
On the Role of System Software in Energy Management of
Neuromorphic Computing

Twisha Titirsha
∗

tt624@drexel.edu

Drexel University

Philadelphia, PA, USA

Shihao Song
∗

ss3695@drexel.edu

Drexel University

Philadelphia, PA, USA

Adarsha Balaji
∗

ab3586@drexel.edu

Drexel University

Philadelphia, PA, USA

Anup Das

anup.das@drexel.edu

Drexel University

Philadelphia, PA, USA

ABSTRACT
Neuromorphic computing systems such as DYNAPs and Loihi have

recently been introduced to the computing community to improve

performance and energy efficiency of machine learning programs,

especially those that are implemented using Spiking Neural Net-

work (SNN). The role of a system software for neuromorphic sys-

tems is to cluster a large machine learning model (e.g., with many

neurons and synapses) and map these clusters to the computing

resources of the hardware. In this work, we formulate the energy

consumption of a neuromorphic hardware, considering the power

consumed by neurons and synapses, and the energy consumed in

communicating spikes on the interconnect. Based on such formula-

tion, we first evaluate the role of a system software in managing

the energy consumption of neuromorphic systems. Next, we for-

mulate a simple heuristic-based mapping approach to place the

neurons and synapses onto the computing resources to reduce en-

ergy consumption. We evaluate our approach with 10 machine

learning applications and demonstrate that the proposed mapping

approach leads to a significant reduction of energy consumption of

neuromorphic computing systems.

CCS CONCEPTS
•Hardware→Neural systems;Emerging languages and com-
pilers; Emerging tools and methodologies; • Computer sys-
tems organization → Data flow architectures; Neural net-
works.

KEYWORDS
Spiking Neural Network (SNN), Neuromorphic Computing, Non

Volatile Memory (NVM), Energy Consumption, Static Power, Dy-

namic Power

∗
Authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CF ’21, May 11–13, 2021, Virtual Conference, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8404-9/21/05. . . $15.00

https://doi.org/10.1145/3457388.3458664

ACM Reference Format:
Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das. 2021. On

the Role of System Software in Energy Management of Neuromorphic

Computing. In Computing Frontiers Conference (CF ’21), May 11–13, 2021,

Virtual Conference, Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/

10.1145/3457388.3458664

1 INTRODUCTION
Neuromorphic computing describes the VLSI implementation of

the neuro-biological architecture of the central nervous system [6,

14, 49]. Neuromorphic systems are energy efficient in executing

Spiking Neural Networks (SNNs), which are considered as the third

generation of neural networks [47]. SNNs use spike-based compu-

tations and bio-inspired learning algorithms in solving machine

learning problems. In an SNN, pre-synaptic neurons communicate

information encoded in spike trains to post-synaptic neurons, via

the synapses. Performance of an SNN-based application can be

assessed in terms of the inter-spike interval (ISI coding) or mean

firing rate of the neurons (rate coding).

The hardware architecture of neuromorphic systems consists of

neurosynaptic cores, which are interconnected via a shared inter-

connect [7]. Figure 1 illustrates the representative hardware archi-

tecture of many recent neuromorphic systems such as Loihi [30],

TrueNorth [32], and DYNAPs [50].

interconnect

interconnect

neurosynaptic
core

neurosynaptic
core

neurosynaptic
core

neurosynaptic
core

interconnect

neurosynaptic
core

neurosynaptic
core

neurosynaptic
core

neurosynaptic
core

interconnect

neurosynaptic
core

neurosynaptic
core

neurosynaptic
core

neurosynaptic
core

Figure 1: Hardware architecture of neuromorphic systems.

Neurosynaptic cores are the computing resources of a neuro-

morphic system. In many emerging architectures, a neurosynaptic

core is essentially a crossbar array that can accommodate a fixed

number of neurons and synapses. The role of a system software

for neuromorphic systems is therefore, to partition an SNN with

many neurons and synapses into clusters such that, the neurons and

synapses of each cluster can be mapped on to a neurosynaptic core

of the system. Therefore, the inter-cluster synapses are mapped on

the shared interconnect of the system.

https://doi.org/10.1145/3457388.3458664
https://doi.org/10.1145/3457388.3458664
https://doi.org/10.1145/3457388.3458664

CF ’21, May 11–13, 2021, Virtual Conference, Italy Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das

Recently, energy consumption of neuromorphic systems has

come into spot light, specifically due to their application in power-

constrained environments such as Embedded Systems and Internet-

of-Things (IoT). To this end, several low-power analog neuron de-

signs are proposed to implement neurosynaptic cores for neuro-

morphic systems [41, 53, 55, 73, 74]. Another research direction is

the shift from Static RAM (SRAM)-based synapse designs to imple-

mentations that use Non-Volatile Memory (NVM) – Phase Change

Memory (PCM) [13], Oxide-based Resistive RAM (OxRRAM) [48],

Ferroelectric RAM (FeRAM) [52], and Spin-Transfer Torque Mag-

netic or Spin-Orbit-Torque RAM (STT/ SoT-MRAM) [72].
1

In addition to the hardware-oriented energy reduction tech-

niques, we argue that the system software also plays a pivotal role

in the energy consumption of neuromorphic systems. We show that

the energy consumption of a neuromorphic hardware depends on 1)

how an SNN model is partitioned into clusters, 2) how the clusters

are mapped to the neurosynaptic cores, and 3) how the neurons

and synapses of a cluster are placed inside each core. Following are

our key contributions.

• We formulate the energy consumption of a neuromorphic

hardware, considering the energy consumed inside each neu-

rosynaptic core and the energy consumed in communicating

spikes on the shared interconnect.

• We show that by not considering all the sources of energy

loss, existing system software approaches leave a significant

energy improvement opportunities.

• We propose a heuristic to minimize the total energy con-

sumption in neuromorphic computing without significantly

increasing the spike latency. This leads to only a verymarginal

impact on performance.

• We evaluate our mapping approach with 10 machine learning

workloads on a cycle-accurate simulator of a state-of-the-art

neuromorphic hardware.

Results demonstrate that the current system software frame-

works for neuromorphic systems miss significant energy improve-

ment opportunities. By explicitly incorporating energy consump-

tion of different hardware units, the proposed mapping approach

significantly minimizes the energy consumption of neuromorphic

systems.

2 BACKGROUND
There are many recent initiatives to map machine learning work-

loads to neuromorphic hardware. PACMAN [37] is used to map

SNNs to SpiNNaker hardware [36]. Corelet [1] is used to map work-

loads to TrueNorth [32]. NEUTRAM [42] is a mapping approach for

digital neuromorphic chips such as TIANJI [59]. PyNN [31], which

started as a front-end to many back-end SNN simulators such as

Brian [39], NEURON [40], and NEST [34], can now map SNN ap-

plications to many neuromorphic hardware such as Loihi [30] and

Neurogrid [12]. A recent extension of PyNN, called PyCARL [8],

can simulate SNN applications using the back-end CARLsim simu-

lator [15], allowing mapping of these applications to the DYNAPs

1
Beside neuromorphic computing, some of these memristor technologies are also

used as main memory in conventional computers to improve performance and energy

efficiency [61, 63, 65, 67, 68].

neuromorphic hardware [50]. There are also other propritary ap-

proaches to mapping SNN applications to emerging neuromorphic

chips such as BrainScaleS [56], Braindrop [54], and ODIN [35].

DecomposedSNN [11] uses spatial decomposition technique

to unroll each neuron with many fanin connections into smaller

atomic units that are connected sequentially. This allows to densely

pack each crossbar in a neuromorphic hardware leading to a sig-

nificant improvement of resource utilization and a reduction of

hardware area overhead. PSOPART [29] and SpiNeMap [9] are

mapping approaches that minimize spike communication energy

on the shared interconnect by lowering the spike volume and spike

latency, respectively. SPINERTM [10] is proposed to remap SNN

applications to neuromorphic hardware at tun-time by monitoring

the performance degradation. DFSynthesizer [64] uses data flow

models to analyze performance of SNN workloads on crossbar-

based neuromorphic hardware. There are also other dataflow-based

technique reported in literature [2, 3, 18]. These approaches are

demonstrated with many SNN applications, such as the liquid state

machine (LSM)-based heart-rate estimation [16]; spiking ResNet

architecture for ImageNet classification [57]; deep learning architec-

ture for DNA sequence analysis [51]; heart-rate classification using

spiking CNN architecture using ECG data [4, 28]; lateral inhibition-

based digit recognition [33]; recurrent architecture-based predictive

visual pursuit [43]; spiking architecture for seizure classification

using EEG data [38]; among others.

RENEU [66] is a recent technique proposed to map SNN applica-

tions to hardware improving the circuit aging of the peripheral cir-

cuitry in crossbars, which is caused due to their high-voltage expo-

sure. There are also other approaches targeting circuit aging [5, 62].

ESPINE [71] is an approach to map SNN applications to neuro-

morphic hardware, improving the endurance of its Non-Volatile

Memory synapses. There are also other mapping approaches that

target temperature optimization [70] and releiability-performance

trade-offs [45, 69]. We compare our Hill Climbing approach against

PyCARL and SpiNeMap, and found it to perform significantly better

in terms of energy consumption.

3 PROBLEM FORMULATION
Unlike system software for conventional computers (e.g., the Oper-

ating System), the role of the system software for neuromorphic

hardware is to cluster a machine learning model and map the clus-

ters onto the crossbars of the neuromorphic hardware. Figure 2

illustrates the mapping concept using an example SNN shown in

(❶). The number on a link represents the average number of spikes

communicated between the source and destination neurons for a

representative training data. We consider the mapping of this SNN

to a hardware with 2×2 crossbars. Since a crossbar in this hardware
can only accommodate a maximum of 2 pre-synaptic connections,

we partition the SNN of (❶) into two clusters (shown in two differ-

ent colors) in (❷). These clusters can then be mapped to the two

crossbars as shown in (❸), with an average 8 spikes communicated

between the crossbars.

In many neuromorphic applications, the number of pre-synaptic

connections per neuron can well exceed the crossbar input limit

(which is typically 128 or 256). For those applications, each neuron

On the Role of System Software in Energy Management of Neuromorphic Computing CF ’21, May 11–13, 2021, Virtual Conference, Italy

F -------------------,-------------------------T------------------ �

C
l
u
s
ter 1

(......................... \
. . . .

. .

. .

. .

. .

. .

. .

. .

.
.·
· ··················"········ .

••••
• •
·
•
••
·
•
••••••

·
•••••

••••

•

..

•
····

c
····l·

u

··
s
··

t

··

e

··

r

···

2

·····
·····

·

<:..... ..•······ ..
•·······

·
· ...

. •·

a 9

OJ
C:

�
bCD 4

d

Buffer

8

Interconn ect

d 8

OJ
C:

�
13 CD C
e

Buffer
------------------ J

Figure 2: A typical clustering approach used by system soft-
ware to map SNNs to neuromorphic hardware.

is first decomposed into smaller units with fewer pre-synaptic con-

nections before they are clustered using the approach illustrated in

Fig. 2 (see [11]).

Figure 3 illustrates the clusters 7 clusters of the LeNet Con-

volutional Neural Network (CNN) obtained using the clustering

technique of SpiNeMap.

Figure 3: The clusters generated from LeNet CNN.

Formally, a clustered SNN graph is defined as follows.

Definition 1. (Clustered SNN) A clustered SNNs GCSNN = (C, L)
is a directed graph consisting of a finite set C of clusters and a finite

set L of connections between these clusters.

Each cluster �� ∈ C is a tuple 〈�� (��),��� (��), � (��),� (��) 〉, where
�� (��) is the number of pre-synaptic neurons of the cluster, ��� (��)
is the number of post-synaptic neurons of the cluster, � (��) is the
number of spikes generated inside the cluster, and� (��) is the set
of synaptic weights of the cluster. Each link �� ∈ L of the graph has

a value ��� (��) attached to it representing the number of spikes

communicated on the link between the source and the destination

clusters.

The clusters of an SNN-based application are mapped to the tiles

of a neuromorphic hardware, where a tile consists of a neurosynap-

tic core, e.g., a crossbar.

Formally, a neuromorphic hardware is defined as follows.

Definition 2. (Neuromorphic Hardware)Aneuromorphic hard-

ware ��� = (T, I) is a directed graph consisting of a finite set T of tiles

and a finite set I of interconnect links.

Each tile consists of a crossbar to map neurons and synapses,

and input and output buffers to receive and send spikes over the in-

terconnect, respectively. A tile �� ∈ T is a tuple 〈�, ��� (��),���� (��) 〉,
where� is the dimension of a crossbar on the tile, i.e., the tile �� can

accommodate � pre-synaptic neurons, � post-synaptic neurons,

and �2
synaptic connections, ��� (��) is the input buffer size on the

tile, and ���� (��) is its output buffer size. Each interconnect link is

bidirectional, representing two-way communication between the

source and destination tiles with a fixed bandwidth �� .

When mapping the clusters to the tiles of the hardware, spikes

from a tile (i.e., the cluster mapped to the tile) are broadcasted

on the interconnect. The network interface (NI) logic on each tile

ensures the delivery of the spikes to the intended recipient neurons

mapped to these tiles.

To formalize the energy consumption, we consider the mapping

of a clustered SNN GCSNN = (C, L) to the neuromorphic hardware

��� = (T, I).
Mapping � : GCSNN = (C, L) → ��� = (T, I) is specified by a logical

matrix (�� �) ∈ {0, 1}|C|×|T| , where�� � is defined as

�� � =

{
1 if cluster�� ∈ C is mapped to tile�� ∈ T
0 otherwise

(1)

To simplify the discussion, we consider a neuromorphic hard-

ware to have as many tiles as clusters of a given application. The

energy formulation also holds when the tiles are time-multiplexed

among the clusters [64].

4 ENERGY MODELING
In this section, we provide a comprehensive energy model for neu-

romorphic hardware executing machine learning workloads. We

consider the following energy components.

4.1 Spike Energy
This is the total energy consumed on the tiles to generate all the

spikes for a given SNN application working on a representative

data.

Using the formalism of Section 3, the spike energy is

���� =
|C|−1∑
�=0

·
� (��)−1∑

�=0

��� (�, �), (2)

where
��� (�, �) is the energy of � th spike on tile�� . Since each cluster

is mapped to a tile of the hardware, the outer summation is for all

the clusters of an application, while the inner summation is for all

the spikes generated inside each cluster.
��� (�, �) comprises of two

components – the energy to generate a spike by a pre-synaptic

neuron (
������), which remains the same for all the tiles (ignoring

process variation for the moment), and the energy consumed on a

synaptic cell due to the flow of current (
������� (�, �)). Therefore,

��� (�, �) =
������ +
������� (�, �) . (3)

In all previous work, the energy per spike is typically assumed to

be constant. However, here we show this is not the case. In general,

the synaptic energy depends on the specific NVM used to model the

synaptic weights in a neurosynaptic core. We formulate this for the

Phase-Change Memory (PCM). The scope of this work is on the

inference phase, wherein a machine learning model is pre-trained

offline, and the trained model is programmed on the neuromorphic

C F ’ 2 1, M a y 1 1 – 1 3, 2 0 2 1, Virt u al C o nf er e n c e, It al y T wi s h a Titir s h a, S hi h a o S o n g, A d ar s h a B al aji, a n d A n u p D a s

h ar d w ar e. T h er ef or e, w e f o c us o n t h e e n er g y t o r e a d t h e s y n a pti c
w ei g hts st or e d i n t h e P C M c ells of a cr oss b ar.

T h e e n er g y c o ns u m e d i n pr o p a g ati n g c urr e nt t hr o u g h a P C M
c ell is gi v e n b y J o ul e H e ati n g [2 1 , 2 4 – 2 7 , 7 1]

�푒 �푠 �푛 �푎 �푝 �푠 �푒 = �퐼 2
�푝 �푟 �표 �푔 · �푅 �푠 �푛 �푎 �푝 �푠 �푒 + �푅 �푂 �푁 · �푡�푠 �푝 �푘 , (4)

w h er e �퐼�푝 �푟 �표 �푔 i s t h e c urr e nt g e n er at e d f or t h e s pi k e v olt a g e (≈ 5 0 �휇 �퐴),
�푅 �푠 �푛 �푎 �푝 �푠 �푒 i s t h e r esist a n c e of t h e P C M c ell, �푅 �푂 �푁 i s t h e O N r esist a n c e
of t h e a c c ess tr a nsist or c o n n e cti n g t h e P C M c ell a n d �푡�푠 �푝 �푘 i s t h e s pi k e
d ur ati o n (t y pi c all y a f e w ms). C o nsi d eri n g �푊 (�퐶 �푖) t o b e t h e s y n a pti c
w ei g hts of t h e cl ust er �퐶 �푖 , w hi c h ar e pr o gr a m m e d as c o n d u ct a n c es,
E q. 5 c a n b e writt e n as

�푒 �푠 �푛 �푎 �푝 �푠 �푒 (�푖, �푗) = �퐼 2
�푝 �푟 �표 �푔 · �푡�푠 �푝 �푘 · �푅 �푂 �푁 +

1

�푤 (�푖, �푗)
, (5)

w h er e �푤 (�푖, �푗) ∈ �푊 (�퐶 �푖) i s t h e c o n d u ct a n c e of t h e P C M c ell o n t h e
p at h of t h e �푗 t h s pi k e i n t h e cl ust er �퐶 �푖 .

Fi g ur e 4 s h o ws a si m pl e 2-i n p ut a n d 1- o ut p ut S N N. T h e n e ur o ns
ar e s h o w n as gr a y e d cir cl es, w hil e t h e s y n a pti c w ei g hts ar e s h o w n
o n e a c h c o n n e cti o n. T h e n u m b er o n a li n k r e pr es e nts t h e n u m b er
of s pi k es f or a gi v e n i n p ut.

Fi g u r e 4: E x a m pl e of c al c ul ati n g �퐸 �푠 �푝 �푘 f o r a si m pl e S N N.

T h e e n er g y f or t h e 5 s pi k es g e n er at e d fr o m t h e t o p pr e-s y n a pti c

n e ur o n = 5 · �푒 �푛 �푒 �푢 �푟 �표 �푛 + �퐼 2
�푝 �푟 �표 �푔 · �푡�푠 �푝 �푘 · �푅 �푂 �푁 + 1

�푤 1
. T h e e n er g y f or t h e 3

s pi k es fr o m t h e b ott o m pr e-s y n a pti c n e ur o n = 3 · �푒 �푛 �푒 �푢 �푟 �표 �푛 + �퐼 2
�푝 �푟 �표 �푔 · �푡�푠 �푝 �푘 · �푅 �푂 �푁 + 1

�푤 2
.

Fi n all y, t h e e n er g y f or t h e 2 s pi k es g e n er at e d fr o m t h e p ost-s y n a pti c
n e ur o n is 2 · �푒 �푛 �푒 �푢 �푟 �표 �푛 . T h er ef or e, t h e t ot al s pi k e e n er g y is

�퐸 �푠 �푝 �푘 = 5 · �푒 �푛 �푒 �푢 �푟 �표 �푛 + �퐼 2
�푝 �푟 �표 �푔 · �푡�푠 �푝 �푘 · �푅 �푂 �푁 +

1

�푤 1
+

3 · �푒 �푛 �푒 �푢 �푟 �표 �푛 + �퐼 2
�푝 �푟 �표 �푔 · �푡�푠 �푝 �푘 · �푅 �푂 �푁 +

1

�푤 2
+

2 · �푒 �푛 �푒 �푢 �푟 �표 �푛

Fr o m a cr oss b ar p ers p e cti v e, t h e p ar asiti c c o m p o n e nts o n t h e
r o ws a n d c ol u m ns cr e at e as y m m etr y i n c urr e nt pr o p a g ati n g t hr o u g h
di ff er e nt N V M c ells i n t h e cr oss b ar. Fi g ur e 5 s h o ws t h e c urr e nt v ari-
ati o n i n a 1 2 8 x 1 2 8 P C M cr oss b ar.

C o nsi d eri n g t h es e c urr e nt v ari ati o ns i n a cr oss b ar, t h e pr o gr a m-
mi n g c urr e nt �퐼�푝 �푟 �표 �푔 i s n ot a c o nst a nt v al u e f or e v er y s pi k e g e n er at e d
i n a cr oss b ar. I n f a ct, t h e pr o gr a m mi n g c urr e nt is hi g h er f or s pi k es
pr o p a g ati n g t hr o u g h a s y n a pti c c ell l o c at e d at t h e b ott o m l eft c or-
n er t h a n t hr o u g h a s y n a pti c c ell l o c at e d at t h e t o p ri g ht c or n er (s e e
Fi g. 5). T his is ill ustr at e d i n Fi g ur e 6 , w hi c h s h o ws t w o di ff er e nt
w a ys of m a p pi n g t h e S N N of Fi g ur e 6 a t o t h e cr oss b ar. F or Fi g ur e 6 c,
t h e pr o gr a m mi n g c urr e nt is hi g h er t h a n t h e m a p pi n g of Fi g ur e 6 b.

T h er ef or e, t h e s pi k e e n er g y f or a n S N N a p pli c ati o n o n a n e ur o-
m or p hi c h ar d w ar e is

�퐸 �푠 �푝 �푘 =

|C | −1

�푖 = 0

·

�푆 (�퐶 �푖) −1

�푗 = 0

�푒 �푛 �푒 �푢 �푟 �표 �푛 + �퐼 2
�푝 �푟 �표 �푔 (�푖, �푗) · �푡�푠 �푝 �푘 · �푅 �푂 �푁 +

1

�푤 (�푖, �푗)
(6)

0 3 2 6 4 9 6 1 2 8
P ost-s y n a pti c n e ur o ns

1 2 8

9 6

6 4

3 2

0

Pr
e-

sy
na

pt
ic

 n
eu

ro
ns

5 0

5 5

6 0

6 5

7 0

7 5

8 0

P
C

M
cu

rr
en

t
(

µ
A)

Fi g u r e 5: C u r r e nt m a p i n a 1 2 8 x 1 2 8 c r o s s b a r.

Fi g u r e 6: (a) A si m pl e s pi ki n g n e u r al n et w o r k, (b) M a p pi n g
of t h e n et w o r k t o a c r o s s b a r, (c) A di ff e r e nt m a p pi n g of t h e
n et w o r k t o t h e h a r d w a r e.

w h er e �퐼�푝 �푟 �표 �푔 (�푖, �푗) i s t h e c urr e nt of t h e �푗 t h s pi k e i n cr oss b ar �퐶 �푖 a n d
it d e p e n ds o n w h er e t h e c orr es p o n di n g s y n a pti c c o n n e cti o n is
m a p p e d wit hi n a cr oss b ar.

4. 2 C o m m u ni c ati o n E n e r g y

T his is t h e t ot al e n er g y c o ns u m e d b y all s pi k es o n t h e i nt er c o n n e ct
of a n e ur o m or p hi c h ar d w ar e f or a gi v e n S N N a p pli c ati o n w or ki n g
o n a r e pr es e nt ati v e d at a.

I n m a p pi n g cl ust ers t o til es, t h e i nt er- cl ust er s pi k es ar e t h e o n es
t h at ar e c o m m u ni c at e d o v er t h e i nt er c o n n e ct. Usi n g t h e f or m alis m
of S e cti o n 3 , t h e c o m m u ni c ati o n e n er g y is

�퐸 �푐 �표 �푚 �푚 =

|L | −1

�푘 = 0

�푆 �푝 �푘 (�퐿 �푘) · �푒 �푐 �표 �푚 �푚 (�퐿 �푘) (7)

w h er e �푒 �푐 �표 �푚 �푚 (�퐿 �푘) i s t h e e n er g y t o c o m m u ni c at e a s pi k e o n t h e li n k
b et w e e n t h e s o ur c e a n d d esti n ati o n cl ust ers of t h e li n k �퐿 �푘 ∈ L .
�푒 �푐 �표 �푚 �푚 (�퐿 �푘) d e p e n ds o n t h e h ar d w ar e ar c hit e ct ur e a n d h o w til es ar e
i nt er c o n n e ct e d. I n g e n er al,

�푒 �푐 �표 �푚 �푚 (�퐿 �푘) = �푒 �푠 �푤�푖 �푡 �푐 ℎ · (ℎ �푘 − 1) + �푒 �푤�푖 �푟 �푒 · ℎ �푘 , (8)

w h er e ℎ �푘 i s t h e h o p dist a n c e b et w e e n t h e s o ur c e a n d d esti n ati o n
til es of t h e c o n n e cti o n �퐿 �푘 , �푒 �푤�푖 �푟 �푒 i s t h e e n er g y c o ns u m e d o n t h e
i nt er c o n n e ct wir es, a n d �푒 �푠 �푤�푖 �푡 �푐 ℎ i s t h e e n er g y c o ns u m e d o n t h e
s wit c h [1 7 , 1 9 , 2 0 , 2 2 , 2 3 , 5 8]. I n t h e f oll o wi n g, w e c o nsi d er a m es h-
b as e d or g a ni z ati o n of til es wit h X- Y r o uti n g of s pi k es. F or t his
i nt er c o n n e ct ar c hit e ct ur e, t h e h o p c o u nt b et w e e n t w o til es is t h eir

On the Role of System Software in Energy Management of Neuromorphic Computing CF ’21, May 11–13, 2021, Virtual Conference, Italy

Manhattan Distance. Specifically, if the source cluster of the link

�� , represented as ��� (��), is placed on a tile located at coordi-

nate

(
���� (��), ���� (��)

)
, while the destination cluster, represented as

��� (��), is placed on a tile located at coordinate

(
���
 (��), ���
 (��)

)
,

then

ℎ� = ���ℎ������������

(
��� (��), ��� (��)

)
(9)

=
������� (��) − ���
 (��)

��� +
������� (��) − ���
 (��)

���

Figure 7 illustrates the placement of an example clustered SNN

to a mesh architecture. Cluster A in this example is placed at co-

ordinate (1,1), cluster B at (0,0), and cluster C at (2,2). As can be

seen from this figure, the hop distance between A and B is 2, be-

tween B and C is 4, and between C and A is 2. Therefore, the

communication energy for spikes communicated between A and B

= 3 ·
[

�
�
�ℎ +2∗

���

]
, that between B and C = 3 ·

[
3 ·
�
�
�ℎ +4∗

���

]
,

and that between A and C = 2 ·
[

�
�
�ℎ + 2 ∗

���

]
.

(a) Example clustered SNN. (b) Placement of the SNN to a mesh
architecture..

Figure 7: Example of calculation ����� for a clustered SNN
placed on a mesh architecture.

Therefore, the total communication energy is

����� = 3 ·
[

�
�
�ℎ + 2 ∗

���

]
+

3 ·
[
3 ·
�
�
�ℎ + 4 ∗

���

]
+

2 ·
[

�
�
�ℎ + 2 ∗

���

]

Overall, the communication energy for an SNN applicationmapped

to a neuromorphic hardware is

����� =
|L|−1∑
�=0

��� (��) ·
[

�
�
�ℎ · (ℎ� − 1) +

��� · ℎ�

]
(10)

4.3 Energy Dependencies and the Role of
System Software in Energy Consumption

From Equations 6 and 10, we can conclude that energy consumption

depends on 1) how an SNN model is partitioned into clusters (deter-

mines the number of neurons and synapses in each cluster), 2) how

the clusters are mapped to the neurosynaptic cores (determines the

hop distances), and 3) how the neurons and synapses of a cluster

are placed inside each core (determines the spikes propagation).

All these factors can be controlled via a system software such as

SpiNeMap [9] and DecomposeSNN [11].

Figure 8 compares SpiNeMap, which minimizes communication

on the interconnect and DecomposeSNN, which maximizes cross-

bar utilization for 10 machine learning applications (see our evalu-

ation methodology in Section 6).

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0

1

2

N
or

m
al

iz
ed

S
pi

ke
E

ne
rg

y

SpiNeMap DecomposeSNN

(a) Spike Energy (����) of SpiNeMap and DecomposeSNN.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0

1

2

N
or

m
al

iz
ed

C
om

m
un

ic
at

io
n

E
ne

rg
y

SpiNeMap DecomposeSNN

(b) Communication Energy (�����) of SpiNeMap and DecomposeSNN.

Figure 8: Role of system software in energy management of
neuromorphic computing.

We observe that SpiNeMap has 24% lower communication en-

ergy and 40% higher spike energy than DecomposeSNN. This is

because SpiNeMap explicitly minimizes spike communication on

the interconnect and therefore, has lower communication energy.

On the other hand, DecomposeSNN maximizes crossbar utilization

and therefore, generates fewer clusters than SpiNeMap, resulting in

lower spike energy. These results are consistent with the reported

results in the two corresponding publications.

To highlight the importance of neuron and synapse placement

within each crossbar (see our motivation example in Figure 6),

Figure 9 shows the variation between minimum and maximum

spike energy for SpiNeMap and DecomposeSNN considering 100

random placements of synapses of clusters to the crossbars of a

neuromorphic hardware.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0

10

20

30

V
ar

ia
ti

on
in

S
pi

ke
E

ne
rg

y
(%

)

SpiNeMap DecomposeSNN

Figure 9: Variation in spike energy due to different synapse
placement strategies on crossbars.

CF ’21, May 11–13, 2021, Virtual Conference, Italy Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das

Weobserve that the spike energy of SpiNeMap varies by 3.8% and

that of DecomposeSNN varies by 5.9% depending on how synapses

are placed on crossbars.

We conclude that the system software of a neuromorphic hard-

ware can play a key role in managing the energy consumption of

neuromorphic computing.

5 ENERGY-AWARE SYSTEM SOFTWARE
Using the motivation presented in Section 4.3, we now present our

energy-aware system software to map machine learning applica-

tions to neuromorphic hardware.

Figure 10 shows a neuromorphic system comprising of the ap-

plication layer, the system software layer, and the hardware layer.

The application layer at the top consists of the user space to run

machine learning applications. In this illustration we show the

execution of AlexNet for ImageNet classification. The hardware

layer at the bottom consists of the neuromorphic hardware such

as TrueNorth [32], Loihi [30], and DYNAPs [50]. At the middle is

the system software layer, which interacts with both the applica-

tion and hardware layers. The system software performs energy

optimization using the iterative approach shown to the right.

Figure 10: Our energy-aware system software.

The workflow of the system software involves clustering a ma-

chine learning application to generate clustered SNN graph. Next,

the clusters are mapped to the tiles of the hardware using a map-

ping approach. Finally, the clusters are placed to crossbars using the

placement step. Although the clustering step could potentially be

incorporated inside the iterative loop, we placed it outside to limit

the complexity of the design space exploration. In fact, clustering

of applications is an NP-hard problem as shown in SpiNeMap [9].

Our clustering approach uses the graph partitioning algorithm

of SpiNeMap, minimizing 1) inter-cluster communication (simi-

lar to SpiNeMap, and 2) maximizing cluster utilization (similar to

DecomposeSNN).

We now describe the iterative approach of energy minimiza-

tion starting from a clustered SNN using Algorithm 1. At the heart

of this algorithm is the CalculateEnergy function, which calcu-

lates the total energy consumption using Equations 6 and 10. The

AssignCluster function is a greedy heuristic to place a cluster

to a crossbar. For this purpose, we first sort (in descending order)

the synapses of a cluster in terms of their number of spikes. Next,

the synapses are allocated to the crossbars, ensuring that the most

activated one is placed towards the top right corner, where the

spike current is lower.

Algorithm 1: Place neuron and synapse to neuromorphic hard-

ware, minimizing the energy consumption.

Input:�
CSNS

,�
NH

Output:�
1 for � in�����
� do
2 �

init
= allocate clusters to tiles randomly;

3 AssignCluster();

4 �
init

= CalculateEnergy(�
init

);

5 for�� ,�� ∈ C do
6 � = �

init
;

7 Find�� ,�� such that��,� =��,� = 1 /* Find the tiles to which

�� and �� are mapped. */

8 Change� to set��,� =��,� = 1 and��,� =��,� = 0/* Swap the

tiles of �� and ��. */
9 AssignCluster();

10 � = CalculateEnergy(�)/* Calculate energy of the new

mapping. */
11 if � < �init then
12 �

init
= � and�

min
= �/* If energy reduces then

retain the new mapping. */
13 end
14 end
15 end
16 Return�

min

Algorithm 1 proceeds as follows. First, the clusters are randomly

allocated to tiles (line 2). Next, the energy consumption is computed

after assigning the synapses to the crossbars (lines 2-3). Then, for

every cluster pair, the algorithm swaps their tile and compute the

new energy (lines 6-10). If the energy improves, then the swapping

is retained and the algorithm proceeds to the next cluster pair (lines

11-13). The algorithm is iterated for �����
� iterations, each time

starting from a new random allocation of clusters (lines 1-15). The

minimum energy mapping is returned.

In this algorithm,�����
� is a user-defined parameter and is used

to explore the trade-offs between mapping time and the solution

quality (see Section 6).

6 EVALUATION
We evaluated 10 machine learning applications that are representa-

tive of three most commonly used neural network classes — con-

volutional neural network (CNN), multi-layer perceptron (MLP),

and recurrent neural network (RNN). These applications are sum-

marized in Table 1. We simulate these applications on an in-house

cycle-accurate neuromorphic hardware simulator. We model the

DYNAPs neuromorphic hardware [50] with the following configu-

rations.

Table 1: Evaluated applications.

Class Applications Synapses Neurons Topology Accuracy

CNN

LeNet [46] 282,936 20,602 CNN 85.1%

AlexNet [44] 38,730,222 230,443 CNN 90.7%

VGG16 [60] 99,080,704 554,059 CNN 69.8 %

HeartClass [4] 1,049,249 153,730 CNN 63.7%

MLP

DigitRecogMLP 79,400 884 FeedForward (784, 100, 10) 91.6%

EdgeDet [15] 114,057 6,120 FeedForward (4096, 1024, 1024, 1024) 100%

ImgSmooth [15] 9,025 4,096 FeedForward (4096, 1024) 100%

RNN

HeartEstm [16] 66,406 166 Recurrent Reservoir 100%

VisualPursuit [43] 163,880 205 Recurrent Reservoir 47.3%

DigitRecogSTDP [33] 11,442 567 Recurrent Reservoir 83.6%

On the Role of System Software in Energy Management of Neuromorphic Computing CF ’21, May 11–13, 2021, Virtual Conference, Italy

• A tiled array of 4 tiles, each with a 128x128 crossbar. There

are 65,536 synapses per crossbar.

• Spikes are digitized and communicated between cores through

a mesh routing network using the Address Event Representa-

tion (AER) protocol.

• Each synaptic element is a PCM cell implementing multi-bit

synapse.

Table 2 reports the hardware parameters of DYNAP-SE.

Table 2: Major simulation parameters extracted from [50]
and extrapolated for PCM technology.

Neuron technology 65nm CMOS

Synapse technology PCM

Supply voltage 1.0V

������� 50pJ at 30Hz spike frequency

�
�
�ℎ + 2 ∗

��� 147pJ

Switch bandwidth 1.8G. Events/s

6.1 Energy Consumption
Figure 11 reports the total energy consumption for each application

for the evaluated approaches normalized to SpiNeMap. We make

the following two observations.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0.5

1.0

1.5

T
ot

al
E

ne
rg

y
N

or
m

al
iz

ed
to

S
pi

N
eM

ap

SpiNeMap DecomposedSNN Proposed

Figure 11: Total energy normalized to SpiNeMap.

First, between SpiNeMap and DecomposeSNN, the energy con-

sumption of SpiNeMap is lower than DecomposeSNN for appli-

cations such as VGG16, HeartClass, and EdgeDet. For these ap-

plications, there is a significant number of spikes communicated

on the interconnect. Therefore, by reducing inter-cluster commu-

nication, SpiNeMap also reduces energy consumption. For other

applications such as LeNet and HeartEstm, the number of inter-

cluster spikes is less, so DecomposeSNN, which maximizes cluster

utilization improves on the total energy consumption. Second, com-

pared to both these approaches, the proposed approach results

in 20% lower energy than SpiNeMap and 24% lower energy than

DecomposeSNN. The improvement over both these approaches is

because the proposed approach explicitly incorporates both the

spike and communication energy in finding a suitable mapping of

clusters to the hardware.

To give further insight, Figure 12 reports the total energy, dis-

tributed into spike energy (����) and communication energy (�����).

We observe that communication energy constitute an average 58.8%

of the total energy consumption and it depends on the total spikes

generated in a workload.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0

50

100

150

E
ne

rg
y

D
is

tr
ib

ut
io

n
(%

)

Espk Ecomm

Figure 12: Total energy distributed into ���� and ����� .

6.2 Spike Latency and Model Performance
Figure 13 plots the spike latency for each evaluated applications

for the evaluated approaches normalized to SpiNeMap. We make

the following two observations.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0.5

1.0

1.5

S
pi

ke
L

at
en

cy
N

or
m

al
iz

ed
to

S
pi

N
eM

ap

SpiNeMap DecomposedSNN Proposed

Figure 13: Spike latency normalized to SpiNeMap.

First, SpiNeMap has the lowest latency. This is because SpiNeMap

minimizes spike congestion on the interconnect, which reduces

spike delay. DecomposeSNN has the highest latency because of its

optimization objective, which is to maximize utilization. Second, the

proposed approach minimizes spike communication to reduce the

communication energy. This also reduces the spike latency. Overall,

the spike latency of the proposed approach is only 6% higher than

SpiNeMap but 15% lower than DecomposeSNN. As described in [9],

spike latency can lead to a loss in model performance. Therefore,

by keeping the spike latency reasonably close to SpiNeMap, the

performance of the proposed approach is similar to that reported

in column 6 of Table 1.

6.3 Architecture Evaluation
Figure 14 report the energy consumption for three different hard-

ware configurations – with 128x128, 256x256, and 512x512 cross-

bars, for the evaluated applications. Results are normalized to the

energy consumption with 128x128 crossbars. We observe that the

energy consumption is 13% and 28% lower when using 256x256 and

512x512 crossbars compared to using 128x128 crossbars. Energy

consumption reduces when using larger crossbars because of the

reduction in the total number of spikes on the interconnect.

Le
N

et

A
le

xN
et

V
G

G
16

H
ea

rt
C

la
ss

D
ig

it
R

ec
og

M
LP

E
dg

eD
et

Im
gS

m
oo

th

H
ea

rt
E

st
m

V
is

ua
lP

ur
su

it
D

ig
it

R
ec

og
ST

D
P

AV
E

R
A

G
E

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

E
ne

rg
y

128x128 256x256 512x512

Figure 14: Energy consumption for different hardware con-
figurations.

CF ’21, May 11–13, 2021, Virtual Conference, Italy Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das

6.4 Solution Quality Evaluation
Table 3 reports the mapping time and the normalized energy ob-

tained for three different settings of the parameter 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 . We

observe that as𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is increased, the energy consumption re-

duces for all applications. This is because with the increase in the

number of iterations, Algorithm 1 is able to find a better solution.

However, the mapping time also increases. Finally, we observe that

increasing𝑀𝑎𝑥𝐼𝑡𝑒𝑟 from 100 to 1000 results in a significant increase

in mapping time with a minimal improvement of the total energy.

We conclude that setting 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 100 gives the best trade-off

in terms of mapping time and the solution quality. Users can use

this𝑀𝑎𝑥𝐼𝑡𝑒𝑟 parameter to set a limit on the time of their algorithm

by analyzing the complexity of their model against the ones we

evaluate (see Table 1).

Table 3: Mapping time and solution trade-off.

Application

MaxIter = 10 MaxIter = 100 MaxIter = 1000

Mapping Total Mapping Total Mapping Total

Time (sec) Energy Time (sec) Energy Time (sec) Energy

LeNet 75 1.13 321 1.0 2700 0.99

AlexNet 200 1.1 2189 1.0 12008 1.0

VGG16 241 1.06 2989 1.0 34300 1.0

HeartClass 116 1.16 1008 1.0 10178 1.03

DigitRecogMLP 10 1.17 160 1.0 1600 0.97

EdgeDet 25 1.15 200 1.0 1898 0.98

ImgSmooth 50 1.11 400 1.0 1940 0.99

HeartEstm 15 1.08 156 1.0 1344 0.97

VisualPursuit 30 1.0 324 1.0 3003 1.0

DigitRecogSTDP 15 1.07 164 1.0 1615 0.9

7 CONCLUSION
In this work, we provide a comprehensive energy model for exe-

cuting machine learning applications on neuromorphic hardware.

Using this model we show that the system software for neuro-

morphic hardware plays a critical role in energy management of

neuromorphic computing by controlling 1) how an SNN model is

partitioned into clusters, 2) how the clusters are mapped to the

neurosynaptic cores of the hardware, and 3) how the neurons and

synapses of a cluster are placed inside each core. We then propose

a heuristic to perform energy-aware application mapping to neu-

romorphic hardware, lowering the overall energy consumption.

Using this heuristic, we show that the energy consumption can

be reduced by an average 20% compared to a state-of-the-art for

typical machine learning applications.

8 ACKNOWLEDGMENTS
This work is supported by 1) the National Science Foundation

Award CCF-1937419 (RTML: Small: Design of System Software to

Facilitate Real-Time Neuromorphic Computing) and 2) the National

Science Foundation Faculty Early Career Development Award CCF-

1942697 (CAREER: Facilitating Dependable Neuromorphic Com-

puting: Vision, Architecture, and Impact on Programmability).

REFERENCES
[1] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz et al., “Cognitive com-

puting programming paradigm: A corelet language for composing networks of

neurosynaptic cores,” in IJCNN, 2013.

[2] A. Balaji and A. Das, “Compiling spiking neural networks to mitigate neuromor-

phic hardware constraints",” in IGSC Workshops, 2020.

[3] A. Balaji and A. Das, “A framework for the analysis of throughput-constraints of

snns on neuromorphic hardware,” in ISVLSI, 2019.

[4] A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma et al., “Power-accuracy trade-

offs for heartbeat classification on neural networks hardware,” Journal of Low

Power Electronics (JOLPE), 2018.

[5] A. Balaji, S. Song, A. Das, N. Dutt, J. Krichmar et al., “A framework to explore

workload-specific performance and lifetime trade-offs in neuromorphic comput-

ing,” CAL, 2019.

[6] A. Balaji, S. Ullah, A. Das, and A. Kumar, “Design methodology for embedded

approximate artificial neural networks,” in GLSVLSI, 2019.

[7] A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration of segmented

bus as scalable global interconnect for neuromorphic computing,” in GLSVLSI,

2019.

[8] A. Balaji, P. Adiraju, H. J. Kashyap, A. Das, J. L. Krichmar et al., “PyCARL: A

PyNN interface for hardware-software co-simulation of spiking neural network,”

in IJCNN, 2020.

[9] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’anna et al., “Mapping spiking neural

networks to neuromorphic hardware,” TVLSI, 2020.

[10] A. Balaji, T. Marty, A. Das, and F. Catthoor, “Run-time mapping of spiking neural

networks to neuromorphic hardware,” JSPS, 2020.

[11] A. Balaji, S. Song, A. Das, J. Krichmar, N. Dutt et al., “Enabling resource-aware

mapping of spiking neural networks via spatial decomposition,” ESL, 2020.

[12] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran et al.,

“Neurogrid: A mixed-analog-digital multichip system for large-scale neural simu-

lations,” Proceedings of the IEEE, 2014.

[13] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim et al., “Neuromorphic

computing using non-volatile memory,” Advances in Physics: X, 2017.

[14] F. Catthoor, S. Mitra, A. Das, and S. Schaafsma, “Very large-scale neuromorphic

systems for biological signal processing,” in CMOS Circuits for Biological Sensing

and Processing, 2018.

[15] T. Chou, H. Kashyap, J. Xing, S. Listopad, E. Rounds et al., “CARLsim 4: An

open source library for large scale, biologically detailed spiking neural network

simulation using heterogeneous clusters,” in IJCNN, 2018.

[16] A. Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R. Rajan et al., “Unsupervised

heart-rate estimation in wearables with Liquid states and a probabilistic readout,”

Neural Networks, 2018.

[17] A. Das and A. Kumar, “Fault-aware task re-mapping for throughput constrained

multimedia applications on NoC-based MPSoCs,” in RSP, 2012.

[18] A. Das and A. Kumar, “Dataflow-based mapping of spiking neural networks on

neuromorphic hardware,” in GLSVLSI, 2018.

[19] A. Das, A. Kumar, and B. Veeravalli, “Fault-tolerant network interface for spatial

division multiplexing based Network-on-Chip,” in ReCoSoC, 2012.

[20] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration energy

aware design space exploration for multicore systems with intermittent faults,”

in DATE, 2013.

[21] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven task mapping for lifetime

extension of networks-on-chip based multiprocessor systems,” in DATE, 2013.

[22] A. Das, A. K. Singh, and A. Kumar, “Energy-aware dynamic reconfiguration of

communication-centric applications for reliable MPSoCs,” in ReCoSoC, 2013.

[23] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration energy

aware task mapping for reliable multiprocessor systems,” FGCS, 2014.

[24] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware energy-reliability trade-

offs for mapping of throughput-constrained applications on multimedia MPSoCs,”

in DATE, 2014.

[25] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar et al., “Rein-

forcement learning-based inter-and intra-application thermal optimization for

lifetime improvement of multicore systems,” in DAC, 2014.

[26] A. Das, A. Kumar, and B. Veeravalli, “Reliability and energy-aware mapping and

scheduling of multimedia applications on multiprocessor systems,” TPDS, 2015.

[27] A. Das, B. M. Al-Hashimi, and G. V. Merrett, “Adaptive and hierarchical runtime

manager for energy-aware thermal management of embedded systems,” TECS,

2016.

[28] A. Das, F. Catthoor, and S. Schaafsma, “Heartbeat classification in wearables

using multi-layer perceptron and time-frequency joint distribution of ECG,” in

CHASE, 2018.

[29] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor et al., “Mapping of local and

global synapses on spiking neuromorphic hardware,” in DATE, 2018.

[30] M. Davies, N. Srinivasa, T. H. Lin et al., “Loihi: A neuromorphic manycore pro-

cessor with on-chip learning,” IEEE Micro, 2018.

[31] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller et al., “PyNN: a

common interface for neuronal network simulators,” Frontiers in Neuroinformatics,

2009.

[32] M. V. Debole, B. Taba, A. Amir et al., “TrueNorth: Accelerating from zero to 64

million neurons in 10 years,” Computer, 2019.

On the Role of System Software in Energy Management of Neuromorphic Computing CF ’21, May 11–13, 2021, Virtual Conference, Italy

[33] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-

timing-dependent plasticity,” Frontiers in Computational Neuroscience, 2015.

[34] J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig, “Pynest: a

convenient interface to the nest simulator,” Frontiers in Neuroinformatics, 2009.

[35] C. Frenkel, M. Lefebvre, J.-D. Legat, and D. Bol, “A 0.086-mm
2
12.7-pj/sop 64k-

synapse 256-neuron online-learning digital spiking neuromorphic processor in

28-nm CMOS,” TBCAS, 2018.

[36] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker project,”

Proceedings of the IEEE, 2014.

[37] F. Galluppi, X. Lagorce, E. Stromatias, M. Pfeiffer, L. A. Plana et al., “A framework

for plasticity implementation on the SpiNNaker neural architecture,” Frontiers in

Neuroscience, 2015.

[38] S. Ghosh-Dastidar and H. Adeli, “Improved spiking neural networks for EEG

classification and epilepsy and seizure detection,” Integrated Computer-Aided

Engineering, 2007.

[39] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in Neuroscience,

2009.

[40] M. L. Hines and N. T. Carnevale, “The NEURON simulation environment,” Neural

Computation, 1997.

[41] G. Indiveri, “A low-power adaptive integrate-and-fire neuron circuit,” in ISCAS,

2003.

[42] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang et al., “NEUTRAMS: Neural network trans-

formation and co-design under neuromorphic hardware constraints,” in MICRO,

2016.

[43] H. J. Kashyap, G. Detorakis, N. Dutt, J. L. Krichmar, and E. Neftci, “A recurrent

neural network based model of predictive smooth pursuit eye movement in

primates,” in IJCNN, 2018.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems (NeurIPS), 2012.

[45] S. Kundu, K. Basu, M. Sadi, T. Titirsha, S. Song et al., “Reliability analysis for

ML/AI hardware,” in VTS, 2021.

[46] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL: http://yann. lecun.

com/exdb/lenet, 2015.

[47] W. Maass, “Networks of spiking neurons: The third generation of neural network

models,” Neural Networks, 1997.

[48] A. Mallik, D. Garbin, A. Fantini, D. Rodopoulos, R. Degraeve et al., “Design-

technology co-optimization for oxrram-based synaptic processing unit,” in VLSIT,

2017.

[49] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, 1990.

[50] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture

with heterogeneous memory structures for dynamic neuromorphic asynchronous

processors (DYNAPs),” TBCAS, 2017.

[51] E. J. Moyer and A. Das, “Machine learning applications to DNA subsequence and

restriction site analysis,” in SPMB, 2020.

[52] H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller et al., “Novel ferro-

electric FET based synapse for neuromorphic systems,” in VLSIT, 2017.

[53] A. Natarajan and J. Hasler, “Hodgkin–huxley neuron and FPAA dynamics,” TB-

CAS, 2018.

[54] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza et al., “Braindrop:

A mixed-signal neuromorphic architecture with a dynamical systems-based

programming model,” Proceedings of the IEEE, 2018.

[55] A. Rubino, C. Livanelioglu, N. Qiao, M. Payvand, and G. Indiveri, “Ultra-low-

power FDSOI neural circuits for extreme-edge neuromorphic intelligence,” TCAS

I: Regular Papers, 2020.

[56] J. Schemmel, A. Grübl, S. Hartmann, A. Kononov, C. Mayr et al., “Live demon-

stration: A scaled-down version of the brainscales wafer-scale neuromorphic

system,” in ISCAS, 2012.

[57] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural

networks: VGG and residual architectures,” Frontiers in Neuroscience, 2019.

[58] R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi, “Adaptive energy

minimization of openmp parallel applications on many-core systems,” in PARMA-

DITAM, 2015.

[59] L. Shi, J. Pei, N. Deng, D. Wang, L. Deng et al., “Development of a neuromorphic

computing system,” in IEDM, 2015.

[60] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv, 2014.

[61] S. Song and A. Das, “Design methodologies for reliable and energy-efficient PCM

systems,” in IGSC Workshops, 2020.

[62] S. Song and A. Das, “A case for lifetime reliability-aware neuromorphic comput-

ing,” in MWSCAS, 2020.

[63] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Enabling and exploiting partition-

level parallelism (PALP) in phase change memories,” ACM Transactions on Em-

bedded Computing (TECS), 2019.

[64] S. Song, A. Balaji, A. Das, N. Kandasamy, and J. Shackleford, “Compiling spiking

neural networks to neuromorphic hardware,” in LCTES, 2020.

[65] S. Song, A. Das, and N. Kandasamy, “Exploiting inter- and intra-memory asym-

metries for data mapping in hybrid tiered-memories,” in ISMM, 2020.

[66] S. Song, A. Das, and N. Kandasamy, “Improving dependability of neuromorphic

computing with non-volatile memory,” in EDCC, 2020.

[67] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase change memory

performance with data content aware access,” in ISMM, 2020.

[68] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Aging-aware request scheduling

for non-volatile main memory,” in Asia and South Pacific Design Automation

Conference (ASP-DAC), 2021.

[69] T. Titirsha and A. Das, “Reliability-performance trade-offs in neuromorphic

computing,” in IGSC Workshops, 2020.

[70] T. Titirsha and A. Das, “Thermal-aware compilation of spiking neural networks

to neuromorphic hardware,” in LCPC, 2020.

[71] T. Titirsha, S. Song, A. Das, J. Krichmar, N. Dutt et al., “Endurance-aware mapping

of spiking neural networks to neuromorphic hardware,” TPDS, 2021.

[72] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler et al., “Spin-

transfer torque magnetic memory as a stochastic memristive synapse for neuro-

morphic systems,” TBCAS, 2015.

[73] S. Woo, J. Cho, D. Lim, Y.-S. Park, K. Cho et al., “Implementation and characteri-

zation of an integrate-and-fire neuron circuit using a silicon nanowire feedback

field-effect transistor,” TED, 2020.

[74] Z. Yang, Y. Huang, J. Zhu, and T. T. Ye, “Analog circuit implementation of LIF

and STDP models for spiking neural networks,” in GLSVLSI, 2020.

	Abstract
	1 Introduction
	2 Background
	3 Problem Formulation
	4 Energy Modeling
	4.1 Spike Energy
	4.2 Communication Energy
	4.3 Energy Dependencies and the Role of System Software in Energy Consumption

	5 Energy-Aware System Software
	6 Evaluation
	6.1 Energy Consumption
	6.2 Spike Latency and Model Performance
	6.3 Architecture Evaluation
	6.4 Solution Quality Evaluation

	7 Conclusion
	8 Acknowledgments
	References

