c o m pl et e

s p ati al r a n d o m n ess, a n alt er n ati v e s p e ci fi c ati o n of l o c ati o n pr o c ess is gi v e n

b y s = { s 1 , s2 , ..., sp } ∼ U ni f o r m ([ 0 , 1] 2 ) ( C h a n dl er, 2 0 1 3). T h e

a d v a nt a g e of t his H P P s p e ci fi c ati o n f or t h e l o c ati o n pr o c ess is o utli n e d i n

( B a z gir, 2 0 2 0).

L et d a = [ d j k , a ], j, k = 1 , 2 , ..., p b e t h e c oll e cti o n of m = p
2

dist a n c es o bt ai n e d u n d er t h e m etri c a a n d d = [ d 1 , d 2 , ..., d A ] b e t h e

t ot al n u m b er of dist a n c es i n t h e d at as et. L et δ b e t h e c oll e cti o n of E u cli d e a n

dist a n c es i n t h e u nit s q u ar e t h at n e e ds t o b e i nf err e d aft er i m p osi n g t h e

i n v ari a n c e of s . T h e n u n d er t h e ass u m pti o n of c o n diti o n al i n d e p e n d e n c e,

t h e f ull d at a m o d el is t h e n gi v e n b y

f ( d |s , σ 2 ) ( Π σ 2
a ) − m

2 e
− 1

2 j > k ( a (
d j k , a − δ j k

σ a
) 2 )

. e
− a j > k l o g Φ (

δ j k
σ a

) ( 2)

w h er e Φ ( .) is t h e us u al st a n d ar d n or m al c df. At t h e pr o c ess l e v el, w e h a v e

s |p ∼ U ni f o r m ([ 0 , 1] 2 ) ( 3)

Fi n all y, w e i m p os e t h e s a m e pri or f or σ 2 = [ σ 2
1 , σ22 , ..., σ2A ]

i i d
∼

I n v ers e G a m m a( α, β ) wit h a > 2 , b > 0 .

U n d er t his s p e ci fi c ati o n, t h e f ull c o n diti o n al of p ost eri or of s is gi v e n

b y

π ( s |d , σ 2 ) ∝ e
− 1
2 j > k V ( δ j k −

d j k 0
V

) 2

. e
− a j > k l o g Φ (

δ j k
σ a

)

( 4)
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Fig. 2. Illustration of three ensemble learning approaches in this study. I) is stacking four different REFINED CNN models to achieve the ultimate prediction. II) is REFINED-CNN image
stacking model that stack images in the z-direction prior CNN modeling and III) is integrated REFINED CNN model that integrates all the created REFINED images into one image and
then trains a CNN model.

where V =
∑A
a=1

1
σ2
a

&djk0 =
∑A
a=1

djk,a
σ2
a

. They key observation is
that, the location parameter of the conditional posterior ofs is the weighted
average of the observed distances obtained from each distance metric under
consideration, with the weights being a function of the precision associated
with the distribution of observed distances. The details of the derivation
of (4) is relegated to the Section 1.1 of the supplementary information.

If, on the other hand, we posit a log-normal distribution for djk,a
(Bakker and Poole, 2013), the data model associated with the distance
metric a is given by log(djk,a) ∼ N(log(δjk), σ2

a). Retaining the HPP
specification of location process and independent Inverse Gamma priors
for σ2, the posterior conditional of s is given by

π(s|d,σ2) ∝ e−
1
2

∑
j>k V (δ∗jk−

d∗jk0
V

)2 (5)

where δ∗jk = log(δ)jk , and d
∗
jk0 =

∑A
a=1

log(d)jk,a
σ2
a

. Further simpli-

fication of the location parameter in (5) yields
d
∗
jk0

V
=

∑
Wa log dija∑

Wa
,

whereWa = 1
σ2
a

. Clearly, the location parameter is the weighted geome-

tric mean of (djk1, ..., djkA) with the weight being a function of precision
associated with the distributional specification ofd.,a. Detailed derivations
of (5) is offered in the Section 1.2 of the supplementary information.

Observe that, (4) and (5) imply that one of the ways to fix the coordi-
nate associated with each feature across Ia, is to enforce a common δ(.)
for data model associated with each distance metric. The methodoligi-
cal benefits of iREFINED are twofold: (a) feature-specific coordinates s
can be estimated using standard BMDS solutions without explicitly spe-
cifying a composite dissimilarity measure (linear combination of initial
distances either in original scale or in log scale) at the outset, and (b) if a
linear combination of the candidate distance metrics is utilized to obtain
the initial dissimilarity measure at the outset, Bayesian non-metric MDS
can be performed with a suitable choice of a monotonic nonlinear function

g(.) that connects the observed dissimilarities with δ in the following way
d. ∼ N(g(δ(.)), σ2)I(d(.) > 0) (Oh and Raftery, 2001). The fact that
the composite dissimilarity measure may not be proper metric is accom-
modated by an explicit non-metric BMDS formulation. The computational
benefit of iREFINED-CNN is obvious, it requires a single REFINED proje-
ction obtained from the estimates ofs given by (4) or (5) which is subjected
to the foregoing hill-climbing algorithm to arrive at single REFINED image
which is then passed on to a single CNN. Consequently, regardless of the
number of choice of initial distance metrics (and the associated initial
projection schemes), iREFINED-CNN only requires a single full-blown
training operation.

3 Application
We apply the methodologies developed in the previous section on two
publicly avaiable datasets: (a) NCI60 dataset consists of drug responses
observed after application of more than 52,000 unique compounds on 60
human cancer cell lines (Shoemaker, 2006), (b) NCI-ALMANAC dataset
consisting over 5,000 pairs of more than 100 drug responses on 60 human
cancer cell lines (Holbeck, 2017). In both scenarios, we use the chemical
descriptors of drugs as features to predict cell-line specific drug respon-
ses. Below we offer brief description of each dataset, outline individual
REFINED projection schemes to formulate the iREFINED procedure and
describe the CNN architecture.

3.1 Data description

NCI60: The US National Cancer Institute (NCI) screened more than
52,000 unique drugs on around 60 human cancer cell lines. The drug
responses are reported as average growth inhibition of 50 % (GI50) across
the entire NCI cell panel (Gerson et al., 2018) (Shoemaker, 2006) . All the
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Fig. 3. Correlation between distances. Kendall’s τ among the distances estimated in 2D
by each DR technique and their geometric and arithmetic means.

chemicals have an associated unique NSC identifier number. We used the
NSC identifiers to obtain the chemical descriptors associated with each
drug. This information was supplied to PaDEL software (Yap, 2011) to
extract relevant features for each one of the foregoing chemicals. Chemi-
cals with more than 10 % of their descriptor values being zero or missing
were discarded. To ensure availability of enough data points for training
deep learning models, we selected 17 cell lines with more than 10,000
drugs tested on them. Each drug was described with 672 features. To
incorporate the logarithmic nature of dose administration protocol, we
calculated the normalized negative-log concentration of GI50s (NORM-
LOGGI50). The drug response distribution for three illustrative cell lines
are shown in Fig. 1 of the supplementary information.

We considered four distance metric and associated projection schemes-
MDS, Isomap, LE, and LLE- to initialize the REFINED process.To
investigate if these four techniques produce similar ordering of the
pairwise distances between features, we calculated the following Ken-
dall’s rank correlation coefficients τ(R(djk,a), R(djk,a′ )), ∀j, k =

1, 2, ..., p, and a 6= a′ = 1, 2, 3, 4 where R(djk,a) is the rank of the
distance between features j and k obtained from the projection technique
a. Figure 3 shows the heat map of the foregoing rank correlations. Evi-
dently, there is a strong agreement between MDS and Isomap. But only
moderate level of association between the global techniques and local
techniques. However, the distribution of observed Euclidean distance in
log-scale in Figure 1 (b) shows better agreement with the logarithm of
projected distances, across both local and global dimension reduction sch-
emes indicating the viability of log-normal specification of the data model
in the foregoing iREFINED technique. Furthermore, Table 8 shows the
Kullback-Liebler divergence between observed Euclidean distance and
projected distances in both original scale and log-scale. Observe that, on an
average, the KL divergence in log-scale is smaller than that in the original
scale, indicating that the log-normal specification offers some protection
against misspecification of the initial projection scheme.

While the first four panels of Figure 4 show the REFINED images
of drug chemical descriptors created under various initializations for cell
line SNB_78, last two panels show the corresponding iREFINED images
under log-normal and truncated normal specifications, respectively.

NCI-ALMANAC: The NCI-ALMANAC is “A Large Matrix of
Anti-Neoplastic Agent Combinations” dataset (Holbeck, 2017) provides
systematic evaluation of over 5,000 pairs of 104 FDA-approved anticancer
drugs were scanned against a panel of 60 human tumor cell lines (from
NCI60) to discover those with enhanced growth inhibition or cytotoxicity
profiles (Yang, 2020). Combination activity was reported as a "Combo-
Score" that quantifies the advantage of combining two drugs (Tavakoli and
Yooseph, 2019). Normalized growth percentage of ComboScore distribu-
tion for three cell lines selected randomly from NCI-ALMANAC dataset
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Fig. 4. Different REFINED images. REFINED images created using 4 DR technique inclu-
ding MDS, Isomap, LLE, LE, and arithmetic and geometric average of them as initialization
step at the first row before applying the hill climbing. The second Row represents the
REFINED images after applying the hill climbing algorithm on each initialization step.

are shown in Fig. 2 of the supplementary information. For each drug we
used the same chemical descriptors obtained for NCI60 dataset using the
NSC identifiers.

CNN architecture: We had two different CNN architectures; one for
modeling the NCI60, and another for NCI-ALMANAC dataset. The REFI-
NED CNN used to model NCI60 dataset, contains two convolutional and
two fully connected (FC) hidden layers where each followed by a batch nor-
malization (BN) and ReLu activation function layer. Each ReLu activation
after the FC layers was followed by a dropout layer to avoid overfitting.

The REFINED CNN models of NCI-ALMANAC dataset, which pre-
dict the ComboScore of two drugs, contain two input as two different drugs
in two arms. Each arm contains two convlotional layers followed by a BN
and ReLu activation layer. The two arms’ output then concatenated and
flattened as a 1-D vector as an input of two sequential FC layers, each
followed by a BN, ReLu activation function and a dropout layer.

The hyper-parameters of both these CNN models, i.e., learning rate,
decay rate, decay step of the adam optimizer, number of kernels, kernel
size, stride size per each convolutional layer, and number of nodes per each
fully connected layer, were optimized using Bayesian optimization frame-
work (Bergstra, 2013; Bazgir, 2021) which sequentially queries a posterior
model for hyper-parameter Θ derived from a sequence of surrogate models.

The hyper parameters of the CNN were optimized, for each dataset,
using the training and validation set of only one cell line (HCC-2998).
Then the model was trained and tested on each cell line independently. In
the test phase, for each cell line, we held out a separate set of drugs in the
NCI60 and separate set of drug pairs in the NCI-ALMANAC dataset.

4 Results
Several competing models were trained on the foregoing NCI60 and
NCI-ALMANAC dataset. Each model was fitted separately on the drug-
response data for each cell line. For each cell line, the data was randomly
partitioned into training, validation and test sets. Training set consisted of
80% of the sample, 10% of the samples were used for validation and the
remaining 10% formed the test set to evaluate the out-of-sample predictive
performance of the competing models. To ensure direct comparability, the
training, validation and test datasets remained same for all competing
models.

A total of 11 models 1 were considered: (a) Ensemble REFINED-CNN
model stacking, (b) Ensemble REFINED CNN-image stacking model,

1 A summary description of the baseline models are shown in Table 1 of
the supplementary information.
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(c) iREFINED-CNN, with both weighted arithmetic mean and weighted
geometric mean construction, (d) individual REFINED CNN with MDS,
Isomap, LLE, and LE projections, (e) DeepSyenrgy (Preuer, 2018), (f)
(Xia, 2018) approach, (g) Gradient Boosting Machine (Friedman, 2002),
(h) Random Forests (Ho, 1995), (i) Support Vector Regression (Drucker,
1997), (j) Kernelized Bayesian Multitask Learning (KBMTL) (Gönen and
Margolin, 2014), and (k) Elastic Nets (Zou and Hastie, 2005). We only
applied the DeepSyenrgy (Preuer, 2018) and the (Xia, 2018) approaches
on the NCI-ALMANAC dataset, as they are designed for drug combination
therapy modeling. We emphasize that all the competing models were inde-
pendently used for prediction task. Although, GBM, SVR, RF, KBMTL
could be used as nonlinear/model-free stacking devices to combine the
output of different individual REFINED CNNs, we did not pursue that
that avenue here.

Several performance measures were used to assess the adequacy of the
proposed models and compare their predictive performances. Below we
describe the metrics used to evaluate the model performance:

1. Normalized root mean square error of prediction (NRMSE): The custo-
mary root mean squared error of prediction (RMSPE) of a given model
was normalized by the RMSPE with sample mean as the predictor. We
use NRMSE to implicitly compare all the models with respect to the
baseline intercept-only model. The NRMSE formula is given by:

NRMSE of a model =

√√√√∑np
i=1(yi − ŷi)2∑np
i=1(yi − ȳ)2

(6)

where thenp is the size of test-set, y, ȳ , and ŷ are the observed
drug response, mean of the drug responses obtained from the non-
test set, and predicted drug responses obtained from the model under
consideration .

2. Normalized mean absolute error (NMAE): In addition to NRMSE, we
use NMAE (7) so that model comparison can be performed without
being severely impacted by large outliers.

NMAE =

∑np
i=1 | yi − ŷi |∑np
i=1 | yi − ȳ |

(7)

For both NRMSE and NMAE, smaller values indicate better predictive
performance.

3. Pearson correlation coefficient (PCC) between the predicted and target
values: PCC quantifies linear association between the predicted and
target drug responses. Model with PCC closer to 1 would be preferred.

4. Bias reduction: We use the method described in (Song, 2015; Bazgir,
2020) to compute model bias. A simple linear regression is performed
between residuals (ordinate) and predicted values (abcissa) in the test
set. The angle (θ) between the best fitted regression line and abscissa is
used as a measure for bias. An unbiased model is expected to produce
an angle of 0◦. Therefore, models with smaller value of θ is preferred.

5. Model improvement: We introduce a novel measure for model impro-
vement that uses Gap statistics (Tibshirani, 2001) to perform a formal
hypothesis test. First, we paired each model with a null model (see
(Costello, 2014) for the construction of null model). Then bootstrap
samples were drawn from the drug response values of the test set
along with their corresponding predicted values for each model. The
null model, using the distribution of drug responses in the training set,
is then used to predict drug response sampled from the test set. The
process is repeated for 10,000 times and a distribution of NRMSE,
NMAE, PCC, and Bias, is made for each model along with the null
model. For each candidate model, the bootstrapped distribution of each
metric is paired with the corresponding distributions obtained from the
null models.

A model is deemed to provide significant statistical improvement
over the null model if each performance metric is stochastically bet-
ter than its counterpart obtained from the null model. Therefore, we
concatenated the bootstrap replicates of performance metrics under the
candidate model and null model and formally tested for the presence
of at least two clusters using gap statistics in a completely unsupervi-
sed fashion. If gap statistics identified presence of at least 2 clusters,
we performed K-means clustering. Ideally, the clustering procedure
should be able to distinguish replicates coming from null model and
candidate model. Hence, an adequate model will produce little over-
lap between the clusters associated with the candidate model and those
associated with the null model. Additionally, all models were subje-
cted to a robustness analysis (Costello, 2014), where we calculated
how many times each ensemble REFINED model outperforms other
competing models in 10,000 repetition of bootstrap sampling process
(Bazgir, 2020)

We calculated 95 % confidence interval for each of the foregoing
performance metrics using a pseudo Jackknife-after-Bootstrap confi-
dence interval generation approach (Efron, 1992). Multiple bootstrap
sets were drawn from the test samples and then the model performance
metrics calculated resulting in a distribution for each metric which was
used to calculate the confidence interval for a given cell line for NCI60
and NCI-ALMANAC datasets (Bazgir, 2020).

4.1 Results for NCI60

First, we report the performance of the nine candidate models, avera-
ged over 17 cell lines, in Table 1. Observe that, although we expected
that REFINED-CNN model stacking will perform best, it was not uni-
formly better in terms of all the evaluation metrics. Two variants of
iREFINED-CNN produced better performance with respect to NMAE and
Bias reduction. The REFINED-CNN image stacking performed uniformly
worse as compared to the remaining ensemble REFINED models. One of
the reasons for this worse performance could be the inability of image
stacking approach to extract appropriate features across the REFINED
images. However, all the ensemble variants uniformly outperformed sin-
gle projection based REFINED models and other popular machine learning
models considered here. The Tables 9 to 11 of the supplementary informa-
tion details the performance of each model with respect to the foregoing
metrics for different cell lines. The 95 % confidence interval for all the
models per each cell line are provided in Figs. 3 to 6 of the supplementary
information.

In terms of improvements in prediction, we observe that REFINED-
CNN model stacking decerased NRMSE, NMAE and bias by 7-9%, 6-
9% and 1-2%, respectively, as compared to single REFINED model. The
former ensemble model also increased the PCC by 6-9% as compared
to the latter. Integrated REFINED decerased NRMSE, NMAE and bias
by 6-8%, 7-12% and 3-4%, respectively, and increased PCC by 5-8% as
compared to single REFINED model. However, REFINED-CNN image
stacking merely decerased NRMSE, NMAE and bias by 1-3%, 2-7% and
0-1%, respectively, and increased PCC by 1-3% as compared to single
REFINED model, indicating its inability to compete favorably with the
previous two ensembling approached

Turning to robustness analysis to compare integrated REFINED and
REFINED-CNN model stacking models with other single REFINED CNN
models, we observe that REFINED-CNN model stacking offers better
performance in terms of (a) NRMSE between 73-80% of the times, (b)
NMAE 71-81% of the times, (c) PCC 68-76%of the times , and (d) Bias
48-56% of the times (see Tables 23 to 26). The integrated REFINED,
on the other hand, produced better performance in terms of (a) NRMSE
between 70-78% of the times, (b) NMAE 77-87% of the times, (c) PCC
between 67-75% of the times, and (d) Bias 55-63% of the times on average
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Table 1. NCI60 results. Comparison of performance of proposed approaches,
single projection based REFINED (sREFINED), and state-of-the-art methods
on NCI60 dataset. The bold values indicate best performance.

Model NRMSE NMAE PCC Bias
REFINED-CNN model stacking 0.702 0.653 0.710 0.489

iREFINED-CNN-AM 0.715 0.630 0.706 0.461
iREFINED-CNN-GM 0.722 0.635 0.705 0.446

REFINED-CNN image stacking 0.775 0.679 0.655 0.509
sREFINED with Isomap 0.787 0.716 0.644 0.509

sREFINED with LE 0.788 0.720 0.644 0.504
sREFINED with LLE 0.795 0.759 0.625 0.511
sREFINED with MDS 0.778 0.709 0.650 0.488

KBMTL (Gönen and Margolin, 2014) 0.856 0.768 0.547 0.733
XGBoost (Friedman, 2002) 0.842 0.806 0.513 0.781

SVR (Drucker, 1997) 0.870 0.806 0.525 0.755
RF (Ho, 1995) 0.880 0.846 0.486 0.816

EN (Zou and Hastie, 2005) 0.976 0.942 0.287 0.968

as compared to other single REFINED CNN models (see Tables 15 to 22).
The Gap statistics also indicate that the out-of-sample performance metrics
produced by REFINED-CNN model stacking and integrated REFINED
are, on average, well distinguishable from the null model (see Tables 27
to 30 of the supplementary information). Furthermore, higher values of
the Gap statistics associated with ensemble models as compared to those
associated with single REFINED-CNN models indicate higher degree of
separation of the performance metrics clusters associated with ensemble
models from the null model as compared to the single REFINED-CNN
versions. The NRMSE, NMAE, PCC, and Bias distribution of all the eight
models along with the null model are plotted for three randomly chosen
cell lines of the NCI60 dataset in Figs. 11 to 22 of the supplementary
information.

In addition to intra-REFINED comparisons, we compare our
REFINED-based approaches with state-of-the-art models including: Ker-
nelized Bayesian Multitask Learning (KBMTL) (Gönen and Margolin,
2014), Gradient Boosting Machine (Friedman, 2002), Random Fore-
sts (Ho, 1995), Support Vector Regressor (Drucker, 1997), and Elastic
Nets (Zou and Hastie, 2005). The average performance of all the models
on NCI60 dataset are provided in Table 1. Observe that, on average,
REFINED-based models significantly outperforms the competing non-
REFINED models. The same trend is observed for most cell-lines as well.
The detailed results including performance of each model for each cell
line is provided in Table 11 of the supplementary information.

4.2 NCI-ALMANAC

In this section, we compare the performance of the foregoing three ensem-
ble REFINED-CNN approaches with 4 single REFINED-CNN methods
utlizing different projection schemes along with 6 non-REFINED predi-
ctive methods. Since this dataset offers information about responses for
drug combinations, our predictors consist of two set of PaDel chemical
descriptors representing two drugs for each cell line. The response con-
sists of the "ComboScore" for each drug pair. We used the REFINED
approach to generate the images corresponding to the drug descriptors for
each drug compound in the NCI-ALMANAC dataset.

Considering pairing 2 drugs with D (∼ more than 100) unique NSCs
for each cell line, then the total number of samples for modeling each
cell line is

(D
2

)
pairs in the dataset, which is close to 5K. For each cell

line, we randomly divided the dataset into 80% training, 10% validation
and 10% test sets, where each set covariates contains 672 chemical drug
descriptors per each drug. REFINED-CNN model stacking and integrated
REFINED CNN model outperforms all other four single REFINED CNN

Table 2. NCI-ALMANAC results. Comparison of performance of proposed
approaches, single projection based REFINED (sREFINED), and state-of-
the-art methods on NCI-ALMANAC dataset. The bold values indicate best
performance.

Model NRMSE NMAE PCC Bias
REFINED-CNN model stacking 0.420 0.361 0.907 0.168

iREFINED-CNN-AM 0.479 0.431 0.893 0.275
iREFINED-CNN-GM 0.474 0.427 0.892 0.248

REFINED-CNN image stacking 0.561 0.524 0.856 0.362
sREFINED with Isomap 0.508 0.470 0.887 0.227

sREFINED with LE 0.489 0.443 0.884 0.238
sREFINED with LLE 0.522 0.486 0.884 0.284
sREFINED with MDS 0.514 0.474 0.877 0.259
Xie et al. (Xia, 2018) 1.574 1.295 0.435 0.991

DeepSynergy (Preuer, 2018) 1.109 1.058 0.176 0.929
XGBoost (Friedman, 2002) 0.518 0.680 0.859 0.327

RF (Ho, 1995) 0.525 0.679 0.851 0.290
SVR (Drucker, 1997) 0.561 0.675 0.830 0.255

EN (Zou and Hastie, 2005) 0.618 0.758 0.789 0.428

models whereas REFINED-CNN image stacking under-performs them in
average. The REFINED-CNN model stacking and integrated REFINED
CNN model achieve improvement over single REFINED CNN models in
the range of: 7-10% and 2-5% for NRMSE; 8-12% and 1-5% for NMAE;
2-3% and 1-2% for PCC; 6-12 % and 1-4% for Bias. The 95 % confidence
interval for all the models per each cell line are provided in Figs. 7 to 10
of the supplementary information.

Robustness analysis reveals REFINED-CNN model stacking offers
better performance as compared to single REFINED-CNN version with
respect to all performance metrics. The former produced lower NRMSE
between 88-90% of times, lower NMAE between 93-95% of times, higher
PCC between 83-86% of times, and lower Bias 78-89% of the times.
Detailed results are presented in Tables 39 to 42 of the supplementary infor-
mation. Integrated REFINED also outperformed the single-REFINED
variants in considerable proportion of times. The former lowered NRMSE
between 53-68% of times, NMAE between 52-69% of times and Bias
between 43-77% of the times, while increased PCC between 45-62% of
times. The average results of the robustness analysis for each metric of the
integrated REFINED are provided in Tables 31 to 38 of the supplementary
information.

Gap statistics results are provided in Tables 43 to 46 of the supplemen-
tary information. These results follow the trend observed in the NCI60
datasets with REFINED-CNN model stacking and integrated REFINED
CNNs performing considerably better as compared to the single REFINED
variants. The Gap statistics distribution plots per NMRSE and NMAE
metrics of each model paired with the null model along with their cor-
responding cluster centroids for three randomly selected cell lines are
provided in Figs. 23 to 34 of the supplementary information.

We further compare the performance of our proposed approaches
with state-of-the-art models including: DeepSyenrgy (Preuer, 2018), (Xia,
2018), Gradient Boosting Machine (Friedman, 2002), Random Forests
(Ho, 1995), Support Vector Regressor (Drucker, 1997), and Elastic Nets
(Zou and Hastie, 2005). The average performance of the models on NCI-
ALMANAC dataset are provided in Table 2. The detailed results including
performance of each model for each cell line is provided in Table 14 of the
supplementary information. Once again we observe the REFINED vari-
ants are outperforming other competing non-REFINED models for most
cell lines.
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Table 3. Execution time comparison. Comparing execution time of each step of
integrated REFINED CNN model and REFINED-CNN model stacking trained
on HCC_2998 cell line data of NCI60 dataset.

Steps iREFINED-CNN REFINED-CNN model stacking
MDS 7s 7s

Isomap 21s 21s
LE 23s 23s

LLE 28s 28s
NMDS + DA 47s –
Hill climbing 8m & 23s 33m & 32s

CNN 2h & 17m & 36s 9h & 10m & 24s
LR – 1s

Total 2h & 28m & 25s 9h & 45m & 19s

5 Discussion
Based off (Kondratyuk, 2020; Matlock, 2018), this study developed
different ensemble learning methods for REFINED-CNN predictive meth-
odology. Our results show that standard linear stacking of multiple single
REFINED-CNN improves the prediction performance as compared to the
best single REFINED CNN model. To reduce the computational cost
associated with linear stacking of multiple REFINED-CNN without signi-
ficantly impacting its predictive accuracy, we proposed the integrated
REFINED technique. Since each projection scheme captures a different
embedded pattern of the data, the ensembling approach, associated with
the integreated REFINED technique, provides a mathematical way to con-
nect these patterns to reveal a more holistic picture. Robustness is achieved
in the sense that model performance is no longer crucially dependent on
the a-priori choice of the distance metric or the initial projection scheme.
Furthermore, this technique offers a way to combine metric and non-metric
initial dissimilarity measures via a suitable specification of the probability
model for the observed distances. The integrated REFINED also offers
an heuristic advantage because we can choose the probability models for
observed distances by empirically observing the observed distance histo-
grams. Different probability models for different distance metrics could be
combined by the iREFINED technique to obtain the appropriate distance
averaging scheme. We proved here that weighted arithmetic and geometric
means turn out to be appropriate averaging schemes for common choices
of distribution of observed distances.

Through the application on both NCI60 and NCI-ALMANAC data-
sets, we have established the superior performance of the ensembling
techniques. We benchmarked the performance of integrated REFINED
with REFINED-CNN model stacking to reveal that the former produ-
ces comparable results in predicting drug sensitivity summary metrics
(for example, NLOGGI50 and ComboScore) at a fraction of computa-
tion cost associated with the latter. Table 3 reveals computational time for
REFINED-CNN model stacking is almost 4 times more than that for the
integrated REFINED approach. We also observed that the integrated REFI-
NED performed uniformly better than the REFINED image stacking model
indicating the need to fix the location of feature in the set of REFINED
images obtained via different projection schemes. We also proved that
integrated REFINED emerges as a result of the constraint that requires the
location of features, in the project 2D plane, must remain invariant under
different projection schemes thereby offering an intuitive interpretation of
the iREFINED technique.

Of course, neither the REFINED-CNN model stacking nor integra-
ted REFINED-CNN guarantees better performance as compared to the
best single REFINED-CNN in each instance. An intuitive way to decide
whether these ensembling approaches should be deployed is to assess the
amount of distortion induced by each individual REFINED scheme. If it

appears that particular projection is producing significantly lower distor-
tion, we recommend fitting a single REFINED-CNN associated with that
projection scheme. If, on the other hand, the distortions are similar, ensem-
bling is advised. A formal investigation into this conjecture is a future
avenue for research.

Our REFINED based architecture has two major pharmacologic impli-
cations. First, if we wish to predict the efficacy of a drug on a tumor, a rich
class of regressors will consist of both numerical and image variables. The
set of numeric regressors consists of (a) the chemical descriptors of the
drugs, and (b) molecular characteristics of tumor that offer a genome wide
profile of the tumor. The image regressors consist of histopathology images
that capture the inherent heterogeneity of tumors. The REFINED technique
offers a solution to this regression-on-multi-type data problem. Our techni-
que converts all non-image regressors to legitimate images which are then
processed through CNN algorithm to generate prediction. The integrated
REFINED-CNN technique, developed herein, indicates that the prediction
can be made robust by combining different distance metrics. Consequen-
tly, as multi-modal data collection protocols become more prevalent in the
realm of pharmacogenomics, the general REFINED technique (particu-
larly iREFINED) offers a methodology where fairly standard image based
deep learning techniques can be utilized to analyze such multi-type data.

Second, we observe a high accuracy out-of-sample prediction perfor-
mance of our model in NCI-ALMANAC data. This empirical predictive
reliability indicates that integrated REFINED-CNN can be utilized to
optimize the efficacy of a drug combination treatment regime. More spe-
cifically, given an initial choice of drug, say Dinit, this technique can
identify a set of drugs, from a given list of drugs, that are synergistic to
Dinit in the following sense. We can keepDinit fixed at one of the arms of
the network and allow the other arm scan through the foregoing list of drugs
to predict “ComboScores”. Our bootstrapped-based inferential methodo-
logy, that enabled us to generate the intervals for NRMSE, NMAE, PCC
and bias (see Figs. 7 to 10 of the supplementary information), can then be
utlized to generate confidence intervals about the predicted ComboScores.
This procedure can thus identify whether there exists a drug (in the list)
that can be paired with Dinit to achieve significant increase in efficacy.
An exploration into this line of investigation will be conducted in future.
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