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Abstract—With growing model complexity, mapping Spiking
Neural Network (SNN)-based applications to tile-based neuromor-
phic hardware is becoming increasingly challenging. This is be-
cause the synaptic storage resources on a tile, viz. a crossbar, can
accommodate only a fixed number of pre-synaptic connections
per post-synaptic neuron. For complex SNN models that have
many pre-synaptic connections per neuron, some connections
may need to be pruned after training to fit onto the tile resources,
leading to a loss in model quality, e.g., accuracy. In this work, we
propose a novel unrolling technique that decomposes a neuron
function with many pre-synaptic connections into a sequence of
homogeneous neural units, where each neural unit is a func-
tion computation node, with two pre-synaptic connections. This
spatial decomposition technique significantly improves crossbar
utilization and retains all pre-synaptic connections, resulting in
no loss of the model quality derived from connection pruning. We
integrate the proposed technique within an existing SNN mapping
framework and evaluate it using machine learning applications
on the DYNAP-SE state-of-the-art neuromorphic hardware. Our
results demonstrate an average 60% lower crossbar requirement,
9x higher synapse utilization, 62% lower wasted energy on the
hardware, and between 0.8% and 4.6% increase in model quality.

Index Terms—Neuromorphic Computing, Spiking Neural Net-
works (SNNs), Machine Learning, Computation Graph.

I. INTRODUCTION

PIKING Neural Networks (SNNs) are machine learning
S approaches designed using spike-based computation and
bio-inspired learning algorithms [1]. SNNs are executed on
tile-based neuromorphic hardware such as DYNAP-SE [2]. A
tile consists of a crossbar. At each crosspoint of a crossbar
there is a synaptic element, which can be implemented using
Non-Volatile Memory (NVM) [3]. A neuron circuit takes as
its input current and generates at its output a train of spike
voltages. A spike is generated only if the current is higher
than a threshold. The spike firing frequency increases with
input current, saturating at a frequency determined by the
refractory period of the neuron. A n x n crossbar in a tile
can accommodate only n pre-synaptic connections per post-
synaptic neuron (n = 128 for the crossbars in DYNAP-SE).
Fig. 1 reports the number of neurons with more than 128
pre-synaptic connections, i.e., fanins as a fraction of the total
number of neurons in a few standard machine learning models,
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which are pruned iteratively to eliminate the near-zero weights
without loss in accuracy [4] (see Fig. 2).
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Fig. 1. Fraction of neurons with 128 or more pre-synaptic connections (fanin).

We observe that, even after model pruning, on average 2.6%
of neurons in these models cannot be mapped to the crossbars
in DYNAP-SE. There are two currently-used solutions to this
problem — 1) implement larger crossbars, which increases the
power consumption exponentially, and 2) remove synaptic
connections, which reduces the model quality.

Instead, we propose an unrolling technique which decom-
poses each neuron having many pre-synaptic inputs or fanin
into a sequence of homogeneous neural units, where each
neural unit is a function computation node having a maximum
fanin-of-two (or FIT). Our technique ensures information
integrity as well as the quality of these unrolled machine
learning models. Furthermore, the unrolling technique allows
denser packing of the homogeneous neural units per crossbar,
significantly improving the crossbar utilization. We evaluate
our technique using standard machine learning applications
and demonstrate an average 60% lower resource usage and
62% lower wasted energy. The proposed spatial decomposition
technique retains all pre-synaptic connections for each neuron
in an SNN, improving model quality between 0.8% and 4.6%
compared to an existing SNN mapping approach.

II. PROPOSED TECHNIQUE

Fig. 2 illustrates the integration of the proposed technique
(shown in the two colored boxes) inside an existing design
flow SpiNeMap [5] for mapping SNNs to the hardware.! This
design flow incorporates 1) Artificial Neural Network (ANN)
models written in PyTorch and Tensorflow, and 2) SNN models
written in PyCARL. For ANN models, analog operations are
first converted to spike-based operations using the ANN2 SNN
converter [18]. These models are first pruned to eliminate near-
zero weights [4]. This is to keep the model size small for
embedded platforms. The pruned models are then presented to
the proposed unrolling technique for mapping to hardware.

Our proposed technique works in two steps — 1) the
unrolling step, which decomposes the SNN to limit the number

'Our approach can be combined with other mapping approaches [6]-[17].
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of pre-synaptic connections for each neuron, and 2) the
weight normalization step, which ensures the quality of the
decomposed model. The latter is then clustered and mapped
to the neuromorphic hardware using SpiNeMap [5].

A. Spatial Decomposition using Model Unrolling

We propose an unrolling approach, which decomposes a
neuron function computation with many fanins into a sequence
of homogeneous neural units, where each neural unit is a
computation node with a maximum fanin-of-two (FIT). Fig. 3
illustrates the decomposition () of the neuron function shown
in @. Here, one m-input neuron function is decomposed into

e, 1\ frvrAa At nAnen T sinmito AnnnAn tnd in cAamIANnAA

w,

@ original modelc

Fig. 3. Unrolling a neuron functionality.

unrolled model @

The neuron function y, = f (37, n; - w;) is represented as

f(n1 cw1 + no -wg), fori =1

= f(um—1), where u; = .
Yo f( m 1) ¢ {f(uz;l + N1 "LUiJrl), otherwise.

@
where f represents the neuron functionality of generating
spike trains with a mean firing rate proportional to its
input excitation, ni,ns,--- ,nm, are the m pre-synaptic neurons
of the post-synaptic neuron n,, and wi,ws,---,w., are the
corresponding synaptic weights. The total number of FIT
neural units generated from a neural network with N neurons
is N =N (m; — 1), where m; is the fanin of neuron n;.

B. Weight Normalization

We apply weight normalization to optimize the synaptic
weights w; of the unrolled model (Fig. 3@®) such that the
firing rate of a neuron in this model is proportional to its
input activation in the original model (Fig. 3@). The weight
normalization is performed for each decomposed neural unit
and the weight normalization factor is applied to all its pre-
synaptic weights. Using Fig 3, the weight updates are

w; = {wi/Sr}orm, fori=1,2

i— . and wy, o, = 1/83 2
w;/ Sk, otherwise. and Wu; ,u; /Shorm 2

The normalization factor is computed as the maximum acti-
vation on the corresponding synaptic weight in the original
model using a batch from the training set, i.e.,

; k-max{a; +az} fori =1
Srzwrm_{ {1 2} (3)

k - max{a;y1} otherwise.
where a; is the activation on the synaptic weight w; in the
original model and the scaling factor k is used to limit the
mean firing rate of a neuron to lower energy consumption on
the hardware [18]. The weight normalization overhead can
be reduced by allowing non-uniform decomposition of neuron
functions. This is part of our future exploration.

C. Motivating Example

Fig. 4 provides a motivating example demonstrating 1) how
the proposed technique results in a difference in the SNN
mapping to hardware when compared to SpiNeMap and 2) the
improvements in model quality.

This example illustrates the mapping of three neuron
functions y1,y2 and y3, shown in @ to a neuromorphic hardware
consisting of 4 x 4 crossbars. SpiNeMap and other similar
techniques will use three crossbars to implement the three
functions, as shown in ®. Since a crossbar can accommodate
only a limited number of pre-synaptic connections per output
neuron (4 in this example), the component z¢ - w, of neuron
function y» cannot be mapped to the crossbar. This may result
in a degradation of the model quality.

In the proposed technique, neuron functions y2, with fanin
of 5 and y;, with fanin of 4 are decomposed to generate
homogeneous neural computation units ui,us, -+ ,u7 as shown
in ®. The neuron function y; is not decomposed because
the proposed technique unrolls only those neuron functions
that have fanin greater than 2. During packing of these
units to a crossbar with a limited number of input ports,
some of the decomposed units may need to be combined
to generate larger units. In this example, the new computations
are represented using functions f., fy, fo & f4, Wwhere f, and f.
can be implemented on the first crossbar alongside y;, while
fo(y2) and fy(ys) are implemented on a second cluster (®).
Finally, the two generated clusters are shown in ©.

We make the following three key observations. First, the
proposed technique only uses two crossbars to implement the
three neuron functionalities y1,y» and y3, one less than that
used by SpiNeMap. This reduces hardware requirement and
improves energy consumption. Second, it does not eliminate
any component of the neuron functionality, which improves
the model quality. Third, it increases the crossbar utilization.

ITII. RESULTS AND DISCUSSION
A. Evaluation Methodology
We evaluated 10 machine learning applications, which are
reported in Table I along with their baseline accuracy.

TABLE I
APPLICATIONS USED TO EVALUATE OUR APPROACH.

Class Applications Synapses Neurons Topology Accuracy
LeNet 282,936 20,602 CNN 85.1%
AlexNet 38,730,222 230,443 CNN 90.7%
CNN VGGl16 99,080,704 554,059 CNN 69.8 %
HeartClass [19] 1,049,249 153,730 CNN 63.7%
DigitRecogMLP 79,400 884 FeedForward (784, 100, 10) 91.6%
MLP EdgeDet 114,057 6,120  FeedForward (4096, 1024, 1024, 1024) |  100%
ImgSmooth 9,025 4,096 FeedForward (4096, 1024) 100%
HeartEstm [20] 66,406 166 Recurrent Reservoir 100%
RNN  VisualPursuit [21] 163,880 205 Recurrent Reservoir 47.3%
DigitRecogSTDP [22] 11,442 567 Recurrent Reservoir 83.6%

We evaluated these applications on the DYNAP-SE neuro-
morphic hardware [2] with 128 x 128 crossbars.

B. Hardware Requirement

Figure 5 compares the number of crossbars required by
SpiNeMap and the proposed technique for each of the evaluated
applications. Crossbar numbers are normalized to SpiNeMap.
We make the following four observations.

First, on average, the proposed technique requires 60% fewer
crossbars than SpiNeMap to execute these applications. This



IEEE EMBEDDED SYSTEMS LETTERS, VOL. XX, NO. X, MONTH YEAR

o Neuron Functions !

VI =X Wqg +X2 Wy wa @ Wi
Yo =Xp o We +X3-Wg +X4 W, + 3
X5 - Wp 4 X6 - W, @ wj
Y3 =X Wy +X3 W +X5 W +
X @ Wk
6 " Wk
3
e Unrolling . e: Clusters
Uy =X We + X3 wy ' Us = X3 - Wy + X3 - W; Cluster 1
Uy =Uj + X4 - We . Ue = Uy +x5 - w;j neurons = {x1,%2,X3, X4, 1 }
Uz = Uy + x5 - wy S Uy =up +xe - wi

Uy = u3 + X6 - Wy

Y2 =g @

Ja =X We+X3 - Wg+X4 W, o
fo =fa + X5 - wr + X6 - Wy
2 =f

y3 =ug

O

fo=x - wp 43w
S fa=fotxs witxe -
yi=fa

Wi

synapses = {W, Wp, We, Wa,

Wes Wiy Wi}

Cluster 2

neurons = {Xs,Xe,y2,y3}

synapses = {wy, wg, wj, wi }

Fig. 4. Demonstration of SNN clustering using SpiNeMap [5] (®) and the proposed approach (®).
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Fig. 5. Crossbars needed for the evaluated applications.

reduction is because the unrolling technique allows to densely
pack the fanin synapses of different neurons into the same
crossbar, reducing the overall crossbar count. This reduces the
hardware energy consumption. Second, the number of crossbars
required in the proposed technique is 10x lower than SpiNeMap
for EdgeDet, even though EdgeDet has no neurons with more
than 128 fanin synapses. This is because many neurons in
EdgeDet have fanin close to the maximum limit that a crossbar
in DYNAP-SE can accommodate. Therefore, these high-fanin
neurons cannot be packed in the same crossbar by SpiNeMap,
needing a separate crossbar for each of these neurons. The
proposed technique, on the other hand, unrolls a high-fanin
neuron to create a structure with a maximum-fanin-of-two. This
results in a denser packing of crossbars and a correspondingly
lower crossbar requirement. Third, for CNN-based applications
(LeNet, AlexNet, VGG16, and HeartClass), the proposed
technique requires 37% fewer crossbars than SpiNeMap. We
observe that the reduction over SpiNeMap is higher for
networks with more layers; the reduction is 16% for LeNet,
compared to 48% for VGG16. This is because, with more layers,
the proposed technique has more freedom to improve crossbar
utilization (see Sec. III-C). Finally, for RNN-based applications
(HeartEstm, VisualPursuit, and DigitRecogSTDP), the proposed
approach requires 80% fewer crossbars than SpiNeMap. This
is due to the cyclic nature of connections between neurons in
these applications. SpiNeMap cannot optimally pack neurons
in cyclic connections to the crossbars. The proposed technique
decomposes a cyclic connection to pack its neurons densely
into crossbars, reducing the crossbar requirement.
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Fig. 6. Neuron utilization.
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Fig. 7. Synapse utilization.

C. Crossbar Utilization

Figures 6 and 7 compare respectively, the neuron and
synapse utilization of SpiNeMap and the proposed technique
on DYNAP-SE for each evaluated application. We observe
that the average neuron utilization of SpiNeMap is 53% and
of the proposed technique is 62% for these applications. The
average synapse utilization of SpiNeMap is only 9% and of the
proposed technique is 25% for these applications. The reason
for the high crossbar utilization is because of the proposed
spatial decomposition technique, which allows to densely pack
fanin and fanout synapses from different neurons in the same
crossbar, improving utilization.

D. Wasted Energy

Figure 8 reports the energy wasted for each evaluated
application on DYNAP-SE using the proposed technique,
normalized to SpiNeMap. The wasted energy incorporates the
neurons and synapses in each crossbar that are not utilized
during the execution of these applications. We observe that
the energy wasted using the proposed technique is on average
62% lower than SpiNeMap. This significant reduction is due
to 1) the reduction in the use of crossbars and 2) the increase
in the utilization of neurons and synapses in each crossbar.
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E. Model Quality

Figure 9 plots the model quality i.e., the accuracy of each
evaluated application on DYNAP-SE using SpiNeMap and the
proposed technique. We make fwo key observations.
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Fig. 9. Model quality for the evaluated applications.

First, the accuracy loss for some applications such as
ImgSmooth, EdgeDet, HeartEstm, and VisualPursuit are the
same for SpiNeMap and the proposed technique. This is
because no neuron in these applications has more than 128
fanin synapses (see Fig. 1) and therefore, no pre-synaptic
connections are eliminated by SpiNeMap. So, the quality of the
two techniques are the same. However, for these applications,
the proposed technique is significantly better than SpiNeMap
in terms of crossbar usage, their utilization, and the wasted
energy. Second, for all other applications that do not initially
fit on the available crossbar space, the quality of the proposed
technique is better than SpiNeMap by average 3% (between
0.8% and 4.6%). For these applications, the proposed technique
is better in terms of all the evaluated metrics.

IV. DISCUSSION

We note that, the decomposition technique proposed here
negatively impacts accuracy and energy in following two
aspects. First, by decomposing a large neuron function, the
proposed technique maps some of the decomposed synaptic
connections on the shared interconnect of a neuromorphic
hardware, negatively impacting spike latency. This can lower
the model accuracy. However, the SpiNeMap framework,
which integrates the decomposition technique minimizes such
impact by intelligent cluster mapping and placement on the
hardware [5]. Furthermore, by not eliminating any synaptic
connections, the proposed technique, in fact, improves accuracy
compared to SpiNeMap (see Sec. III-E). Second, with addi-
tional synapses mapped to the shared interconnect, the energy
consumption on the interconnect increases. However, we find
this increase in energy is much lower than the energy savings
obtained by reducing the crossbar usage (see Sec. III-D).

V. CONCLUSION

We present a technique to map SNN-based applications to
crossbar-based neuromorphic hardware. The proposed tech-
nique involves unrolling of neurons, which decomposes a
complex neuron functionality into a sequence of homogeneous

neural units, where each neural unit is a fanin-of-two (FIT)
neuron. The unrolling technique significantly improves crossbar
utilization and ensures information integrity, resulting in no
loss of model quality derived from connection pruning. We
integrate this unrolling technique inside an existing SNN
mapping framework and evaluate it using machine learning
applications for a state-of-the-art neuromorphic hardware. Our
results demonstrate an average 60% lower crossbar requirement,
9x higher synapse utilization, 62% lower wasted energy, and
3% increase in model quality compared to an existing SNN
mapping approach. In the future, we will explore the trade-offs
involved in non-uniform tree decomposition of neural function.
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