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ABSTRACT

Neuromorphic computing systems such as DYNAPs and Loihi have
recently been introduced to the computing community to improve
performance and energy efficiency of machine learning programs,
especially those that are implemented using Spiking Neural Net-
work (SNN). The role of a system software for neuromorphic sys-
tems is to cluster a large machine learning model (e.g., with many
neurons and synapses) and map these clusters to the computing
resources of the hardware. In this work, we formulate the energy
consumption of a neuromorphic hardware, considering the power
consumed by neurons and synapses, and the energy consumed in
communicating spikes on the interconnect. Based on such formula-
tion, we first evaluate the role of a system software in managing
the energy consumption of neuromorphic systems. Next, we for-
mulate a simple heuristic-based mapping approach to place the
neurons and synapses onto the computing resources to reduce en-
ergy consumption. We evaluate our approach with 10 machine
learning applications and demonstrate that the proposed mapping
approach leads to a significant reduction of energy consumption of
neuromorphic computing systems.
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1 INTRODUCTION

Neuromorphic computing describes the VLSI implementation of
the neuro-biological architecture of the central nervous system [6,
14, 49]. Neuromorphic systems are energy efficient in executing
Spiking Neural Networks (SNNs), which are considered as the third
generation of neural networks [47]. SNNs use spike-based compu-
tations and bio-inspired learning algorithms in solving machine
learning problems. In an SNN, pre-synaptic neurons communicate
information encoded in spike trains to post-synaptic neurons, via
the synapses. Performance of an SNN-based application can be
assessed in terms of the inter-spike interval (ISI coding) or mean
firing rate of the neurons (rate coding).

The hardware architecture of neuromorphic systems consists of
neurosynaptic cores, which are interconnected via a shared inter-
connect [7]. Figure 1 illustrates the representative hardware archi-
tecture of many recent neuromorphic systems such as Loihi [30],
TrueNorth [32], and DYNAPs [50].
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Figure 1: Hardware architecture of neuromorphic systems.

Neurosynaptic cores are the computing resources of a neuro-
morphic system. In many emerging architectures, a neurosynaptic
core is essentially a crossbar array that can accommodate a fixed
number of neurons and synapses. The role of a system software
for neuromorphic systems is therefore, to partition an SNN with
many neurons and synapses into clusters such that, the neurons and
synapses of each cluster can be mapped on to a neurosynaptic core
of the system. Therefore, the inter-cluster synapses are mapped on
the shared interconnect of the system.
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Recently, energy consumption of neuromorphic systems has
come into spot light, specifically due to their application in power-
constrained environments such as Embedded Systems and Internet-
of-Things (IoT). To this end, several low-power analog neuron de-
signs are proposed to implement neurosynaptic cores for neuro-
morphic systems [41, 53, 55, 73, 74]. Another research direction is
the shift from Static RAM (SRAM)-based synapse designs to imple-
mentations that use Non-Volatile Memory (NVM) — Phase Change
Memory (PCM) [13], Oxide-based Resistive RAM (OxRRAM) [48],
Ferroelectric RAM (FeRAM) [52], and Spin-Transfer Torque Mag-
netic or Spin-Orbit-Torque RAM (STT/ SoT-MRAM) [72].!

In addition to the hardware-oriented energy reduction tech-
niques, we argue that the system software also plays a pivotal role
in the energy consumption of neuromorphic systems. We show that
the energy consumption of a neuromorphic hardware depends on 1)
how an SNN model is partitioned into clusters, 2) how the clusters
are mapped to the neurosynaptic cores, and 3) how the neurons
and synapses of a cluster are placed inside each core. Following are
our key contributions.

e We formulate the energy consumption of a neuromorphic
hardware, considering the energy consumed inside each neu-
rosynaptic core and the energy consumed in communicating
spikes on the shared interconnect.

e We show that by not considering all the sources of energy
loss, existing system software approaches leave a significant
energy improvement opportunities.

e We propose a heuristic to minimize the total energy con-
sumption in neuromorphic computing without significantly
increasing the spike latency. This leads to only a very marginal
impact on performance.

e We evaluate our mapping approach with 10 machine learning
workloads on a cycle-accurate simulator of a state-of-the-art
neuromorphic hardware.

Results demonstrate that the current system software frame-
works for neuromorphic systems miss significant energy improve-
ment opportunities. By explicitly incorporating energy consump-
tion of different hardware units, the proposed mapping approach
significantly minimizes the energy consumption of neuromorphic
systems.

2 BACKGROUND

There are many recent initiatives to map machine learning work-
loads to neuromorphic hardware. PACMAN [37] is used to map
SNN s to SpiNNaker hardware [36]. Corelet [1] is used to map work-
loads to TrueNorth [32]. NEUTRAM [42] is a mapping approach for
digital neuromorphic chips such as TIANJI [59]. PyNN [31], which
started as a front-end to many back-end SNN simulators such as
Brian [39], NEURON [40], and NEST [34], can now map SNN ap-
plications to many neuromorphic hardware such as Loihi [30] and
Neurogrid [12]. A recent extension of PyNN, called PyCARL [8],
can simulate SNN applications using the back-end CARLsim simu-
lator [15], allowing mapping of these applications to the DYNAPs

!Beside neuromorphic computing, some of these memristor technologies are also
used as main memory in conventional computers to improve performance and energy
efficiency [61, 63, 65, 67, 68].
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neuromorphic hardware [50]. There are also other propritary ap-
proaches to mapping SNN applications to emerging neuromorphic
chips such as BrainScaleS [56], Braindrop [54], and ODIN [35].

DecomposedSNN [11] uses spatial decomposition technique
to unroll each neuron with many fanin connections into smaller
atomic units that are connected sequentially. This allows to densely
pack each crossbar in a neuromorphic hardware leading to a sig-
nificant improvement of resource utilization and a reduction of
hardware area overhead. PSOPART [29] and SpiNeMap [9] are
mapping approaches that minimize spike communication energy
on the shared interconnect by lowering the spike volume and spike
latency, respectively. SPINERTM [10] is proposed to remap SNN
applications to neuromorphic hardware at tun-time by monitoring
the performance degradation. DFSynthesizer [64] uses data flow
models to analyze performance of SNN workloads on crossbar-
based neuromorphic hardware. There are also other dataflow-based
technique reported in literature [2, 3, 18]. These approaches are
demonstrated with many SNN applications, such as the liquid state
machine (LSM)-based heart-rate estimation [16]; spiking ResNet
architecture for ImageNet classification [57]; deep learning architec-
ture for DNA sequence analysis [51]; heart-rate classification using
spiking CNN architecture using ECG data [4, 28]; lateral inhibition-
based digit recognition [33]; recurrent architecture-based predictive
visual pursuit [43]; spiking architecture for seizure classification
using EEG data [38]; among others.

RENEU [66] is a recent technique proposed to map SNN applica-
tions to hardware improving the circuit aging of the peripheral cir-
cuitry in crossbars, which is caused due to their high-voltage expo-
sure. There are also other approaches targeting circuit aging [5, 62].
ESPINE [71] is an approach to map SNN applications to neuro-
morphic hardware, improving the endurance of its Non-Volatile
Memory synapses. There are also other mapping approaches that
target temperature optimization [70] and releiability-performance
trade-offs [45, 69]. We compare our Hill Climbing approach against
PyCARL and SpiNeMap, and found it to perform significantly better
in terms of energy consumption.

3 PROBLEM FORMULATION

Unlike system software for conventional computers (e.g., the Oper-
ating System), the role of the system software for neuromorphic
hardware is to cluster a machine learning model and map the clus-
ters onto the crossbars of the neuromorphic hardware. Figure 2
illustrates the mapping concept using an example SNN shown in
(@). The number on a link represents the average number of spikes
communicated between the source and destination neurons for a
representative training data. We consider the mapping of this SNN
to a hardware with 2X 2 crossbars. Since a crossbar in this hardware
can only accommodate a maximum of 2 pre-synaptic connections,
we partition the SNN of (@) into two clusters (shown in two differ-
ent colors) in (). These clusters can then be mapped to the two
crossbars as shown in (), with an average 8 spikes communicated
between the crossbars.

In many neuromorphic applications, the number of pre-synaptic
connections per neuron can well exceed the crossbar input limit
(which is typically 128 or 256). For those applications, each neuron
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Figure 2: A typical clustering approach used by system soft-
ware to map SNNs to neuromorphic hardware.

is first decomposed into smaller units with fewer pre-synaptic con-
nections before they are clustered using the approach illustrated in
Fig. 2 (see [11]).

Figure 3 illustrates the clusters 7 clusters of the LeNet Con-
volutional Neural Network (CNN) obtained using the clustering
technique of SpiNeMap.

Figure 3: The clusters generated from LeNet CNN.
Formally, a clustered SNN graph is defined as follows.

DEFINITION 1. (CLUSTERED SNN) A clustered SNNs Gesnn = (C, L)
is a directed graph consisting of a finite set C of clusters and a finite
set L of connections between these clusters.

Each cluster C; € C is a tuple (In(C;), Out(C;), S(C;), W(C;) ), where
In(C;) is the number of pre-synaptic neurons of the cluster, Out(C;)
is the number of post-synaptic neurons of the cluster, S(¢;) is the
number of spikes generated inside the cluster, and w(¢;) is the set
of synaptic weights of the cluster. Each link L; € L of the graph has
a value Spk(L;) attached to it representing the number of spikes
communicated on the link between the source and the destination
clusters.

The clusters of an SNN-based application are mapped to the tiles
of a neuromorphic hardware, where a tile consists of a neurosynap-
tic core, e.g., a crossbar.

Formally, a neuromorphic hardware is defined as follows.

DEFINITION 2. (NEUROMORPHIC HARDWARE) A neuromorphic hard-
ware Gy = (T,1) is a directed graph consisting of a finite set T of tiles
and a finite set I of interconnect links.
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Each tile consists of a crossbar to map neurons and synapses,
and input and output buffers to receive and send spikes over the in-
terconnect, respectively. A tile T; € T is a tuple (M, InB(T;), OutB(T;)),
where M is the dimension of a crossbar on the tile, i.e., the tile T; can
accommodate M pre-synaptic neurons, M post-synaptic neurons,
and M? synaptic connections, InB(T;) is the input buffer size on the
tile, and OutB(T;) is its output buffer size. Each interconnect link is
bidirectional, representing two-way communication between the
source and destination tiles with a fixed bandwidth Bw.

When mapping the clusters to the tiles of the hardware, spikes
from a tile (i.e., the cluster mapped to the tile) are broadcasted
on the interconnect. The network interface (NI) logic on each tile
ensures the delivery of the spikes to the intended recipient neurons
mapped to these tiles.

To formalize the energy consumption, we consider the mapping
of a clustered SNN Gesyy = (C,L) to the neuromorphic hardware
Gnu = (T,D).

Mapping M : Gesan = (G, L) — Gy = (T,1) is specified by a logical
matrix (m;;) € {0, 1}/XITl where m;; is defined as

1 if cluster C; € C is mapped to tile T; € T

mi; = .
7 0 otherwise

()

To simplify the discussion, we consider a neuromorphic hard-
ware to have as many tiles as clusters of a given application. The
energy formulation also holds when the tiles are time-multiplexed
among the clusters [64].

4 ENERGY MODELING

In this section, we provide a comprehensive energy model for neu-
romorphic hardware executing machine learning workloads. We
consider the following energy components.

4.1 Spike Energy

This is the total energy consumed on the tiles to generate all the
spikes for a given SNN application working on a representative
data.

Using the formalism of Section 3, the spike energy is

ICl-1 S(Cj)-1

Espk = Z :

=0 J=0

espk(i’ 7> @)

where e, (i, j) is the energy of j™ spike on tile ;. Since each cluster
is mapped to a tile of the hardware, the outer summation is for all
the clusters of an application, while the inner summation is for all
the spikes generated inside each cluster. e, (i, j) comprises of two
components — the energy to generate a spike by a pre-synaptic
neuron (eneuron), Which remains the same for all the tiles (ignoring
process variation for the moment), and the energy consumed on a
synaptic cell due to the flow of current (esynapse (i, j)). Therefore,

€spk (i, j) = eneuron + €synapse (i, 7). 3)

In all previous work, the energy per spike is typically assumed to
be constant. However, here we show this is not the case. In general,
the synaptic energy depends on the specific NVM used to model the
synaptic weights in a neurosynaptic core. We formulate this for the
Phase-Change Memory (PCM). The scope of this work is on the
inference phase, wherein a machine learning model is pre-trained
offline, and the trained model is programmed on the neuromorphic
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hardware. Therefore, we focus on the energy to read the synaptic
weights stored in the PCM cells of a crossbar.

The energy consumed in propagating current through a PCM
cell is given by Joule Heating [21, 24-27, 71]

tagnapse = lprag - | Rignapse + Row | - Laph, (4)

where lprag is the current generated for the spike voltage (= so0p4),
Ry ynapse i5 the resistance of the PCM cell, Ry, is the ON resistance
of the access transistor connecting the PCM cell and «, ;. is the spike
duration (typically a few ms). Considering w () to be the synaptic
weights of the cluster «;, which are programmed as conductances,
Eq. 5 can be written as

Euynapse (L ) = F;rog - bapk - [RDN + ﬁ] a (5}
where wii, j) € Wic;) is the conductance of the PCM cell on the
path of the ;% spike in the cluster c;.

Figure 4 shows a simple 2-input and 1-output SNN. The neurons
are shown as grayed circles, while the synaptic weights are shown
on each connection. The number on a link represents the number
of spikes for a given input.

5

g2
W

3
Figure 4: Example of calculating F.. for a simple SNN.
The energy for the 5 spikes generated from the top pre-synaptic
NEUron = 5 - I"“‘"“" +1, 0 tapie {Rgﬂ +ﬁ:|| The energy for the 3
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Figure &: (a) A simple spiking neural network, (b) Mapping
of the network to a crossbar, (c) A different mapping of the
network to the hardware.

spikes from the bottom pre-synaptic neuron = S-Iemw. + 15 ag - Taph - {R,m— + %H

Finally, the energy for the 2 spikes generated from the post-synaptic
DEUron is 2 - esewron. Therefore, the total spike energy is

+

-
Espk = 5-|emrM+I:,@-:,g-[RaN+;}

3. +

'
Eneuron +grag - tapk - [RDN + E}

2 - Eppuron

From a crossbar perspective, the parasitic components on the
rows and columns create asymmetry in current propagating through
different NVM cells in the crossbar. Figure 5 shows the current vari-
ation in a 128x128 PCM crossbar.

Considering these current variations in a crossbar, the program-
ming current Ipray is not a constant value for every spike generated
in a crossbar. In fact, the programming current is higher for spikes
propagating through a synaptic cell located at the bottom left cor-
ner than through a synaptic cell located at the top right corner (see
Fig. 5). This is illustrated in Figure 6, which shows two different
ways of mapping the SNN of Figure 6a to the crossbar. For Figure 6c,
the programming current is higher than the mapping of Figure sb.

Therefore, the spike energy for an SNN application on a neuro-
morphic hardware is
Icl-1 S(cg)-1

Espk =

1
fwm+¢rogtlf}'r:pk'{hv+m]‘ (&)

E ]

where Ipragii j) is the current of the j* spike in crossbar c; and
it depends on where the corresponding synaptic connection is
mapped within a crossbar.

4.2 Communication Energy

This is the total energy consumed by all spikes on the interconnect
of a neuromorphic hardware for a given SNN application working
on a representative data.

In mapping clusters to tiles, the inter-cluster spikes are the ones
that are communicated over the interconnect. Using the formalism
of Section 3, the communication energy is

L2
Ecomm = ; Spk(Ly ) - econm(Li) @

where ¢.,pm(Ls) is the energy to communicate a spike on the link
between the source and destination clusters of the link i « L.
ecommiLi) depends on the hardware architecture and how tiles are
interconnected. In general,

eeomm(Li) = eswireh - (ke — 1) + wire - ik, (8)
where k;, is the hop distance between the source and destination
tiles of the connection Li, ewire is the energy consumed on the
interconnect wires, and e;wien is the energy consumed on the
switch [17, 19, 20, 22, 23, 58]. In the following, we consider a mesh-
based organization of tiles with X-¥Y routing of spikes. For this
interconnect architecture, the hop count between two tiles is their



On the Role of System Software in Energy Management of Neuromorphic Computing

Manhattan Distance. Specifically, if the source cluster of the link
Ly, represented as Src(Ly), is placed on a tile located at coordi-
nate (xm»(Lk), ysrc(Lk)), while the destination cluster, represented as

Dst(Ly), is placed on a tile located at coordinate (dez(Lk), yds:(Lk)),
then

hi ManhattanDistance(Src(Lk),Dst(Lk)) 9)

Xsrc(Lk) = Xdse (Lk)‘ +|Ysre (Lk) = Ydse (Lk))

Figure 7 illustrates the placement of an example clustered SNN
to a mesh architecture. Cluster A in this example is placed at co-
ordinate (1,1), cluster B at (0,0), and cluster C at (2,2). As can be
seen from this figure, the hop distance between A and B is 2, be-
tween B and C is 4, and between C and A is 2. Therefore, the

communication energy for spikes communicated between A and B
=3 [esw,-,ch +2 ewi,e], that between Band C = 3- [3 “€switch +4* ewire]s

and that between AandC=2- [eswitch +2% em—,e].

B
s il s | sJ
3 LS el pe—
A |
e B s——]
& /2 c |
5] (=] ="
(a) Example clustered SNN. (b) Placement of the SNN to a mesh
architecture..

Figure 7: Example of calculation E ., for a clustered SNN
placed on a mesh architecture.

Therefore, the total communication energy is

Ecomm = 3- [eswitch +2x ewire] +
3 [3 * €switch T4 % ewireJ +

2 [eswitch +2 % ewirel

Overall, the communication energy for an SNN application mapped
to a neuromorphic hardware is

L1

Ecomm = Z Spk(Lg) - [eswitch “(he = 1) + ewire - hkl (10)
k=0

4.3 Energy Dependencies and the Role of
System Software in Energy Consumption

From Equations 6 and 10, we can conclude that energy consumption
depends on 1) how an SNN model is partitioned into clusters (deter-
mines the number of neurons and synapses in each cluster), 2) how
the clusters are mapped to the neurosynaptic cores (determines the
hop distances), and 3) how the neurons and synapses of a cluster
are placed inside each core (determines the spikes propagation).
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All these factors can be controlled via a system software such as
SpiNeMap [9] and DecomposeSNN [11].

Figure 8 compares SpiNeMap, which minimizes communication
on the interconnect and DecomposeSNN, which maximizes cross-
bar utilization for 10 machine learning applications (see our evalu-
ation methodology in Section 6).

[ SpiNeMap [EEE DecomposeSNN

Normalized
Spike Energy

(a) Spike Energy (Espk) of SpiNeMap and DecomposeSNN.

[ SpiNeMap [ DecomposeSNN

Normalized
Communication
Energy

(b) Communication Energy (Ecomm) of SpiNeMap and DecomposeSNN.

Figure 8: Role of system software in energy management of
neuromorphic computing.

We observe that SpiNeMap has 24% lower communication en-
ergy and 40% higher spike energy than DecomposeSNN. This is
because SpiNeMap explicitly minimizes spike communication on
the interconnect and therefore, has lower communication energy.
On the other hand, DecomposeSNN maximizes crossbar utilization
and therefore, generates fewer clusters than SpiNeMap, resulting in
lower spike energy. These results are consistent with the reported
results in the two corresponding publications.

To highlight the importance of neuron and synapse placement
within each crossbar (see our motivation example in Figure 6),
Figure 9 shows the variation between minimum and maximum
spike energy for SpiNeMap and DecomposeSNN considering 100
random placements of synapses of clusters to the crossbars of a
neuromorphic hardware.

w
S

[ SpiNeMap [ DecomposeSNN

o
S

Variation in
Spike Energy (%)

S

Figure 9: Variation in spike energy due to different synapse
placement strategies on crossbars.
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We observe that the spike energy of SpiNeMap varies by 3.8% and
that of DecomposeSNN varies by 5.9% depending on how synapses
are placed on crossbars.

We conclude that the system software of a neuromorphic hard-
ware can play a key role in managing the energy consumption of
neuromorphic computing.

5 ENERGY-AWARE SYSTEM SOFTWARE

Using the motivation presented in Section 4.3, we now present our
energy-aware system software to map machine learning applica-
tions to neuromorphic hardware.

Figure 10 shows a neuromorphic system comprising of the ap-
plication layer, the system software layer, and the hardware layer.
The application layer at the top consists of the user space to run
machine learning applications. In this illustration we show the
execution of AlexNet for ImageNet classification. The hardware
layer at the bottom consists of the neuromorphic hardware such
as TrueNorth [32], Loihi [30], and DYNAPs [50]. At the middle is
the system software layer, which interacts with both the applica-
tion and hardware layers. The system software performs energy
optimization using the iterative approach shown to the right.

SNN-Based
Application

LN

Application

Clustered
SNN

Mapping
System Software ppng

Cluster-to-Tile

iterative

Neuromorphic Hardware

_ITrueNorth |_| Loihi |_| DYNAPs L

Cluster Placement

l <I<I<I I<I4 l

synapse to
.
crossbar

ompute
Energy

Figure 10: Our energy-aware system software.

The workflow of the system software involves clustering a ma-
chine learning application to generate clustered SNN graph. Next,
the clusters are mapped to the tiles of the hardware using a map-
ping approach. Finally, the clusters are placed to crossbars using the
placement step. Although the clustering step could potentially be
incorporated inside the iterative loop, we placed it outside to limit
the complexity of the design space exploration. In fact, clustering
of applications is an NP-hard problem as shown in SpiNeMap [9].
Our clustering approach uses the graph partitioning algorithm
of SpiNeMap, minimizing 1) inter-cluster communication (simi-
lar to SpiNeMap, and 2) maximizing cluster utilization (similar to
DecomposeSNN).

We now describe the iterative approach of energy minimiza-
tion starting from a clustered SNN using Algorithm 1. At the heart
of this algorithm is the CalculateEnergy function, which calcu-
lates the total energy consumption using Equations 6 and 10. The
AssignCluster function is a greedy heuristic to place a cluster
to a crossbar. For this purpose, we first sort (in descending order)
the synapses of a cluster in terms of their number of spikes. Next,
the synapses are allocated to the crossbars, ensuring that the most
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activated one is placed towards the top right corner, where the
spike current is lower.

Algorithm 1: Place neuron and synapse to neuromorphic hard-
ware, minimizing the energy consumption.

Input: Gesns, GNH
Output: M
1 foriin MaxIter do

2 Mipit = allocate clusters to tiles randomly;
3 AssignCluster();
1 Ejpnjt = CalculateEnergy(Mipit);
5 forCX,Cy € Cdo
6 M = Minit:
7 Find T;, Tj such that my,; = my,j =1 /% Find the tiles to which
Cx and C, are mapped. */
8 Change M to set my. j = my; = Land myx; = my,; = 0/* Swap the
tiles of Cx and Cy. */
9 AssignCluster();
10 E = CalculateEnergy(M)/* Calculate energy of the new
mapping. */
11 if E < Ejpj; then
12 Minit = M and My, = M/* If energy reduces then
retain the new mapping. */
13 end
14 end
15 end

16 Return Mpin

Algorithm 1 proceeds as follows. First, the clusters are randomly
allocated to tiles (line 2). Next, the energy consumption is computed
after assigning the synapses to the crossbars (lines 2-3). Then, for
every cluster pair, the algorithm swaps their tile and compute the
new energy (lines 6-10). If the energy improves, then the swapping
is retained and the algorithm proceeds to the next cluster pair (lines
11-13). The algorithm is iterated for MaxIter iterations, each time
starting from a new random allocation of clusters (lines 1-15). The
minimum energy mapping is returned.

In this algorithm, MaxIter is a user-defined parameter and is used
to explore the trade-offs between mapping time and the solution
quality (see Section 6).

6 EVALUATION

We evaluated 10 machine learning applications that are representa-
tive of three most commonly used neural network classes — con-
volutional neural network (CNN), multi-layer perceptron (MLP),
and recurrent neural network (RNN). These applications are sum-
marized in Table 1. We simulate these applications on an in-house
cycle-accurate neuromorphic hardware simulator. We model the
DYNAPs neuromorphic hardware [50] with the following configu-
rations.

Table 1: Evaluated applications.

Class Applications Synapses Neurons Topology Accuracy
LeNet [46] 282,936 20,602 CNN 85.1%
AlexNet [44] 38,730,222 230,443 CNN 90.7%
CNN VGG16 [60] 99,080,704 554,059 CNN 69.8 %
HeartClass [4] 1,049,249 153,730 CNN 63.7%
DigitRecogMLP 79,400 884 FeedForward (784, 100, 10) 91.6%
MLP EdgeDet [15] 114,057 6,120 FeedForward (4096, 1024, 1024, 1024) 100%
ImgSmooth [15] 9,025 4,096  FeedForward (4096, 1024) 100%
HeartEstm [16] 66,406 166 Recurrent Reservoir 100%
RNN  VisualPursuit [43] 163,880 205 Recurrent Reservoir 47.3%
DigitRecogSTDP [33] | 11,442 567 Recurrent Reservoir 83.6%
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o A tiled array of 4 tiles, each with a 128x128 crossbar. There
are 65,536 synapses per crossbar.

o Spikes are digitized and communicated between cores through
a mesh routing network using the Address Event Representa-
tion (AER) protocol.

e Each synaptic element is a PCM cell implementing multi-bit
synapse.

Table 2 reports the hardware parameters of DYNAP-SE.

Table 2: Major simulation parameters extracted from [50]
and extrapolated for PCM technology.

Neuron technology 65nm CMOS

Synapse technology PCM

Supply voltage 1.0V

Eneuron 50p]J at 30Hz spike frequency
eswitch * 2 * ewire 147p]

Switch bandwidth 1.8G. Events/s

6.1 Energy Consumption

Figure 11 reports the total energy consumption for each application
for the evaluated approaches normalized to SpiNeMap. We make
the following two observations.

I Proposed

[ SpiNeMap

[ DecomposedSNN

Total Energy
Normalized to
SpiNeMap

Figure 11: Total energy normalized to SpiNeMap.

First, between SpiNeMap and DecomposeSNN, the energy con-
sumption of SpiNeMap is lower than DecomposeSNN for appli-
cations such as VGG16, HeartClass, and EdgeDet. For these ap-
plications, there is a significant number of spikes communicated
on the interconnect. Therefore, by reducing inter-cluster commu-
nication, SpiNeMap also reduces energy consumption. For other
applications such as LeNet and HeartEstm, the number of inter-
cluster spikes is less, so DecomposeSNN, which maximizes cluster
utilization improves on the total energy consumption. Second, com-
pared to both these approaches, the proposed approach results
in 20% lower energy than SpiNeMap and 24% lower energy than
DecomposeSNN. The improvement over both these approaches is
because the proposed approach explicitly incorporates both the
spike and communication energy in finding a suitable mapping of
clusters to the hardware.

To give further insight, Figure 12 reports the total energy, dis-
tributed into spike energy (E;,«) and communication energy (Ecomm)-
We observe that communication energy constitute an average 58.8%
of the total energy consumption and it depends on the total spikes
generated in a workload.
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Figure 12: Total energy distributed into Espk and Ecomm-

6.2 Spike Latency and Model Performance

Figure 13 plots the spike latency for each evaluated applications
for the evaluated approaches normalized to SpiNeMap. We make
the following two observations.

1 SpiNeMap

[ DecomposedSNN I Proposed

—
o

Spike Latency
Normalized to
SpiNeMap

Figure 13: Spike latency normalized to SpiNeMap.

First, SpiNeMap has the lowest latency. This is because SpiNeMap
minimizes spike congestion on the interconnect, which reduces
spike delay. DecomposeSNN has the highest latency because of its
optimization objective, which is to maximize utilization. Second, the
proposed approach minimizes spike communication to reduce the
communication energy. This also reduces the spike latency. Overall,
the spike latency of the proposed approach is only 6% higher than
SpiNeMap but 15% lower than DecomposeSNN. As described in [9],
spike latency can lead to a loss in model performance. Therefore,
by keeping the spike latency reasonably close to SpiNeMap, the
performance of the proposed approach is similar to that reported
in column 6 of Table 1.

6.3 Architecture Evaluation

Figure 14 report the energy consumption for three different hard-
ware configurations — with 128x128, 256x256, and 512x512 cross-
bars, for the evaluated applications. Results are normalized to the
energy consumption with 128x128 crossbars. We observe that the
energy consumption is 13% and 28% lower when using 256x256 and
512x512 crossbars compared to using 128x128 crossbars. Energy
consumption reduces when using larger crossbars because of the
reduction in the total number of spikes on the interconnect.

o

[ 128x128

[ 256x256 Il 512x512

Normalized Energy
o - =

Figure 14: Energy consumption for different hardware con-
figurations.
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6.4 Solution Quality Evaluation

Table 3 reports the mapping time and the normalized energy ob-
tained for three different settings of the parameter MaxIter. We
observe that as MaxlIter is increased, the energy consumption re-
duces for all applications. This is because with the increase in the
number of iterations, Algorithm 1 is able to find a better solution.
However, the mapping time also increases. Finally, we observe that
increasing MaxIter from 100 to 1000 results in a significant increase
in mapping time with a minimal improvement of the total energy.
We conclude that setting MaxIter = 100 gives the best trade-off
in terms of mapping time and the solution quality. Users can use
this MaxIter parameter to set a limit on the time of their algorithm
by analyzing the complexity of their model against the ones we
evaluate (see Table 1).

Table 3: Mapping time and solution trade-off.

MaxIter = 10 MaxlIter = 100 MaxIter = 1000
Application | Mapping | Total | Mapping | Total | Mapping | Total
Time (sec)|Energy | Time (sec) |[Energy | Time (sec)|Energy
LeNet 75 113 321 1.0 2700 0.99
AlexNet 200 1.1 2189 1.0 12008 1.0
VGG16 241 1.06 2989 1.0 34300 1.0
HeartClass 116 1.16 1008 1.0 10178 1.03
DigitRecogMLP 10 1.17 160 1.0 1600 0.97
EdgeDet 25 1.15 200 1.0 1898 0.98
ImgSmooth 50 111 400 1.0 1940 0.99
HeartEstm 15 1.08 156 1.0 1344 0.97
VisualPursuit 30 1.0 324 1.0 3003 1.0
DigitRecogSTDP 15 1.07 164 1.0 1615 0.9

7 CONCLUSION

In this work, we provide a comprehensive energy model for exe-
cuting machine learning applications on neuromorphic hardware.
Using this model we show that the system software for neuro-
morphic hardware plays a critical role in energy management of
neuromorphic computing by controlling 1) how an SNN model is
partitioned into clusters, 2) how the clusters are mapped to the
neurosynaptic cores of the hardware, and 3) how the neurons and
synapses of a cluster are placed inside each core. We then propose
a heuristic to perform energy-aware application mapping to neu-
romorphic hardware, lowering the overall energy consumption.
Using this heuristic, we show that the energy consumption can
be reduced by an average 20% compared to a state-of-the-art for
typical machine learning applications.
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