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Abstract—1 Approximate computing (AC) techniques bring in
an alternative way to improve energy efficiency for computing
systems, at the cost of acceptable reduction on accuracy. Unfor-
tunately, recent literature indicates that approximate computing
systems could be vulnerable to new security threats. Approxima-
tion mechanisms maybe leveraged to introduce more errors than
the level that the AC systems can tolerate. This work analyzes
the existing metrics for accuracy from attack detection point of
view. A differential metric is proposed to enlarge the Trojan
induced difference on accuracy, delay and power, thus easing
Trojan detection. Furthermore, this work proposes a unique
attack detection method for AC systems to reduce false negative
rate on Trojan detection. Our case study shows that the proposed
method can reduce the false negative rate by 93%.

I. INTRODUCTION

Approximate Computing (AC) techniques are new methods
that trade off accuracy for improved performance and energy
efficiency. AC has great potential in the era of big data,
especially in the applications of image processing, audio
translation, and artificial neural network [1], [2], where the
slightly degraded accuracy can be tolerated. For instance, the
audio signal does not need exact translation since most humans
are not sensitive to the sound beyond the range of 20 Hz to
20 kHz [3]. AC techniques are also widely utilized in image
processing, due to limited perceptual capabilities of human
beings for image or video.

Current research effort on AC techniques mainly focuses
on the development of approximation algorithms at software
level [4]–[6] or circuit design methods at hardware level [7]–
[9]. Approximation on hardware is often achieved by utilizing
imprecise arithmetic units [10], [11], approximate register
files [12], or approximate accelerators [13]. Recently, there
emerges strong attention to examine the security vulnerabilities
of AC systems. The work [14] indicates that the utilization of
AC techniques in a system will expose the system to new types
of security attacks. For example, approximate storage elements
are vulnerable to the memory refresh control attack, which
lowers the DRAM data retention rate. Attacks on the threshold
control in Phase Change Memory (PCM) will lead the memory
to experience the increased number of quantization errors.
Hardware tampering on the arithmetic approximate circuits
could enlarge the inaccuracy on outputs, which may exceed
the tolerable range as designed at the specification phase. As
the attacks mentioned above are likely to be executed in a burst

1This work is an invited paper for ISCAS 2020 Special Session: “Stochastic
and Approximate Computing.”

mode, the suddenly accumulated errors could be catastrophic
from AC systems.

This work is dedicated to explore the feasible methods to
determine whether the AC system of interest is compromised
by a hardware Trojan or not. More specifically, the key
contributions of this work are as below: we identify the best
metric to measure accuracy for AC systems, and incorporate
differential metrics into a new Trojan detection framework to
reduce the false negative rate of Trojan detection. Our method
will facilitate users to utilize AC techniques securely.

The rest of this paper is organized as follows. Section II
introduces the approximation techniques applied in software
and hardware. Section III presents the attack model interested
in this work. Section IV proposes a metric suitable for attack
detection in AC systems. Our novel attack detection method
is described in Section V. Evaluation results are available in
Section VI. This work is concluded in Section VII.

II. RELATED WORK

Approximation techniques employed in computational ap-
plications can tolerate different amount of errors in outputs.
The desired degree of approximation is either pre-determined
in the system design phase or configured during the deploy-
ment stage. Functional approximation or over-scaling tech-
niques are typically employed in arithmetic units to trade
off accuracy for better power and speed [8], [15]–[17]. In
work [18], an accuracy-controlled approximate adder is pre-
sented to reduce the critical path delay. To compensate the
degraded accuracy, an error detection and correction mecha-
nism is used after the adder module.

As the trade-off between accuracy and improved perfor-
mance play a vital role in approximate computing, different
error metrics are being used to assess the degraded accuracy.
The most common metrics to measure accuracy are error
distance (ED), relative error distance (RED), normalized error
distance (NED), mean relative error distance (MRED) [18]–
[21]. In work [18], MRED is adopted for accuracy tuning. In
another recent work [19], an approximate quaternary adder
is proposed to improve the performance of its deployment
in FPGAs. The work [19] also uses MRED to evaluate the
mean error distance introduced by employing their proposed
approximate adder.

Although current approximate techniques have achieved
remarkable progress in terms of balancing accuracy and
power/delay performances, new security vulnerabilities in-
duced by the utilization of AC algorithms and techniques
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have not been widely investigated yet. The metrics adopted
for accuracy assessment do not take the intentional errors
into consideration. An improper metric could overlook the
tailored errors originated from hardware Trojans. Moreover,
the specially designed hardware tampering may not yield
noticeable changes on delay and power. Thus, it will be more
challenging to detect a hardware Trojan in AC systems than
in precise computing systems.

III. ATTACK MODEL

We assume that malicious modification is performed after
the approximation computing system is completed by the
designer. The attacker has full knowledge of the approximation
algorithm and has access to the netlist of the approximation
unit. In contrast, users will see the approximate computing
unit as a black box, but they can obtain the outputs of the
approximate unit via simulation. The behavioral model of the
approximate unit is available as a golden reference. The goal
of hardware tempering on approximate computing systems is
to suddenly accelerate system errors and lead to catastrophic
effects.

IV. PROPOSED METRICS FOR ATTACK DETECTION

Before we deploy an approximate computing module in
applications, it is critical to examine if any malicious mod-
ification has been made on the approximate module. As
AC systems do not achieve 100% accuracy in nature, the
verification metrics for AC functions will be different than
what we typically use for precise functions. In this section,
we compare the existing metrics and select the proper metric
for the purpose of hardware Trojan detection.

A. Metrics to Measure Accuracy

We first compare the metrics used to measure accuracy in
existing literature. Equation (1) [18], [22]–[24] defines the
mean value of accuracy, which measures to what extent the
imprecise output Re deviates from the precise output Rc.

ACCamp = 1− |Rc −Re|
Rc

(1)

In which, Re and Rc are the results of the imprecise and pre-
cise outputs being translated to a decimal number, respectively.
A higher ACCamp means that the imprecise output is closer
to the precise result.

Accuracy can also be measured by Hamming distance as
expressed in Eq. (2) [18], [22]. Different than ACCamp,
ACChm does not consider the weight that the incorrect bit
carries in the output. Instead, we pay attention to the ratio of
the number of mismatched bits Be between the precise and
imprecise outputs and the bit width of output Bw.

ACChm = 1− Be

Bw
(2)

The third metric for accuracy ACCapx only considers the
bits from precise computation submodules (e.g. for most
significant bits) and ignores those bits produced by the ap-
proximate submodules (e.g. for least significant bits). Assume

TABLE I: Comparison of accuracy measured with different
metrics applied to 8-bit hybrid (precise and approximate)
adders.

No. precise (approx.) units ACCamp ACChm ACCapx ACCgen

1 (7) 90.28% 65.15% 82.95% 16.46%
2 (6) 95.04% 68.39% 82.57% 19.34%
3 (5) 97.45% 71.87% 81.84% 22.66%
4 (4) 98.64% 75.48% 80.47% 26.56%
5 (3) 99.22% 79.24% 78.13% 31.25%
6 (2) 99.52% 83.38% 75% 37.50%
7 (1) 99.72% 88.91% 75% 50.00%
8 (0) 100% 100% 100% 100%

Tapx is the total number of correct cases after we neglect the
bits computed by the approximate submodules. Equation (3)
introduces the ratio of Tapx over the total number of test cases
Ttotal. This metric assesses the accuracy of the critical portion
of interest.

ACCapx =
Tapx
Ttotal

(3)

Equation (4) defines the accuracy ACCgen as the ratio of
the total number of completely correct cases Tc over the total
number of test cases Ttotal. This metric equally considers all
the mismatch bits between the imprecise and precise outputs.
ACCgen is generally referred as pass rate [22].

ACCgen =
Tc

Ttotal
(4)

To quantitatively compare the accuracy metrics defined by
Eqs. (1)-(4), we report the different accuracies for a 8-bit
adder, compromised of varied number of approximate 1-bit full
adders in Table I. As can be seen, all accuracy metrics decrease
with the increasing number of precise modules. Among all
metrics, the speed of accuracy reduction of ACCamp is the
slowest one. ACCgen is more strict than ACCamp, ACChm

and ACCapx since ACCgen computation leads to quicker ac-
curacy drop with increase in number of approximate modules
in a circuit. For instance, when five of the precise 1-bit full
adders in the 8-bit adder are replaced with the approximate
ones, the accuracy ACCgen is reduced to 22.66%.

B. Differential Metric to Measure Delay and Power

In Section IV-A, we observe that different metrics for
accuracy make large difference on the measured values for the
same configuration of adder. In this subsection, we propose
a differential metric to indicate if the approximation unit
is compromised or not. Assume the measurement from the
precise functional unit is P , the measurement from the original
approximate functional unit is A, and the test result from
the tampered approximate functional unit is A′. In a typical
verification, one will compare the delay or power of the
untampered and tampered approximate unit in a way expressed
in Eq. (5).

DIFFscs =
A′ −A
A

(5)

Where DIFFscs stands for the differential side-channel signal
(e.g. delay and power). Since the hardware Trojan logics
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are designed to be stealthy, the Trojan-induced increase on
delay and power is typically insubstantial. Thus, the metric
DIFFscs is not suitable for attack detection.

We propose to bring the side channel signals obtained from
the precise implementation to the differential metric expressed
in Eq. (6).

∆DIFFscs =
P (A′ −A)

A ∗A′
=
P

A
∗ A
′ −A
A′

(6)

The ratio P
A in Eq. (6) is a constant enlargement factor. By

multiplying the P
A factor, the tampering induced difference

on the side-channel signals of approximate functional units
will be increased. Thus, the proposed metric will improve
the sensitivity of Trojan detection and thus reduce the false
negative detection rate.

V. PROPOSED ATTACK DETECTION METHOD FOR
APPROXIMATE COMPUTING SYSTEMS

We incorporate the proposed metrics mentioned in Sec-
tion IV in a unique Trojan detection method designed for
approximate computing systems. Figure 1 depicts the key
idea of our proposed Trojan detection method, which exploits
difference among Precise-Approximate-Unit under test for
Security Examination (PAUSE). Our method does not only
rely on the difference between the output/delay/power of the
tamper-free approximate system and the unit under test, but
also leverages the difference that are intentionally introduced
in the phase of designing the approximation algorithm. The
approximate system designer typically provides performance
improvement and trades-off accuracy. The ratio P

A mentioned
in Eq.(6) is available at design time since P

A is usually reported
by the designer. A small number of input patterns will be used
to measure the output accuracy, delay and power of the behav-
ioral approximate computation unit and its hard/firm macro.
Next, the metric ∆DIFFscs

will be computed accordingly.
We compare that metric with the threshold ξ suggested by
the approximate system designer. If ∆DIFFscs

exceeds the
threshold, something abnormal occurs (likely induced by a
Trojan attack). Then more evaluation is required to increase
the confidence level of attack detection. The computation of
∆DIFFscs

and threshold comparison are performed by the unit
under test (UUT) user.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we evaluated the effectiveness of proposed
metrics and the PAUSE method for hardware Trojan detection.
We implemented two approximate ripple-carry adders with 8-
bit and 16-bit inputs. Three 1-bit full adder (FA) modules in
the precise adder were selected to apply the approximation
algorithm proposed in [15]. In our simulation, the inserted
hardware Trojans can swap the inputs for the approximate and
precise full adders. We also implemented the corresponding
8-bit and 16-bit precise adders as comparison references. All
the adders were synthesized with a TSMC 65nm technology.
The delay and power consumption were reported by the

Fig. 1: Proposed attack detection flow for approximate com-
puting systems.
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Fig. 2: Computation accuracy ACCgen of approximate (a) 8-
bit and (b) 16-bit adders.

Synopsys Design Compiler. Logic-gate level simulations for
output verification were conducted in the Cadence NCVerilog
tool.

B. False Negative Rate of Proposed Trojan Detection

An approximate adder tampered by a hardware Trojan
will yield a different accuracy on its primary output than
what is designed. For instance, as reported in Table I, the
accuracy ACCgen for a 8-bit adder with 5 precise FAs and 3
approximate FAs is 0.3175 if no Trojans are inserted. In total,
there will be 15 different attack cases of precise↔approximate
input swapping for an 8-bit adder. As shown in Fig. 2(a),
the computation accuracy drops to about 0.1. We repeated the
same experiment for a 16-bit approximate adder (composed
of 13 precise FAs and 3 approximate FAs) and observed the
similar accuracy reduction. The comparison of accuracy shown
in Fig. 2 indicates that the Trojan attacks on the approximate
arithmetic unit will lead to significant decrease on accuracy
and different attack scenarios results in a variation on accuracy.

We continue to use the 8-bit adder to examine the differ-
ence on accuracy DIFFACC induced by the Trojan attack.
Figure 3(a) shows that the reduction on accuracy varies with
different accuracy metrics. The use of ACCamp leads to
the most significant variation on DIFFACC if the attack is
injected in different locations. In contrast, ACChm is the least
sensitive to the attack location. The standard deviation of the
DIFFACC for each accuracy metric is labelled in Fig. 3(a).
Because the Trojan attack is stealthy and is not always-
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Fig. 3: Impact of diverse attack scenarios on accuracy. (a)
Differential accuracy and (b) accuracy reduction due to Trojan.
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Fig. 4: Impact of number of test cases and accuracy metrics
on false negative attack detection rate of baseline. (a) 210 and
(b) 214 test cases.
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Fig. 5: Impact of number of test cases and Trojan triggering
probability on false negative rate of our method and baseline.

on, we emulate the Trojan attack with different triggering
probabilities. When the probability of attack decreases to
10−2, the average reduction on accuracy is almost close to zero
(shown in Fig. 3(b)). This means, it is challenging to detect
the presence of Trojans based on the variation on accuracy.

We further examined the false negative rate (FNR) of Trojan
detection due to the use of different accuracy metrics. As
shown in Figs. 4(a) and (b), ACCamp allows us to obtain
the least FNR compared with other metrics. This is because
that metric is more sensitive to the attack location and the
probability of Trojan triggering. This experiment also indicates
that a smaller probability of attack will lead to a higher

TABLE II: FNR reduction achieved by proposed Trojan de-
tection method.

Metric ∆DIFFamp ∆DIFFhm
∆DIFFapx ∆DIFFgen

FNR reduction 67% 80% 67% 93%

TABLE III: Differential metrics of two approximate adders

Metrics 8-bit approximate adder 16-bit approximate adder
Average Std Average Std

DIFFDelay 4.80% 0.0539 3.22% 0.0253
DIFFPower 18.75% 0.0131 8.08% 0.0082
DIFFPDP 17.72% 0.0435 3.18% 0.0231
Proposed 36.98% 0.0994 13.30% 0.0321

FNR. To overcome the high FNR, more test cases will be
required. The overall impact of the number of test cases and
the probability of attack on FNR is provided in Fig. 5. The
metric adopted here was ∆DIFFamp . The maximum reduction
on FNR achieved by other metrics is listed in Table II. Our
case study shows that our method can reduce the FNR by
up to 93% over the baseline, which compares the accuracy
ACCamp with a pre-determined accuracy range.

C. Average and Deviation of Proposed Metrics

In addition to accuracy, traditional Trojan detection methods
for precise functional designs also use delay and power as side-
channel signals to examine if a unit under test is sabotaged
by Trojans or not. A Trojan which yields a smaller change on
delay or power is more stealthy for detection. The goal of our
new metric ∆DIFF in Section IV-B is to enlarge the impact
of a Trojan on the side-channel signals. The average dif-
ferential delay DIFFDelay (differential power DIFFPower)
for the adder with/without hardware Trojans are compared
in Table III. As can be seen, DIFFDelay is smaller than
DIFFPower. Following the definition provided Eq. (6), we
calculated DIFFPDP for the power-delay-product (PDP). As
shown in Table III, the proposed metric DIFFPDP improves
the difference between the healthy design and the Trojan
tampered copy. Comparing with the metric DIFFDelay , our
method increases the difference by over 32% for the 8-bit
adder. For the 16-bit adder, the proposed method obtains more
than 10% difference than using delay. The standard deviation
(std) in our Trojan detection experiments is less than 0.1.

VII. CONCLUSION

The security vulnerabilities of approximate computing sys-
tems are highlighted in recent literature. As there are a lack
of effective methods to detect hardware Trojans inserted in
AC systems, this work fulfills the pressing need. We identify
suitable metrics for accuracy assessment and propose a dif-
ferential metric for Trojan attacks in AC systems. We further
incorporate those metrics in a new attack detection method
PAUSE. Our case studies confirm that the proposed metrics
and Trojan detection method can significantly reduce the false
negative rate of Trojan detection for approximate adders.
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