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Abstract: Moving northwards, the coast of Cape Cod coast curves—shorelines that
face the west transition to northward facing beaches. Similarly, erosion changes to
accretion as sediment supplied from eroding bluffs deposits updrift. To better
understand how alongshore sediment transport shapes this coast, we present two
analyses of spit growth relevant to Cape Cod. First, we analyze wave-climate-derived
metrics to check whether transport trends for the modern wave climate are consistent
with a recently introduced conceptual model of spit growth. Second, to better
understand the influence of high eroding bluffs on shoreline extension, we present
modeling results that suggest the shoreline of an eroding headland is expected to
continue to rotate over long periods of time. Most interestingly, model results also
suggest that spit growth should be slower for larger bluffs. Although such large bluffs
would seem to be capable of supplying large quantities of sediment, by locally slowing
erosion, these bluffs actually reduce sediment supplied downdrift of the headland.

Introduction

The iconic ocean-facing Cape Cod shoreline, formed as bluffs of proglacial
sediment erode and deposit a downdrift-extending spit system, has been the
subject of geomorphologic interest since early investigations by W.M. Davis
(1896). Here, we address two specific aspects of the growth of Cape Cod within
a broader framework of spit formation and evolution. First, we analyze the wave
climate moving along the curved Cape shoreline to test a conceptual model of spit
growth that suggest passing the threshold of maximized alongshore sediment
results in a transition to accretion and shoreline instability. We then present
modeling results that investigate the effect of bluff height on shoreline extension
from an eroding headland.
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Controls on Spit Form

Recent research has identified key controls on spit form and evolution (Ashton
et al., 2016), whereby spit evolution can be best understood by tracking key
geomorphic locations along the shoreline determined by the gradients in
alongshore sediment transport. Leaving the eroding headland, a spit should
transition from an erosional neck to the downdrift accretional hook (Fig. 1). The
spit neck and hook are connected by a “fulcrum point” where alongshore sediment
transport is maximized. The transition of the shoreline through a maximizing
value of alongshore sediment transport is a necessary condition for alongshore-
transport-driven accretion of the spit hook. Such a transition through a maximum
flux orientation should be expected for all spits that are not heavily affected by
tidally driven sediment transport. Moving through this fulcrum point, the wave
climate is expected to transition from a stable, low-angle dominance to unstable,
high-angle dominance (Ashton and Murray, 2006a, 2006b).
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Fig. 1. Schematic of the morphodynamic components of a spit extending from a headland based upon
alongshore sediment transport regimes and neck overwash. After Ashton et al. (2016).

Wave Climate Analysis

We perform a preliminary test of this hypothesis by analyzing modern wave
climates along the Cape Cod coast using Wave Information Study (WIS) hindcast
data (Jensen, 2010). By summing over the entire 32-year dataset, using the deep-
water CERC formula (Ashton and Murray, 2006) we computed net alongshore
sediment transport, the predicted gradient in transport, and the relative diffusivity
(gamma) for different coastal orientations (Fig. 2), which allows us to predict the
locations of erosion, accretion, nodal points, fulcrum points, and shoreline
instability. Negative (left-moving standing on the shore) sediment transport is
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predicted to increase moving to the north (left). Towards the cape tip, alongshore
transport is maximized, leading to predictions of accretion and shoreline
instability (negative gamma). Comparing these with historic shoreline changes
(Giese et al., 2007, 2011), erosional and accretional trends are consistent as are
predictions of the fulcrum point.
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Fig. 2. Wave climate analysis for northern Cape Cod shoreline showing (rotated ~90 degrees
counterclockwise), from top to bottom, shoreline location, normalized alongshore sediment transport
(Qs), gradient in alongshore transport, and shoreline diffusivity (gamma) for various WIS stations
along the coast.
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Headland Effect on Spit Growth

To better understand the influence of sediment-supplying high bluffs on spit
growth, we modify the Coastline Evolution Model (CEM) (Ashton ef al., 2001;
Ashton and Murray, 2006a) used previously to model spit evolution (Ashton
et al., 2016) to include the influence of bluff height on shoreline recession due to
local negative gradients in alongshore sediment transport. For a shoreface depth
of 15 m, we vary bluff height from 1 to 40 m, finding surprisingly limited
influence of bluff height on modeled spit shape and growth (Fig. 3). The
predominant effect is slower recession of the headland shoreline as the spit
extends. Looking more closely at the model results (Fig. 4), spits growing off of
higher headlands grow in length slightly slower than counterparts with shorter
bluffs. This can be attributed to the reduced sediment supply off of the headland
(Qs,in), which directly results from the slower rotation of the shoreline for taller
headlands (Fig. 3; Fig. 4 bottom). Note that the model is run with a constant wave
climate, yet the shoreline continues to rotate at the headland transition (Fig. 4
bottom), not reaching a steady state despite the growth of a large, several km-
scale spit.

One main result is perhaps counterintuitive—spits should grow slower from
higher bluffs. Despite the ample sediment supply from large bluffs, shoreline
orientation at the headland transition controls sediment supply from the eroding
headland to the spit. The larger stockpile of sediment on the bluffs actually
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Fig. 3. CEM model results for spits extending off of headlands with different bluff heights with (left)
a | m bluff and (right) a 40 m bluff. The shoreface depth is 15 m. Bottom panels show alongshore
transport and normalized diffusivity (“stability”). For simulations, 60% of waves come from the left
and 20% of the waves are from angles > 45 degrees with wave height of 1 m.



Coastal Sediments 2019 Downloaded from www.worldscientific.com
by Andrew Ashton on 05/28/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

2265

reduces the rate that the process of alongshore sediment transport rotates the coast,
which is the primay control on the rate of sediment transport to the downdrift spit.
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Fig. 4. Time evolution of spit variables from CEM model results (Fig. 3) for spits extending off of
headlands with different bluff heights, showing (top) neck length, (middle) sediment flux from the
headland to the spit, and (bottom) angle of the spit neck over simulation time. Model times steps are
simulated days.
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Discussion and Conclusions

These preliminary results offer new insights into the controls on the evolution of
the Cape Cod shoreline. First, the modern shoreline orientation and wave climate
are consistent with the conceptual model of spit growth presented by Ashton
et al. (2016). Second, even as model experiments quantify the effect of bluff
height (and therefore presumably composition) on the time evolution of headland-
spit systems, they suggest that this geologic inheritance may not play a first-order
role in spit growth as the orientation of the shoreline and the wave climate
determines alongshore transport to the depositional downdrift region. Future
efforts will more exactly compare wave climate predictions with measured
historical rates of shoreline change as well as collected sedimentological and
geophysical data that help constrain the growth and formation of the Cape Cod
headland-spit system.
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