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Abstract

Deep Neural Networks (DNN) could forget the knowl-
edge about earlier tasks when learning new tasks, which is
known as catastrophic forgetting. To learn new task with-
out forgetting, recently, the mask-based learning method
(e.g. piggyback [10]) is proposed to address this issue by
learning only a binary element-wise mask, while keeping
the backbone model fixed. However, the binary mask has
limited modeling capacity for new tasks. A more recent
work [5] proposes a compress-grow-based method (CPG)
to achieve better accuracy for new tasks by partially train-
ing backbone model, but with order-higher training cost,
which makes it infeasible to be deployed into popular state-
of-the-art edge-/mobile-learning. The primary goal of this
work is to simultaneously achieve fast and high-accuracy
multi task adaption in continual learning setting. Thus mo-
tivated, we propose a new training method called Kernel-
wise Soft Mask (KSM), which learns a kernel-wise hybrid
binary and real-value soft mask for each task. Such a hybrid
mask can be viewed as a superposition of a binary mask and
a properly scaled real-value tensor, which offers a richer
representation capability without low-level kernel support
to meet the objective of low hardware overhead. We val-
idate KSM on multiple benchmark datasets against recent
state-of-the-art methods (e.g. Piggyback, Packnet, CPG,
etc.), which shows good improvement in both accuracy and
training cost.

1. Introduction

It is well-known that human and animals can learn new
tasks without forgetting old ones. However, a practical lim-
itation of Deep Neural Network (DNN) is their high degree
of specialization to a single task and domain. For example,
given a backbone DNN model, conventional fine-tuning of
the model for new tasks could easily result in the forget-
ting of old knowledge upon earlier tasks, thus degrading the
performance. Such phenomenon is known as catastrophic
forgetting, which widely exists in continual learning [6].
The continual learning refers that a model is incrementally

updated over a sequence of tasks, performing knowledge
transfer from old tasks to the new one.

The typical way to alleviate the catastrophic forgetting
issue is to fine-tune the backbone model w.r.t the new task
with regularization [8, 6, 14, 1], thus preventing drastic
weight update. Nevertheless, such method has limited suc-
cess when many new tasks need to be learned. Different
from that, Piggyback [10], a mask-based continual learn-
ing method, is proposed to address this issue by learning
only binary (i.e., 0,1) element-wise masks w.r.t the weights,
while keeping the backbone model fixed. Such mask is then
multiplied by the fixed network weights, determining rele-
vant or irrelevant for the current task. Since it only updates
binary masks for each new task during training, it can be
trained in fast manner, but with limited modeling capac-
ity. To further improve the adaption capacity without for-
getting, the compress-grow-based approach (e.g., CPG [5])
compresses (via pruning) and selectively expands the model
iteratively. After punning, it utilizes the Piggyback method
to learn a mask for the preserved weights as shown in Fig. 1,
and also retrains the released weights for current task. If
the accuracy goal is not attained, it will expand the model
by adding new filters. Such method outperforms Piggy-
back [10], as it involves additional task-specific parameters,
but with order-higher training cost.

Motivation: Although Piggyback could learn new tasks
in a fast manner, the binary mask has limited representation
capacity, which gets non-ideal accuracy gain. As the coun-
termeasure, CPG improves the representation capacity via
combining the mask learning and additional task-specific
parameters retraining. However, such complex training pro-
cedure suffers from extremely high training cost (i.e., train-
ing time and computing resources) that makes it impossible
to deploy into state-of-the-art popular edge based or mobile
computing based continual learning domain. These limi-
tations motivate us to explore a new mask-based learning
method that can rich the representation capacity, and more
importantly, without involving additional training cost.

Contribution: In this work, we propose a new learn-
ing method called Kernel-wise Soft Mask (KSM), which
learns a kernel-wise hybrid binary and real-value soft mask
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c) selective retraining
with expansion

b) unchanged weights
with network extension

a) retraining with
regularization

e) the proposed soft

d) hard mask method
mask method

Figure 1: Overview of neural network approaches to overcome catastrophic forgetting, we consider the setting where each
task retrains a new classifier. Except that, for the backbone model: a) retraining while regularizing to prevent catastrophic
forgetting with previously learned tasks; b) unchanged weights with network extension for representing new tasks; c) selective

retraining with possible expansion[5]; d) the hard mask method[10]; e) the proposed soft mask method.

for each new task, while keeping the backbone model
fixed. The KSM method has the capability to mitigate the
well-known catastrophic forgetting issue, to better transfer
knowledge from old tasks, and more importantly, to im-
prove the training efficiency. Our method is distinguished
from prior works in the following aspects:

1. Kernel-wise mask sharing. To reduce the mask size
and improve the computation efficiency in hardware,
we design the mask in kernel-wise, instead of element-
wise. For instance, only a single mask value is utilized
to represent a 3 by 3 kernel, thus the mask size would
reduce by 9 times.

2. Soft mask. To boost the knowledge representation
ability without involving additional training cost, we
decompose the mask into a binary mask and partial
real-value scaling coefficient tensor.

3. Softmax trick. To obtain a better binary mask, we pro-
pose to leverage the softmax trick to relax the gradient
approximation for mask during training.

Benefiting from the techniques above, the proposed KSM
method could achieve similar to CPG (or even better) ac-
curacy, while keeping similar to Piggyback (or even better)
training speed.

2. Related Work
2.1. Dynamic architecture for continual learning

Dynamic architecture method addresses the catastrophic
forgetting issue by selectively retraining and expanding the
network architecture. [17] proposes to expand the network
by generating new sub-network with fixed size for each
task, while fixing the backbone model. [22] first selectively
retrains the backbone network while expanding with limited
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Figure 2: Illustration of Piggyback to learn a binary mask
given a backbone model [10].

neurons by group-sparsity regularization, and then splits
and duplicates the neurons to avoid catastrophic forgetting.
Beyond that, PackNet [ 1] avoids this issue by identifying
weights important for prior tasks through network pruning,
while keeping the important weights fixed after training for
a particular task. In contrast to directly expanding model
architecture, [21] adds additional task-specific parameters
for each task and selectively learns the task-shared parame-
ters together. CPG [5] combines the model pruning, weight
selection and model expansion methods, which gradually
prunes the task-shared weights and then learns additional
task-specific weights. Moreover, it could uniformly expand
the model channels in each layer if the current accuracy can
not meet the accuracy requirement.

2.2. Multi-domain learning

Multi-domain learning [13, 15] aims to build a model,
which can adapt a task into multiple visual domains with-
out forgetting previous knowledge, and meanwhile using
as fewer parameters as possible. [15] proposes to recom-
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bine the weights of the backbone model via controller mod-
ules in channel-wise. [9] proposes domain-specific atten-
tion modules for the backbone model. One of the most
related method is Piggyback [10], which solves the issue
by learning task-specific binary masks for each task, as il-
lustrated in 1(d). They achieve this by generating the real-
value masks which own the same size with weights, pass-
ing through a binarization function to obtain binary masks,
which are then applied to existing weights. We denote the
real-value mask and binary mask as M" and Mm° respectively,
then, the binarization function is given by:

1 if M >
Forward : MP° = =7 (1)
0 otherwise

Backward : VM = VM’ )

Where 7 is a constant threshold value. However, the
gradient of binarization is non-differential during back-
propagation. They use the Straight-Through Estimator
(STE) [4] to solve this problem, which estimates the gra-
dient of real-value mask by the gradient of binary mask as
shown in Fig 2.

3. Kernel-wise Soft Mask Method

Different from the conventional multi-task learning
where the data of all tasks is available at training time, we
consider a continual learning setting in which new tasks
(71,72, ..., Tn' }) arrive sequentially and past mask cannot
be used for training future tasks. Given a convolution layer,
we denote the weights W) € Renxcouxkhxkw yhere
Cin,s Couts kK, kw refers the weight dimension of [-th layer, in-
cluding #output channel, #input channel, kernel height and
width, respectively. We also denote the dataset of the ¢-th
task (7;) as D; = {@x¢, y: }, where x; and y; are vectorized
input data and label pair. To adapt the pre-trained backbone
model with the parameter {W;} from the initial task 77 to
anew task 7;, we intend to learn a task-specific kernel-wise
soft mask M; € R¢>cux1x1 that is applied to the fixed
parameter W to provide good performance. To reduce the
mask size, each make element is shared by a kh x kw ker-
nel. Based on this idea, the optimization objective can be
mathematically formalized as:

min £(f(2e: (M, x W1}). ) 3

Such soft mask based method differs from prior mask-based
counterparts [10] in following aspects:

1. Kernel-wise Mask Sharing. Since the task-specific
weights are refactorized from the backbone model via
the task-specific mask, the size of mask directly deter-
mines the computation and model overhead for domain

Real- valued Mask  Scaling tensor Fixed Weight Kernels (3x3)

AS

Binary Mask

Task-specific
Weight Kernels

Forward and backward: «—
Forward only: -

Figure 3: Overview of the proposed soft mask (KSM) learn-
ing method. Give a task ¢, we aim to learn a task-specific
soft mask M;, by refactoring the fixed backbone weight to
favor the current task. M; is decomposed into a binary mask
M? and a scaling coefficient tensor AS (4). To obtain MY, the
learnable real-value mask M; pass through a logistic func-
tion (6) and a softmax function (8) successively. In addition,
scaling tensor M'g' is generated by M; (5). During training
backward, the real-value mask can be updated without gra-
dient estimation. After training, only the soft mask is saved
for testing.

adaption objective. Instead of utilizing the mask in the
identical size with weights as in [10], we introduce the
compact mask where each mask element is shared by
the kernel kh x kw. Such kernel-wise mask method
properly alleviates the computation and memory bur-
den, and importantly, without accuracy degradation as
demonstrated in our experiments.

2. Soft Mask. In contrast to prior works leveraging bi-
nary mask (M’ € {0,1}), the proposed soft mask
(M; € R) replaces the zero values inside binary mask
with real-valued scaling coefficients. Such simple
modification empowers the mask with a richer repre-
sentation capability. However, although kernel-wise
mask can greatly reduce the mask size, the additional
memory usage caused by the real-valued M; (32 bits)
is still too large. For example, given a model with 3
by 3 kernel size in all layers, comparing with binary
mask (1 bit), the soft mask will cause 3 =~ 3.5x ad-
ditional memory consumption. To address this issue,
we divided the soft mask into two parts: one is binary
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mask M?; the other is a scaling coefficient tensor A in
sparse pattern. It can be expressed as:

M, = M’ + A 4)

3. Softmax trick for better gradient calculation. Since
the soft mask above includes binary portion, there
still exists the non-differential issue. Instead of uti-
lizing Straight-Through Estimator (STE) to approxi-
mate gradient in the binary mask counterpart, we pro-
pose to leverage the softmax trick to relax the categor-
ical objective. Compared to the STE method, the soft-
max trick could provide better gradient calculation, to
achieve higher accuracy on new tasks.

Fig. 1 depicts the evolution from prior implementation
to our method. More details of our soft mask-based method
are presented in the following subsections.

3.1. Soft mask

As in Piggyback method [10], the adopted binary mask
is generated by binarizing trainable real-valued masks. We
conjecture that the magnitude of these masks have the in-
nature property to represent the importance levels w.r.t the
corresponding weights of the backbone model. Inspired by
that, we aim to utilize the real-valued mask to represent
scaling coefficient tensor.

However, there are two issues that impede us directly
use the trainable real-valued mask: 1) Constructing the
real-valued scaling coefficient tensor in dense pattern will
largely increase the model size; 2) The magnitude of val-
ues in the real-value mask is typically very small (i.e. 0.01),
even with negative values. To solve the fist issue, we intro-

Real-valued Mask M"
[0.01, 0.003, -0.003, 0.015]

Binary Mask MP

[1,0,0,1] [0, 0.003, -0.003, 0]
l / l Normalized to (0, 0.5)

Inverted Binary Mask
[0,1,1,0]

Sparse scaling tensor A®

[0,0.5,0,0]

Figure 4: An example to generate the scaling coefficient
tensor with four values.

duce an additional trainable real-value scale coefficient ten-
sor A’ as a replacement of the zero elements in the binary
mask counterpart, so as to create a soft mask and avoid mask
size increasing significantly due to those real values. In
this way, it can improve the learning capacity without time-
consuming re-training of zeroed-out weights in CPG [5]. To
solve the second issue, we normalize those values to treat
them as the scaling factor of each kernel when learning new

tasks. In practice, we normalize the real-valued masks be-
tween 0 and 0.5 in all the experiments. As shown in Fig. 3,
the above two steps can be achieved by inverting ‘0’ and ‘1’
in the generated binary mask M, followed by multiplying
with the real-value mask M". Fig. 4 gives a toy example
to show how to generate the scaling coefficient tensor by
real-valued masks, which can be formulated as:

A’ = normal (M}) (5)

Where M? inverts 0 and 1 in the M®. The ‘detach’ is used
to only grasp the values of M” without influence the back-
propagation. Note that, since all the masks are set in kernel-
wise, each mask value will be applied on a kernel weight as
shown in Fig. 3.

In short, we generate the soft mask M by combining
the binary mask M’ and the scaling factor A® as shown
in Eq. (4). It can be understood as we fix the important
kernels (‘1° in binary mask) and scale the unimportant ker-
nels (‘0’ in binary mask) to be different trainable levels for
the new task. The soft mask is generated in this way, mainly
for the following two reasons:

1. Directly utilizing the already existing real-value mask
does not involve additional trainable parameters or
changing the backbone model architecture, indicating
that can be trained with no extra cost.

2. These scaling factors increase the model capacity for
the new task, with very small mask size increase due
to the facts that 1) real-values occupy a small portion
in the mask and 2) our kernel-wise mask dimension
is already much smaller than traditional element-wise
mask. We will quantify the overhead and the sparsity
level in the analysis later.

3.2. Soft mask learning via softmax trick

[10] proposes a masking method, where they train a real-
value mask followed by a hard threshold function to bina-
rize the mask as depicted in Eq. (1). However, the binariza-
tion function is not differentiable, the general solution is
to skip the threshold function during backpropagation and
update the real mask by directly using gradients computed
from binary mask, which is known as Straight Through Es-
timator (STE) as shown in Eq. (2). Different from that,
we propose a method to eliminate the gradient estimation
step and make whole mask learning compatible with exist-
ing gradient based backpropagation training process.

First, we relax the binarization function in Eq. (1) to a
continuous logistic function:

1

M) =17 exp(— k(M — 7))

(6)
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where k is a constant. Note that the logistic function be-
comes closer to hard thresholding function when k is in-
creasing. The partial derivative of the logistic function is:

Ao (M")
oM”
In this work, we treat o(M") as a probability mask to esti-
mate the importance level of the corresponding weight ker-
nels to save training time without involving extra parame-
ters.

When considering it as a probability mask, sampling
from a Bernoulli distribution is a reasonable and popular
way to generate, but such sampling procedure is not differ-
entiable. To overcome this issue, we leverage the softmax
trick, which performs a differential sampling to approxi-
mate a categorical random variable. Summarizing, we de-
fine p(-) using the softmax trick as

exp((logmo)/T)
exp((logmo)/T') + exp((logm1)/T)

Where 7y and 7 represent 1 — o(M") and o(M") respec-
tively. The temperature 7" is a hyper-parameter to adjust the
range of input values, meanwhile choosing larger one could
avoid gradient vanishing during back-propagation. Note
that the output of p(M") closer to a Bernoulli sample as T
towards to 0.

Benefiting from the differentiable property of Eq. (6) and
Eq. (8), the real-value mask M" can be embedded with ex-
isting gradient based backpropagation training without gra-
dient approximation. During training, most values in the
distribution of p(M") will move towards either 0 and 1. To
represent p(M") as binary format, we use the one-hot code
of p(M") during training forward, which has no influence
on the real-value mask to be updated for back-propagation.

In the end, the soft mask is generated as described
in Eq. (4). During forward, the input-output relationship
of one layer is given by y = Wy - (M" + A%)z. Accord-
ing to the chain rule in the back-propagation, the gradient
of such soft mask is given by:

oF oy

=k-o(M)-(1—0o(M)) )

p(M") = (8)

op(M") | 9o (M")

™= (50 o) Gear)) o) ©
Where the partial derivative of each term is given by:
oF
ay VY
oy T
apry — 7 W 1o
opM")  p(M")(1 —p(M"))
doc(M")  To(M")(1—c(M"))

By doing so, the proposed method can optimize the soft
mask in an end-to-end manner, where every step is differ-
entiable. We illustrate the complete algorithm in Algorithm

1. During training, we save the optimized M*, and then di-
rectly apply it to the corresponding weight for testing.

Algorithm 1 The proposed soft mask learning

Require: Give the initial task 7 and the backbone model
with the parameter W1, the threshold 7 and temperature
T
1: for Taskt=2, ..., Ndo
2: Get data x; and label y;
3 M? + one-hot(p(M))

M? « invert(M?)

4

5. M, < M? -+ M? - normal(M; .detach())
6 M emianE(f(wt;Wl : Mt)7yt)
7. During testing, execute f(xs; Wy - M)
8: end for

4. Experiments
4.1. Datasets and backbone architectures

To make a fair comparison with prior works, similarly,

we use VGG16-BN [19] and ResNet50 [3] as the backbone
architectures for the following datasets:
ImageNet-to-Sketch In this experiments, six image classi-
fication datasets are used: CUBS [20], Stanford Cars [7],
Flowers [12], WikiArt [18] and Sketch [2]. We use the
ResNet50 as the backbone model which are trained on Ima-
geNet dataset [16], then fine-tunes the fine-grained datasets
sequentially.
Twenty Tasks of CIFAR-100 We divide the CIFAR-100
dataset into 20 tasks. Each task has 5 classes, 2500 training
images, and 500 testing images. In the experiment, VGG16-
BN model (VGG16 with batch normalization layers) is em-
ployed to train the 20 tasks sequentially.

4.2. Competing methods to compare

To test the efficacy of our KSM method, we compare
it with recent several representative methods in three cate-
gories:

* Whole model fine-tuning: Fine-tuning the whole
model for each task individually

* PiggyBack [10] It fixes the backbone weights and then
learns a binary mask to select partial weights for new
tasks.

e PackNet [11]: It first prunes unimportant weights, and
then fine-tunes them for learning new tasks.

e CPG [5]: It combines PackNet and PiggyBack to grad-
ually prune, pick and grow the backbone model for
learning new tasks sequentially.
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Table 1: The accuracy (%) and training cost (s) on Twenty Tasks of CIFAR-100. Considering those accuracy and training
time comparison, we could achieve best average accuracy and around ~ 10x faster than CPG.

Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
PackNet Acc 664 800 762 784 800 798 678 614 688 772 790 594 664 572 360 542 516 588 67.8 832 | 675
Time 334 360 370 379 382 385 385 3890 234 358 370 378 384 385 384 337 359 371 377 382 | 365

Pigayback Alcc 658 782 764 798 860 81.0 794 824 818 864 878 760 828 80.6 482 704 650 71.80 8780 90.6 | 77.1
Time 100 150 102 113 154 102 121 119 97 130 84 110 96 120 106 97 97 106 110 119 111

CPG Acc 66.6 762 782 806 864 830 814 824 820 868 868 814 828 820 504 724 662 T1.2 856 916 | 787

Time 629 2101 2123 2120 2121 2127 2116 2120 2122 2121 2122 2115 2127 2125 2126 2114 2124 2126 2123 2125 | 2046

Ours Acc 672 780 788 784 856 826 802 834 826 894 84 806 832 808 528 732 678 726 88.0 920 | 79.2

Time 130 81 111 123 123 127 62 106 88 78 95 85 73 88 90 90 80 95 96 65 94.3

4.3. Results on ImageNet-to-Sketch dataset epochs. Fig. 5 summarizes the whole training time for each
method. First, our method slightly outperforms Piggyback,
since the proposed soft mask learning method (as illustrated
in Eq. (6) and Eq. (4)) is faster than the binarization function
in real hardware implementation. Then, ours and Piggyback
could both achieve better speed than PackNet, since Pack-
Net needs to retrain weights which is slower than training
a mask. Last, it is obvious that CPG requires ~ 10x more
training time than all rest methods, while 3 out of 5 tasks
have lower accuracy than ours as shown in Table 2.

In this experiment, following the same settings in the
works of CPG [5] and Piggyback [10], we train each task
for 30 epochs using the Adam optimizer. The initial learn-
ing rate is le-4, which is decayed by a factor of 10 after 15
epochs.

4.3.1 Accuracy comparison

The accuracy of the five classification tasks is tabulated
in Table 2. For the first ImageNet task, CPG and PackNet

perform slightly worse than the others, since both meth- 10° 4

ods have to compress the model via pruning. Then, for g

the following five fine-grained tasks, the proposed method 8 10° 1

could achieve all better accuracy comparing with Piggyback 2

and PackNet. Even comparing with the individually fine- & 10°

tuning whole model for each task, we could still achieve a

better performance except WikiArt dataset. In comparison CUESGO Cagzs F'OWZFQSS Wikg;rlto Skeigf;s

to CPG that requires one order more training time (Fig.5), 1176 1614 204 3329 3188

our method achieves better accuracy in tasks of CUBS, 117811 16506 4414 | 864171 55137
(Ours) 1113 1541 386 7987 2947

Flowers and Sketch. However, we admit that, owing to a
small portion of real-values in the hybrid mask, our method
needs slightly more model size than other methods. Note
that, the model size reported in 2 includes both the back-
bone model and introduced mask size.

Figure 5: Training cost on ImageNet-to-Sketch datasets
with various continual learning methods.

Table 2: Accuracy on ImageNet-to-Sketch dataset 4.4. Results on twenty tasks of CIFAR-100

Different from the ImageNet-to-Sketch setting that relies

Dataset _ Finetune PackNet Piggyback CPG _ Ours on a pre-trained model on ImageNet dataset, in this exper-
ImageNet 7626 7571 76.16  75.81 76.16 iment, we first train a task from scratch as the backbone
CUBS 82.83 80.41 81.59 83.59 8381 model. Afterward, we fix the backbone model weights and
Cars 91.83 86.11 89.62 92.80 92.14 . .
Flowers 96.56 93.04 94.77 966 96.94 learn the task-specific mask for the rest tasks sequentially.
WikiArt 75.60 69.40 71.33 7715 7525 To conduct a fair comparison, we follow the same configu-
Sketch 80.78 76.17 79.91 80.33  81.12 ration as CPG, and select the same task as the initial task-1.
Model Size Note that, since this work only focuses on continual learn-
(MB) 54 15 121 121 146 ing without model expansion, all the CPG results are with-

4.3.2 Training time comparison

To do fair comparisons, all the methods are trained on the
single Quadro RTX-5000 GPU with the same batch size and
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out expansion based on their open source code.

4.4.1 Accuracy and training time comparison

Similar phenomenon can be observed with the ImageNet-
to-Sketch setting. Table 1 shows the accuracy and training
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Table 3: The accuracy on Twenty Tasks of CIFAR-100 with different initial tasks. The accuracy of individual task on these
five settings is slightly different. Nevertheless, the average accuracy is better than PackNet and Piggyback. Comparing with
CPG, better accuracy could be achieved on three different initial types.

Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Avg
1 672 78.0 788 784 856 826 802 834 826 894 884 806 832 80.8 528 732 678 72.6 880 920 | 792
5 670 772 77.6 792 848 826 780 852 828 888 884 808 842 814 502 718 670 712 86.0 91.8 | 788
10 678 772 766 794 828 81.6 808 834 820 886 882 812 85.0 802 534 738 686 744 872 912|793
15 67.6 782 770 77.0 81.8 826 784 834 832 866 884 800 830 780 512 708 678 678 864 91.0 | 78.0
20 668 756 772 766 854 81.0 79.0 840 822 874 864 790 838 804 490 708 664 720 882 93.6 | 782

cost for these methods.

Our method could achieve com-

have gradient estimation.

In addition, ‘Piggyback-Soft’

pletely better results than Piggyback and PackNet. In ad-
dition, comparing with CPG, we also could achieve better
results in most tasks. In terms of training time, our method
is around ~ 10x faster than CPG.

Considering those accuracy and training time compari-
son, it shows our method could perform outstanding knowl-
edge transfer based on a weak backbone model, which only
trains on 2 classes. It is worthy to note that the initial task
indeed influences the performance of rest tasks, since we fix
the backbone weights all the time. In the next section, we
will show that, even with different initial tasks, in all cases,
our method could learn a mask that achieves good knowl-
edge representation for new task.

EEm Packnet EEE Piggyback

== CPG (Ours) |

Training Cost (s)
=
<

fuy
o
N

0123456 7 8 91011121314151617181920
Task Index

Figure 6: Training cost on twenty tasks of CIFAR-100 with
various continual learning methods.

4.5. Ablation Study and Analysis
4.5.1 Kernel-wise, soft mask and softmax trick

We study the individual effect of the three main techniques
of our proposed method on ImageNet-to-Sketch dataset set-
ting. As shown in Table. 4, we denote the ‘Piggyback-Soft’
as replacing the 0 values in piggyback’s binary mask with
scaling factors, and denote the ‘Ours-softmax’ as we only
use the proposed softmax trick to generate binary mask.
Also, we name the ‘Ker-wise’ and ‘Ele-wise’ as kernel-wise
and element-wise mask respectively. The ‘Ours-Softmax’
achieves better results than Piggyback, which means the
proposed differentiable mask learning process with soft-
max trick could generate better optimization, since we don’t

achieves better results than ‘Piggyback’ proving that adding
scaling factors to zeroed-out weights indeed improves the
task-specific representation ability. Also, changing the
mask to kernel-wise has very minor or neglect-able influ-
ence for performance. In the end, the ‘Ours-Full’ combines
all three techniques, showing best overall performance in all
datasets.

Table 4: The ablation study on the proposed method.

Method CUBS Cars Flowers WikiArt Sketch
Piggyback 81.59 89.62 94.77 71.33 79.91
Piggyback - Ker-wise ~ 81.76  89.57  94.88 70.30 79.95
Piggyback - Soft 82.26 91.17  95.85 73.12 80.22
Ours - Softmax 82.86 91.71 96.67 74.06 80.70
Ours - Ele-wise 83.79 92.18  96.90 75.0 81.10
Ours - Full 83.81 92.14  96.94 75.25 81.12

4.5.2 The Effect of Different Initial Tasks

Different from the ImageNet-to-Sketch dataset setting that
heavily relies on a strong pre-trained model, we randomly
select a task and then train it from scratch as the initial
model in Twenty Tasks of CIFAR-100 setting. To explore
how does the initial task affects the performance of rest
tasks, we randomly select five different tasks as the initial
task as shown in Fig. 6. Thus, the accuracy of these five set-
tings on each individual task is slightly different, since they
own different domain shift levels. Nevertheless, the average
accuracy is better than PackNet and Piggyback. Comparing
with CPG, better accuracy could be achieved on three differ-
ent initial types, which indicates that the proposed method
could balance the domain shift with different initial tasks.

4.5.3 Scaling Tensor Distribution on ImageNet-to-
Sketch Setting

Fig. 7 shows the distribution of the scaling tensors on five
different tasks respectively. We select two representative
layers of the ResNet50 model: first layer and last layer. In
practice, we normalize the real-valued mask between 0 and
0.5. Three observations could be drawn across all tasks: 1)
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end layers have more scaling tensors than front layers. Es-
pecially, the last layer has the highest scaling tensor ratio in
the soft mask; 2) the number of scaling tensors almost grad-
ually increases from O to 0.5, which depends on the learning
property of the real-valued mask; 3) different from Flowers,
cars and CUBS dataset, WikiArt and Sketches have more
number of scaling tensors between 0 and 0.2, which reflect
these two tasks are more difficult in terms of domain shift.
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Figure 7: The scaling tensor distribution on ImageNet-to-
Sketch setting

4.5.4 Architecture and Soft Mask Visualization

Fig. 8 visualizes the ratio of ‘1’ values in binary mask and
the scaling factor. Two observations could be drawn from
all the tasks: 1) Within a task, end layers need more changes
than front layers, especially the last convolutional layer. 2)
The scaling factor ratio may link to the domain shift diffi-
culty. For example, the largest dataset WikiArt has a higher
ratio the that of smallest dataset Flowers.

B scaling tensor H "1" values in binary mask
J
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Mask Ratio
oooor
OoONUdO
ouvouwo

5 20
2

Mask Ratio
occoor
ONUINO
ououo

0 10 15 5 30 35 40 45 50
C

0 5 0 15 0 25 30 35 0 45 50
O S

5 0 15 30 35 0 45 50

Mask Ratio
eooor
oONUdO
ouvouwo

2
1 4

Flower:

1 2 4

0 20 5
WikiArt

0 5 10 15 20 25 30 35 40 45 50

0 5 10 50

Figure 8: The ratio of two mask types visualization on
ResNet50 for ImageNet-to-Sketches dataset.

5. Conclusion
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In this work, we propose a novel kernel-wise soft mask
method for multiple task adaption in the continual learn-
ing setting, which learns a hybrid binary and real-value soft
mask of a given backbone model for new tasks. Compre-
hensive experiments on the ImageNet-to-Sketch dataset and
twenty tasks of CIFAR-100 indicate that, with no need of
using weight regularization and model expansion, the pro-
posed method can run ~ 10x faster than the state-of-the-
art CPG based learning method with similar accuracy per-
formance. In addition, we analyze the effect of different
backbone models. Even with a weak backbone model, the
proposed method also could learn reasonable information
for new tasks. We show that we can achieve better results
compared with the related prior mask-based methods.
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