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Abstract
Neuromorphic architectures implement biological neurons and synapses to execute machine learning algorithms with
spiking neurons and bio-inspired learning algorithms. These architectures are energy efficient and therefore, suitable for
cognitive information processing on resource and power-constrained environments, ones where sensor and edge nodes of
internet-of-things (IoT) operate. To map a spiking neural network (SNN) to a neuromorphic architecture, prior works have
proposed design-time based solutions, where the SNN is first analyzed offline using representative data and then mapped
to the hardware to optimize some objective functions such as minimizing spike communication or maximizing resource
utilization. In many emerging applications, machine learning models may change based on the input using some online
learning rules. In online learning, new connections may form or existing connections may disappear at run-time based on
input excitation. Therefore, an already mapped SNN may need to be re-mapped to the neuromorphic hardware to ensure
optimal performance. Unfortunately, due to the high computation time, design-time based approaches are not suitable for
remapping a machine learning model at run-time after every learning epoch. In this paper, we propose a design methodology
to partition and map the neurons and synapses of online learning SNN-based applications to neuromorphic architectures at
run-time. Our design methodology operates in two steps – step 1 is a layer-wise greedy approach to partition SNNs into
clusters of neurons and synapses incorporating the constraints of the neuromorphic architecture, and step 2 is a hill-climbing
optimization algorithm that minimizes the total spikes communicated between clusters, improving energy consumption
on the shared interconnect of the architecture. We conduct experiments to evaluate the feasibility of our algorithm using
synthetic and realistic SNN-based applications. We demonstrate that our algorithm reduces SNN mapping time by an average
780x compared to a state-of-the-art design-time based SNN partitioning approach with only 6.25% lower solution quality.
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1 Introduction

Internet of things (IoT) is an emerging computing paradigm
that enables the integration of ubiquitous sensors over a
wireless network [3]. Recent estimates predict that over 50
billion IoT devices will be interconnected via the cloud over
the next decade [22]. In a conventional IoT, data collected
from sensors and actuators are transferred to the cloud and
processed centrally [34]. However, with an increase in the
number of connected IoT devices, processing on the cloud
becomes the performance and energy bottleneck [41].
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Edge computing is emerging as a scalable solution
to process large volumes of data by executing machine
learning tasks closer to the data source e.g. on a sensor or an
edge node [40]. Processing on edge devices allows real-time
data processing and decision making, and offers network
scalability and privacy benefits as data transferred to the
cloud over a possibly insecure communication channel is
minimized [31, 32].

Spiking neural networks (SNNs) [29] are extremely
energy efficient in executing machine learning tasks on event-
driven neuromorphic architectures such as TrueNorth [2],
DYNAP-SE [36], and Loihi [19], making them suitable for
machine learning-based edge computing. A neuromorphic
architecture is typically designed using crossbars, which
can accommodate only a limited number of synapses per
neuron to reduce energy consumption. To build a large
neuromorphic chip, multiple crossbars are integrated using
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a shared interconnect such as network-on-chips (NoC) [7].
To map an SNN to these architectures, the common practice
is to partition the neurons and synapses of the SNN into
clusters and map these clusters to the crossbars, optimizing
hardware performance such as minimizing the number
of spikes communicated between crossbar, which reduces
energy consumption [16].

Most prior works on machine learning-based edge comput-
ing focus on supervised approaches, where neural network
models are first trained offline with representative data from
the field and then deployed on edge devices to perform
inference in real-time [39]. However, data collected by IoT
sensors constantly evolve over time and may not resem-
ble the representative data used to train the neural network
model. This change in the relation between the input data
and an offline trained model is referred to as concept drift
[23]. Eventually, the concept drift will reduce the predic-
tion accuracy of the model over time, lowering its quality.
Therefore, there is a clear need to periodically re-train the
model using recent data with adaptive learning algorithms.
Examples of such algorithms include transfer learning [38],
lifelong learning [43] and deep reinforcement learning [33].

Mapping decisions for a supervised SNN are made at
design-time before the initial deployment of the trained
model. However, in the case of online learning, when the
model is re-trained, (1) synaptic connections within the
SNN may change, i.e. new connections may form and
existing connection may be removed as new events are
learned, and (2) weights of existing synaptic connections
may undergo changes after every learning epoch. In order
to ensure the optimal hardware performance at all times,
a run-time approach is required that remaps the SNN to
the hardware after every learning epoch. Prior methods
to partition and map an SNN to neuromorphic hardware,
such as PSOPART [16], SpiNeMap [6], PyCARL [4],
NEUTRAMS [25] and DFSynthesizer [42] are design-
time approaches that require significant exploration time to
generate a good solution. Although suitable for mapping
supervised machine learning models, these approaches
cannot be used at run-time to remap SNNs frequently. For

online learning, we propose an approach to perform run-
time layer-wise mapping of SNNs on to crossbar-based
neuromorphic hardware. The approach is implemented in
two steps. First, we perform a layer-wise greedy clustering
of the neurons in the SNN. Second, we use an instance of
hill-climbing optimization (HCO) to lower the total number
of spikes communicated between the crossbars.

Contributions: Following are our key contributions.

– We propose an algorithm to partition and map online
learning SNNs on to neuromorphic hardware for IoT
applications in run-time;

– We demonstrate suitability of our approach for online
mapping in terms of the exploration time and total number
of spikes communicated between the crossbars, when
compared to a state-of-the-art design time approach.

The remainder of this paper is organized as follows,
Section 2 presents the background, Section 3 discusses the
problem of partitioning a neural network into clusters to map
on to the crossbars neuromorphic hardware and describes
our two-step approach. Section 5 presents the experimental
results based on synthetic applications. Section 6 concludes
the paper followed by a discussion in Section 7.

2 Background

Spiking neural networks are event-driven computational
models inspired by the mammalian brain. Spiking neurons
are typically implemented using Integrate-and-Fire (I&F)
models [9] and communicate using short impulses, called
spikes, via synapses. Figure 1a illustrates an SNN with two
pre-synaptic neurons connected to a post-synaptic neuron
via synaptic elements with weights w1, w2 respectively.
When a pre-synaptic neuron generates a spike, current
is injected into the post-synaptic neuron, proportional to
the product of the spike voltage and the conductance of
the respective synapse. SNNs are trained by adjusting the

(a) (b)
(c)

Figure 1 Overview of a SNN hardware: a connection of pre- and post-synaptic neurons via synapses in a spiking neural network, b a crossbar
organization with fully connected pre- and post-synaptic neurons, and c a modern neuromorphic hardware with multiple crossbars and a
time-multiplexed interconnect.
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synaptic weights using a supervised, a semi-supervised, or
an unsupervised approach [27, 28, 37].

Due to the ultra-low power footprint of neuromorphic
hardware, several machine learning applications based
on SNNs are implemented. In [18], the authors propose
a multi-layer perceptron (MLP) based SNN to classify
heartbeats using electrocardiagram (ECG) data. In [21],
the authors propose the handwritten digit recognition using
unsupervised SNNs. In [15], a spiking liquid state machine
for heart-rate estimation is proposed. A SNN-based liquid
state machine (LSM) for facial recognition is proposed in
[24]. In [5], the authors propose a technique to convert a
convolutional neural network (CNN) model for heartbeat
classification into a SNN, with a minimal loss in accuracy.

Typically, SNNs are executed on special purpose neuro-
morphic hardware. These hardware can (1) reduce energy
consumption, due to their low-power designs, and (2)
improve application throughput, due to their distributed
computing architecture. Several digital and mixed-signal
neuromorphic hardware are recently developed to execute
SNNs, such as Neurogrid [8], TrueNorth [1] and DYNAP-
SE [35]. Although these hardware differ in their operation
(analog vs. digital), they all support crossbar-based archi-
tectures. A crossbar is a two-dimensional arrangement of
synapses (n2 synapses for n neurons). Figure 1b illustrates
a single crossbar with n pre-synaptic neurons and n post-
synaptic neurons. The pre- and post-synaptic neurons are
connected via synaptic elements. Crossbar size (n) is lim-
ited (<512) as scaling the size of the crossbar will lead
to an exponential increase in dynamic and leakage energy.
Therefore, to build large neuromorphic hardware, multi-
ple crossbars are integrated using a shared interconnect, as
illustrated in Figure 1c.

In order to execute an SNN on a neuromorphic hard-
ware, the SNN is first partitioned into clusters of neurons
and synapses. The clustered (local) synapses are then mapped
to the crossbars and the inter-cluster synapses to the time-
multiplexed interconnect. Several design time partitioning
approach are presented in literature. In [44–46] the authors
proposes techniques to efficiently map the neurons and
synapses on a crossbar. The aim of these techniques is
to maximize the utilization of the crossbar. NEUTRAMS

partitions the SNN for crossbar-based neuromorphic hard-
ware [26]. The NEUTRAMs approach also looks to mini-
mize the energy consumption of the neuromorphic hardware
executing the SNN. PyCARL [4] facilitates the hardware-
software co-simulation of SNN-based applications. The
framework allows users to analyze and optimize the par-
titioning and mapping of an SNN on cycle-accurate mod-
els of neuromorphic hardware. DFSynthesizer [42] uses a
greedy technique to partition the neurons and synapses of
an SNN. The SNN partitions are mapped to the neuromor-
phic hardware using an algorithm that adapts to the available
resources of the hardware. SpiNeMap [6] uses a greedy
partitioning technique to partition the SNN followed by a
meta-heuristic-based technique to map the partitions on the
hardware. PSOPART SNNs to a crossbar architecture [17].
The objective of SpiNeMap and PSOPART is to minimize
the spike communication on the time-multiplexed intercon-
nect in order to improve the overall latency and power con-
sumption of the DYNAP-SE hardware. Table 1 compares
our contributions to the state-of-the-art techniques.

As these partitioning approaches aim to find the optimal
hardware performance, their exploration time is relatively
large and therefore not suitable for partitioning and re-
mapping of online learning SNNs. Run-time approaches are
proposed for task mapping on multiprocessor systems. A
heuristic-based run-time manager is proposed in [12]. The
run-time manager controls the thread allocation and volt-
age/frequency scaling for energy efficient execution of appli-
cations on multi processor systems. In [30], the authors
propose a genetic algorithm-based run-time manager to
schedule real-time tasks on Dynamic Voltage Scaling (DVS)
enabled processors, with an aim to minimize energy con-
sumption. A workload aware thread scheduler is proposed
in [20] for multi-processor systems. In [14], the authors
propose a multinomial logistic regression model to par-
tition the input workload in run-time. Each partition is
then executed at pre-determined frequencies to ensure
minimum energy consumption. In [13], the authors pro-
pose a technique to remap tasks run on faulty processors
with a minimal migration overhead. A thermal-aware task
scheduling approach is proposed in [11] to estimate and
reduce the temperature of the multi processor system at

Table 1 Summary of related
works. Related works Run-time mapping Objective

[44–46] × Maximize single crossbar utilization

NEUTRAMS [25] × Minimize number of crossbars utilized

SpiNeMap [6] × Minimize spikes on time-multiplexed interconnect

PSOPART [16] × Minimize spikes on time-multiplexed interconnect

DFSynthesizer [42] × Optimize the hardware utilization in run-time

Proposed
√

Reduces energy consumption of online learning
SNNs on hardware.
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Figure 2 Mapping of online learning SNN on Neuromorphic Hardware.

run-time. The technique performs an extensive design-time
analysis of fault scenarios and determines the optimal map-
ping of tasks in run-time. However, such run-time tech-
niques to remap SNN on neuromorphic hardware are not
proposed. To the best of our knowledge, this is the first
work to propose a run-time mapping approach with a sig-
nificantly lower execution time when compared to existing
design-time approaches. Our technique reduces the spikes
communicated on the time-multiplexed interconnect, there-
fore reducing the energy consumption.

3Methodology

The proposed method to partition and map an SNN in
run-time is illustrated in Figure 2 illustrates. The network
model is built using a directed graph, wherein each edge
represents a synapse whose weight is the total number
of spikes communicated between the two SNN neurons.
The input to the mapping algorithm is a list of all the
neurons (A), the total number of spikes communicated over
each synapse and the size of a crossbar (k). The mapping
algorithm is split into two steps, as shown in Figure 3.

Figure 4 illustrates the partitioning of an SNN with 6
neurons into 3 sub-lists. The spikes communicated between
the neurons is indicated on the synapse. First, we divide
the input list of neurons into sub-lists (Section 3.1), such
that each sub-list can be mapped to an available crossbar.

Second, we reduce the number of spikes communicated
between the sub-lists (Section 3.2), by moving the neurons
between the sub-list (indicated in blue).

3.1 Building Sub-lists

Algorithm 1 describes the greedy partitioning approach. The
objective is to greedily cut the input list of neurons (A)
into s sub-lists, where s is the total number of crossbars
in the given design. The size of a sub-list is determined
by the size of the crossbars (k) on the target hardware.
A variable margin (line 3) is defined to store the unused
neuron slots available in each sub-list. The mean (line 4)
number of spikes generated per crossbar is computed using
the total number of spikes communicated in the SNN-based
application. A cost function (Algorithm 2) is defined to
compute the total number of spikes communicated (cost)
between each of the sub-lists.

The algorithm iterates over the neurons (ni) in the input
list (A) and updates the slots in the current sub-list (line
8). Neurons are added to the current sub-list until one of
following two criteria are met - (1) the length of the sub-
list equals k, or (2) the cost (number of spikes) is greater
than the mean value and sufficient extra slots (margin)

are still available. When the criteria is met, the current
sublist is validated and its boundary stored. When the
penultimate sub-list is validated, the execution ends because
the boundary of the last sub-lists is already known (nth
element in list). The list p contains the sub-lists boundaries.

Figure 3 Overview of proposed
partitioning algorithm.
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Figure 4 Partitioning of an
SNN.

3.2 Local Search

The solution obtained from Algorithm-1 is naive and not
optimal. Although each sublist s obtained from Algorithm-
1 meets the cost criteria, it is possible to have unevenly
distributed costs across the sublists. We search for a
better solution by performing multiple local searches to
balance the cost. This is done by using the hill-climbing
optimization technique to iterate through the sublist and
move its boundary

Algorithm 3 describes the hill-climbing optimization
technique. The technique relies on a cost function (line
2) to compute and evaluate a solution. The cost function
used in the optimization process is shown in Algorithm 2.
The cost function computes the maximum cost (number of
spikes) for a chosen sub-list. The optimal solution should
contain the lowest cost. The algorithm iterates through each
subslist to search for the best solution (cost) of its neighbors.
The algorithm begins by moving the boundary of a sub-list
one position to the left or one position to the right. Each
neuron (ni) in the sublist is moved across the boundary
to a neighboring sub-list and the cost of the neighbors are
computed. The algorithm selects the solution with the local
minimum cost. The process is repeated for every neuron
in the list (A) until the sub-lists with the minimum cost is
found.

4 Evaluation

4.1 Simulation Environment

We conduct all experiments on a system with 8 CPUs, 32GB
RAM, and NVIDIA Tesla GPU, running Ubuntu 16.04.

– CARLsim [10] : A GPU accelerated simulator used
to train and test SNN-based applications. CARLsim
reports spike times for every synapse in the SNN.

– DYNAP-SE [36]: Our approach is evaluated using
the DYNAP-SE model, with 256-neuron crossbars
interconnected using a NoC. [47].
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Table 2 Applications used for
evaluating. Category Applications Synapses Topology Spikes

synthetic S 1000 240,000 FeedForward (400, 400, 100) 5,948,200

S 2000 640,000 FeedForward (800, 400, 800) 45,807,200

realistic EdgeDet [10] 272,628 FeedForward (4096, 1024, 1024, 1024) 22,780

MLP-MNIST [21] 79,400 FeedForward (784, 100, 10) 2,395,300

4.2 Evaluated Applications

In order to evaluate the online mapping algorithm, we
use 2 synthetic and 2 realistic SNN-based applications.
Synthetic applications are indicated with an ‘S ’ followed
by the number of neurons in the application. Edge detection
(EdgeDet) and MLP-based digit recognition (MLP-MNIST)
are the two realistic applications used. Table 2 also indicates
the number of synapses (column 3), the topology (column
4) and the number of spikes for the application obtained
through simulations using CARLsim [10].

4.3 Evaluated Design-time vs run-time Approach

In order to compare the performance of our proposed run-
time approach, we choose a state-of-the-art design-time
approach as the baseline. The crossbar size for both the
algorithms is set to 256 (k=256).In this paper we compare
the following approaches:

– PSOPART [16]: The PSOPART approach is a design-
time partitioning technique that uses and instance
of particle swarm optimization (PSO) to minimize
the number of spikes communicated on the time-
multiplexed interconnect.

– HCO-Partitioning: Our HCO-partitioning approach is a
two-step layer-wise partitioning technique with a greedy
partitioning followed by a HCO-based local search
approach to reduce the number of spikes communicated
between the crossbars.

5 Results

Table 3 reports the execution time (in seconds) of the design-
time and run-time mapping algorithms for synthetic and
realistic applications, respectively. We make the following
two observations. First, on average, our HCO partitioning
algorithm has an execution time 780x lower than that of
the PSOPART algorithm. Second, the significantly lower
run-time of the HCO partitioning algorithm (<50 seconds)
allows for the online learning SNN to be re-mapped on the
edge devices, before the start of the next training epoch.

Figure 5 shows the lifetime of an online learning
application with respect to the execution times of each
training epoch (t) and the HCO partitioning algorithm (h).
The execution time of the partitioning algorithm needs
to be significantly lower than the time interval between
training epochs. This is achieved with the HCO-partitioning
algorithm as its execution time is significantly (780x) lower
than the state-of-the-art design-time approaches.

In Figure 6, we compare the number of spikes commu-
nicated between the crossbars while partitioning the SNN
using the HCO partitioning algorithm when compared to the
design-time PSOPART approach. We see that, on average, the
PSOPART algorithm reduces the number of spikes by a fur-
ther 6.25%, when compared to the HCO partitioning algo-
rithm. The PSOPART will contribute to a further reduction
in the overall energy consumed on the neuromorphic hard-
ware. However, this outcome is expected as the design-time
partitioning approach is afforded far more exploration time
to minimize the number of spikes communicated between the

Table 3 Execution time of
design-time and proposed
run-time approach in seconds.

Category Applications PSOPART (sec) HCO-Partition (sec)

synthetic S 1000 20011.33 19.10

S 2000 45265.00 24.68

realistic EdgeDet 6771.02 45.62

MLP-MNIST 5153.41 11.03
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Figure 5 Life-time of online
learning SNN.

crossbars. Also, the effects of concept drift will soon lead to
the design-time solution becoming outmoded. Therefore, a
run-time partitioning and re-mapping of the SNN will signifi-
cantly improve the performance of the SNN on the neuro-
morhpic hardware and mitigate the effects of concept drift.

6 Conclusion

In this paper, we propose an algorithm to re-map online learn-
ing SNNs on neuromorphic hardware. Our approach per-
forms the run-time mapping in two steps: (1) a layer-wise
greedy partitioning of SNN neurons, and (2) a hill-climbing
based optimization of the greedy partitions with an aim to
reduce the number of spikes communicated between the
crossbars. We demonstrate the in-feasibility of using a state-
of-the-art design-time approach to re-map online learning
SNNs in run-time. We evaluate the our approach using syn-

thetic and realistic SNN applications. Our algorithm reduces
SNN mapping time by an average 780x when compared
to a state-of-the-art design-time approach with only 6.25%
lower performance.

7 Discussion

In this section we discuss the scalability of our approach.
Each iteration of Algorithm-1 performs basic math oper-
ations. The hill-climbing algorithm computes as many as
2x(s-2) solutions, and performs a comparison to find the
minimum cost across all the solutions. In our case, the
co-domain of the cost function are well-ordered positive
integers. The cost function is also linear in n, however the
hill-climb optimization algorithm only terminates when the
local minimum cost function is computed. Therefore, it is
in our interest to optimize the number of times the cost
function is to be run.

Figure 6 Number of spikes
communicated on the
time-multiplexed interconnect
normalized to the total number
of spikes generated.
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