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Abstract—Despite the rise of development in continuum 

manipulator technology and application, a model-based feedback 
closed-loop control appropriate for continuum robot designs has 
remained a significant challenge. Complicated by the soft and 
flexible nature of the manipulator body, control of continuum 
structures with infinite dimensions proves to be difficult due to 
their complex dynamics. In this paper, a novel strategy is designed 
for trajectory control of a multi-section continuum robot in three-
dimensional (3D) space to achieve accurate orientation, curvature, 
and section length tracking. The formulation connects the 
continuum manipulator dynamic behavior to a virtual discrete-
jointed robot whose degrees of freedom are directly mapped to 
those of a continuum robot section under the hypothesis of 
constant curvature. Based on this connection, a computed torque 
control architecture is developed for the virtual robot, for which 
kinematics and dynamic equations are constructed and exploited, 
with appropriate transformations developed for implementation 
on the continuum robot. The control algorithm is implemented on 
a six Degree-of-Freedom two-section OctArm continuum 
manipulator. Experiments show that the proposed method could 
manage simultaneous extension/contraction, bending, and torsion 
actions on multi-section continuum robots with decent 
performance (arc length and curvature error of ±4mm and ±0.35 
m-1). The designed dynamic controller can reduce the curvature 
tracking error and rise time by up to 48.1% and 94.8% compared 
to the traditional PID controller during two-section maneuvers. 
 

Index Terms—Continuum Robot, Forward Kinematics, Inverse 
Kinematics, Manipulator Dynamics, Motion Control.  

I. INTRODUCTION 
A continuum robot [1] is a bio-inspired slender hyper-

redundant manipulator with theoretically infinite degrees-of-
freedom (DoF) which provides remarkable capabilities for 
reach, manipulation, and dexterity in a cluttered environment. 
Recent progress toward biological systems has enabled 
continuum robotics research to expand rapidly, promising to 
extend the use of continuum robots into many new 
environments and providing them with capabilities beyond the 
scope of their rigid-link counterparts [2], [3]. Long-term 
success for the practical application of continuum robots 
heavily relies on the development of real-time controllers that 
deliver accurate, reliable, and energy-efficient control. 
However, the development of high-performance model-based 
control strategies for continuum robots proves to be challenging 
due to multiple reasons. Since the manipulators must be 

modeled as continuous curves, the kinematic and dynamic 
models are difficult to derive. Also, control of continuum 
structures is complicated by the intrinsic underactuated nature 
of the backbone. Additionally, non-collocation of actuators 
with configuration space variables impedes the closed-loop 
control design (error calculation) in either space. The current 
scarcity of suitable local sensor technologies also contributes to 
the difficulty of direct internal sensing of backbone shape, 
which, in turn, hinders the control of continuum structures [4]. 

Over the years, extensive model-based static control 
strategies have been proposed to design better and more reliable 
controllers for the continuum robots. Camarillo et al. proposed 
a closed loop configuration [5] and task space [6] controller for 
tendon-driven continuum manipulators, experimentally 
validated with a 5-DoF per section kinematic model. Bajo et al. 
realized a configuration space controller which utilizes extrinsic 
sensory information about configuration and intrinsic sensory 
information about joint space [7]. An adaptation of the classic 
hybrid motion/force controller for continuum robots was 
presented and evaluated in both [8] and [9]. More complex 
kinematic formulations for continuum robots such as variable 
constant curvature (VCC) approximation were used by Mahl et 
al. for kinematic control of three-section manipulator with a 
gripper in [10]. Wang et al. presented visual servo control of a 
2D image feature point in 3D space using the VCC model for a 
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Fig. 1.  Dynamically controlled OctArm, a pneumatically actuated continuum 
manipulator with three sections, following a desired configuration trajectory.  
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cable-driven soft conical manipulator [11]. Conrad et al. 
applied a closed-loop task space controller on an interleaved 
continuum-rigid manipulator [12]. Marchese and Rus achieved 
kinematic control of a pneumatic-actuated soft manipulator that 
is made from low durometer elastomer [13]. However, static 
control strategies rely on the steady-state assumption, which 
impedes fast and accurate motion of continuum robots. 

Widely considered the most challenging field in the control 
of continuum robots [14], model-based dynamic controllers that 
consider the complete kinematics and dynamics of the whole 
manipulator have been explored by previous researchers. 
Gravagne and Walker validated feedforward and feedback 
proportional-derivative (PD) controller through simulations of 
a planar single multi-section continuum robot [15]. Falkenhahn 
et al. implemented optimal control strategies that consider both 
the mechanical dynamics and the pressure dynamics to achieve 
trajectory optimization of continuum manipulators [16]. 
Marchese et al. described a trajectory optimization scheme and 
dynamic model for a soft planar elastomer manipulator [17]. 
Falkenhahn et al. developed a dynamic controller in actuator 
space that provides actuator decoupling in combination with 
feedforward and feedback strategies [18]. Controllers that 
consider the dynamic behavior of the continuum manipulators 
are faster, dexterous, efficient, smoother tracking than static 
controllers. 

In this work we propose a model-based dynamic feedback 
control architecture that has been specifically designed for 
controlling continuum robots, extending our previous work [19] 
not only from two to three dimensions but also from one to two 
sections. The novel approach to continuum robot control 
discussed in this paper is motivated by reducing computational 
complexity using a virtual, conventional rigid link robot with 
discrete joints. The control strategy is developed in the virtual 
robot coordinates, taking advantage of the well-understood 
nature of conventional robot dynamics. The virtual robot is 
selected such that its degrees of freedom are directly mapped to 
those of the real continuum robot for which control is desired. 

Specifically, the above approach is validated from model 
development to hardware implementation for control of a multi-
section spatial continuum robot. The continuum robot is 
approximated as a serial rigid-link Revolute-Revolute-
Prismatic-Revolute (RRPR) joint spatial robot with an out-of-
plane rotation, two in-plane rotations, and a translation in the 
same plane to create a 3D virtual rigid-link robot [4]. A block 
diagram of the joint space dynamic controller by feedback 
linearization for closed-loop configuration space control is 
depicted in Fig. 2. The control attempts to achieve tracking of 
configuration space variables (arc-length 𝑠 , curvature 𝜅 , and 
rotational orientation 𝜙) using a computed torque controller in 
the joint space to calculate virtual torques that are translated into 
pneumatic pressure in the actuator space. The task space to joint 
space inverse kinematics are obtained via a desired virtual joint 
vector which forms the error vector with the actual virtual joint 
space variables derived from the continuum robot configuration 
space. The approach mentioned above assumes on the constant 
curvature (CC) approximation [20] for the configuration space 
model, which means that the continuum robot curvature has the 

same value at every point on the backbone for a given section. 
Previous research has also examined the possibility of 

controlling a continuum structure via exploiting a “virtual” 
rigid link robot model. However, the control methodologies 
were either applied only to the bending of a planar continuum 
section [21], or formulated using a under-parameterized model 
which involves merely bending and twisting without 
considering continuum robot extension/contraction [22], [23]. 
Prior works which consider bending [24], twisting, and 
extension/contraction [25], [26] emphasize dynamic modeling 
but not control. In contrast, the work in this paper is the first 
attempt to accomplish “virtual” rigid-link robot model-based 
3D control of continuum robots whose configuration space is 
parameterized by arc-length 𝑠 , curvature 𝜅 , and rotational 
orientation 𝜙. Such comprehensive parameterization accounts 
for simultaneous extension/contraction, bending, and torsion 
actions of continuum robots, therefore matching the 
controllable range while approximating the motion complexity 
of continuum robots. In addition, we extend model-based 
dynamic control research through the application of the 
computed torque approach that provides virtual rigid link robot 
dynamics decoupling for the control of multi-section continuum 
robots. 

This virtual discrete-jointed robot model-based controller for 
continuum manipulators is developed and applied and tested on 
the octopus biology inspired OctArm [27], a three-section 
intrinsically pneumatic-actuated continuum manipulator with 
nine DoF (depicted in Fig. 1). Each OctArm section is 
constructed using pneumatic “McKibben” muscle extensors 
[28] with three control channels per section that provide 
bending, extension, and 360° of 3D rotation. A closed-loop task 
space dynamic control [29] and a closed-loop configuration 
space control using a sliding mode control (SMC) [30],[31] 
were implemented on the OctArm. More recently, an 
adaptation-based nonlinear control strategy was adopted for the 
OctArm [32], but until now, a dynamic controller based on 
virtual discrete-jointed robot model proposed in this paper 
remains undeveloped for the OctArm. 

 
The remainder of the paper is organized as follows. The 

mathematical forward and inverse kinematics, as well as the 
dynamics model, is discussed in Section II. The control system 
design is contained in Section III. The experimental methods, 
as well as one and two section OctArm experimental results, are 
discussed in Section IV. Finally, Section V offers conclusions. 

 
Fig. 2.  Block Diagram for Continuum robot control based on virtual robot 
models. 
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II. MATHEMATICAL MODEL 

A. One-Section Continuum Robot Model 
1) Spatial Continuum Robot Forward Kinematics 

In order to comprehend the continuum robot movements, a 
forward kinematic model, which relates the configuration space 
(backbone shape) variables and task (e.g., tip) space variables, 
needs to be constructed. Such a model lays the foundation for 
designing control algorithms and is vital for the practical 
implementation of continuum robot hardware. 

The approach to continuum robot forward kinematics in this 
article heavily exploits the CC sections feature. The CC feature 
assumes that the configuration space of a three-dimensional 
(3D) continuum architecture can be parameterized by three 
variables: arc length 𝑠, the curvature 𝜅 = 1 𝑟⁄  as related to the 
radius r of a curve, and orientation 𝜙  of the curve plane in 
space. The CC continuum bending can be decomposed into four 
discrete motions: (1) a rotation to “point” the tangent at the 
curve’s  origin to the curve’s end point; (2) a translation from 
curve origin to end; (3) a second rotation identical with the first 
to realign with the tangent at the curve’s end; and (4) a rotation 
about the initial tangent; see Fig. 3. Given this observation, a 
“virtual” 3D four-joint rigid-link RRPR manipulator can be 
used to model the kinematic transformation along any CC 
backbone [33]. Consequently, the corresponding continuum 
robot forward kinematics model can be found using the 
conventional Denavit-Hartenberg (D-H) [29] convention for 
the virtual robot; see Table I. The associated homogeneous 
transformation matrix of the virtual RRPR robot model is given 
as 

 1 1

1 2 4 1 2 4 1 1 2 4 1 2 4 3 1 2

1 2 4 1 2 4 3 1 2
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where 𝑠𝑙  and 𝑐𝑙  (𝑙 = 1,2,4) denote sin(𝜃𝑙) and cos(𝜃𝑙) for the 
three revolute joints in the RRPR model, respectively and 𝑑3 is 
the length of the third, prismatic, joint in the RRPR model. The 
continuum robot kinematics can be readily developed by 
substituting the joint variables of the virtual robot with the 
corresponding configuration space variables of a continuous 
curve.  Specifically (see Fig. 3), 
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Substituting (3) and (4) into the model (1) and simplifying gives 
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  (5) 

where 𝑐𝑚  and 𝑠𝑚  (𝑚 = 𝑠, 𝜅, 𝜙, 𝑠𝜅) , denote cos(𝑚)  and 
sin(𝑚) , respectively. The model (5) describes the forward 
kinematic relationship (3 by 3 orientation, top left of (5), and 3 
by 1 translation, top right) between continuum curve 
shape/configuration space, 𝐶 = [𝑠 𝜅 𝜙]𝑇  (arc length 𝑠 , 
curvature 𝜅 , and orientation 𝜙 ), and task space, 𝑝 =
[𝑥 𝑦 𝑧]𝑇  (𝑥 , 𝑦 , and 𝑧  are of the end effector Cartesian 
coordinates). 

 

 
2) Virtual Robot Inverse Kinematics 

The inverse kinematics of the continuum robot can be 
represented by that of the spatial RRPR virtual robot. After the 
task space coordinates of the continuum robot are derived from 
the continuum robot forward kinematics in (5), the 𝑥, 𝑦, and 𝑧 
coordinates can then be substituted into the inverse kinematics 
of the RRPR robot model to obtain the desired joint space 
vector 𝑞 = [𝜃1 𝜃2 𝑑3 𝜃4]

𝑇. From (1) we obtain 
 3 1 2 3 1 2 3 2,   ,   x d c s y d s s z d c= − = − =   (6) 
Since 

 ( ) ( ) ( )
2 2 22 2 2 2 2

3 1 2 1 2 2 3x y z d c s s s c d + + = + + =
 

  (7) 

Thus 
 2 2 2

3d x y z= + + +   (8) 
The rotation 𝜃2 and 𝜃4 can be obtained from 
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  (9) 
The rotation 𝜃1 can also be derived as 

 1 1 11
1

3 2 3 21
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c
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Analytical inverse kinematics is preferred over numerical 
inverse kinematics for its computational speed which benefits 
real-time experimental implementation. Notice that the inverse 
kinematics in (8)-(10) has a unique solution as 𝑑3 is physically 
only positive and 𝜃1, 𝜃2, and 𝜃4 have only one solution. 

TABLE I 
LINK PARAMETERS FOR VIRTUAL RRPR ROBOT MANIPULATOR 

LINK 𝜃 𝑑 𝑎 𝛼 
1 𝜃1 0 0 90 
2 𝜃2 0 0 -90 
3 0 𝑑3 0 90 
4 𝜃4 0 0 -90 

 
 

 
Fig. 3.  Continuum robot section (left), is modeled based on virtual RRPR 
discrete-jointed robot (right). 
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3) Virtual Robot Dynamics 
Incorporating the dynamics of the continuum robot is vital 

for model-based dynamic control of continuum structures. The 
dynamic equations of motion, which p rovide the relationships 
between actuation and the acceleration, form the basis for 
several computational algorithms that are fundamental in 
control and simulation. In this article, the virtual RRPR rigid-
link robot dynamics is derived and exploited to approximate the 
dynamics of a 3D continuum architecture. For motion control, 
the dynamic model of a virtual RRPR mechanism is 
conveniently described by Lagrange dynamics represented in 
the joint-space formulation.  

One continuum robot dynamic modeling approach is based 
on the Cosserat rod model which is built upon a variable 
curvature framework. This model is resolved approximately by 
either numerical integration or by approximating the curvature 
function as a finite linear combination of basis functions [34]. 
However, the improvement in accuracy attained by the Cosserat 
rod model was not significant enough considering its 
computational and sensing cost [14]. Our proposed virtual robot 
model is built upon a CC assumption framework. The model 
represents continuum robot geometry with a well-known 
standardized approach that is modular and generally able to 
describe robots of any continuous shape. The virtual robot 
model is intuitive to understand, and it is sometimes easier to 
incorporate additional complex phenomena such as inertial 
dynamics. Two assumptions were made that further impact the 
design of the model and subsequent control law: (1) The 
approximated continuum robot dynamics is derived from 
virtual rigid-link dynamics, negating the elastic potential 
energy and damping effects, (2) The continuum manipulator 
does not grasp objects, or otherwise contact the environment, to 
change its mass or dynamic properties. 

Then, the Euler-Lagrange dynamics equations of the virtual 
RRPR manipulator can be written in a matrix form as 
 ( ) ( ) ( ),D q q C q q q g q + + =   (11) 
where 𝑞 = [𝜃1 𝜃2 𝑑3 𝜃4]

𝑇 ∈ ℝ4×1  is the joint variable 
vector for the virtual RRPR robot. The vector 𝜏 =
[𝜏1 𝜏2 𝑓3 𝜏4]

𝑇 ∈ ℝ4×1 is the torque applied to each joint 
variable. Specifically, the terms 𝜏1 is the applied torque at the 
first revolute joint which drivers the orientation of the 
continuum robot, 𝜏2  and 𝜏4  are the applied torques at the 
second and fourth revolute joints which form the shape 
curvature of the continuum robot, and 𝑓3 is the applied force at 
the third prismatic joint which elongates/shrinks the continuum 
robot. When deriving the inertia matrix 𝐷(𝑞) ∈ ℝ4×4, the third 
link inertia matrix (𝐼3 ) is determined by assuming the third 
prismatic link of the virtual robot as a solid cylinder of uniform 
mass. The first, second, and fourth link inertia matrices (𝐼1, 𝐼2, 
and 𝐼4) are derived by modeling the links at the two ends of the 
prismatic joint as point masses. The detailed derivation process 
and derived terms of the inertia matrix 𝐷(𝑞), centrifugal and 
Coriolis matrix 𝐶(𝑞, 𝑞̇) ∈ ℝ4×4  and gravity matrix 𝑔(𝑞) ∈
ℝ4×1 can be found via the link https://urlzs.com/wuEWb. 

B. Two-Section Continuum Robot Model 
The kinematics model for a two-section continuum robot 

inherits the one-section continuum robot kinematics model 
derived from Section II.A, with one additional definition. In 
order to preserve orientation during the forward kinematics 
calculation for multiple sections, a problem noted in [35], we 
define the local 𝜙 of the distal section (𝜙2) with respect to 𝜙 of 
the proximal section (𝜙1) as 𝜙2 = 𝜙2′ − 𝜙1,  where 𝜙2′  is the 
orientation of the distal section with respect to the base frame. 
The local task space coordinates of section 1 and 2, 𝑝1 =
[𝑥1 𝑦1 𝑧1]𝑇 and 𝑝2 = [𝑥2 𝑦2 𝑧2]𝑇, can be derived from 
configuration space variables of section 1, 𝐶1 =
[𝑠1 𝜅1 𝜙1]

𝑇,  and section 2, 𝐶2 = [𝑠2 𝜅2 𝜙2]
𝑇, using (5) 

to solve the forward kinematics. The inverse kinematics can be 
readily solved by deriving local joint space coordinates of 
section 1, 𝑞1 = [𝜃1 𝜃2 𝑑3 𝜃4]

𝑇 , and 2, 𝑞2 =
[𝜃5 𝜃6 𝑑7 𝜃8]

𝑇 , from 𝑝1  and 𝑝2  using (8)-(10). 
Consequently, the two-section continuum robot joint space 
vector, 𝑞 = [𝑞1𝑇 𝑞2

𝑇]𝑇 ∈ ℝ8×1 , task space vector, 𝑝 =
[𝑝1

𝑇 𝑝2
𝑇]𝑇 ∈ ℝ6×1 , and configuration space vector, 𝐶 =

[𝐶1
𝑇 𝐶2

𝑇]𝑇 ∈ ℝ6×1, are obtained by concatenating variables 
from both continuum robot sections.  

The dynamic model for a two-section continuum robot can 
be modeled by combining two virtual RRPR robots into an 8-
DoF RRPRRRPR rigid-link robot. The 8-DoF model of this 
virtual robot is constructed in a way so that the interface 
between the two RRPR robots aligns the last/first z-axes (see 
Fig. 3), as the 8-DoF virtual robot needs to model the continuum 
case where the tangent between two sections are aligned. 
Sharing the same equation form as (11), the dynamics model 
for the virtual 8-DoF robot is derived via the Euler-Lagrange 
approach to compute torques, 𝜏(𝑞) ∈ ℝ8×1 . For the sake of 
space and conciseness, the inertia matrix 𝐷(𝑞) ∈ ℝ8×8 , 
centrifugal and Coriolis matrix terms in 𝐶(𝑞, 𝑞̇) ∈ ℝ8×8 , as 
well as the gravity matrix 𝑔(𝑞) ∈ ℝ8×1 , as derived by the 
authors for the 8-DoF virtual robot dynamics, is stored in the 
link https://urlzs.com/vSmxy for reference. 

The procedure for mapping configuration space to joint space 
for the continuum robot dynamics and control is demonstrated 
in Fig. 4. The input desired trajectory was represented in the 
configuration space, 𝐶, and was used to calculate the desired 
continuum robot task space, 𝑝, using the forward kinematics in 
(5). Subsequently, the virtual robot variables, 𝑞, were derived 
from the inverse kinematics using (8)-(10) and fed into the 
control system as a desired reference input signal. Two input 
local coordinates (𝑝 = [𝑝1𝑇 𝑝2

𝑇]𝑇), one for each section, are 
used for generating a unique joint space variable solution, 𝑞 =
[𝑞1

𝑇 𝑞2
𝑇]𝑇 , preventing multiple solutions to inverse 

kinematics for the two-section model. 

III. CONTROL SYSTEMS DESIGN 
The modeling strategies of the previous section form the 

basis for control approaches needed for continuum robots. We 
seek and exploit simple, relatively computationally inexpensive 
control methods used in (rigid-link) robot control systems [2] 
to design the controller in the virtual RRPR (one-section) and 
RRPRRRPR (two-section) robot coordinates. Multiple control 
methods, such as adaptive control [32], optimal and robust 

https://urlzs.com/wuEWb
https://urlzs.com/vSmxy
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control [30], and learning control [36], are widely used in 
robotics. Each control method has advantages and 
disadvantages. However, the main aim of the system is to 
provide stability and high-frequency updates. In this work, we 
adopt the computed-torque [37] approach for the virtual robot, 
with the sensing and actuation transformed from and to the 
continuum robot, respectively. 

 
The computed torque control consists of an inner nonlinear 

compensation loop and outer loop with an exogenous control 
signal 𝑢. The computed torque control law is given by 

 
( )  ( ) ( ),d

d p i

D q q u C q q q g q

u K e K e K edt

 = + + +

= + + 
 (12) 

where 𝐾𝑑 , 𝐾𝑖 , and 𝐾𝑝  are symmetric positive definite design 
matrices and 𝑒 = 𝑞𝑑 − 𝑞 denotes the position error. The term 
𝑞𝑑  expresses the desired virtual robot joint positions. Notice 
that the control law (12) contains the control signal 𝑢 which is 
of the proportional-integral-derivative (PID) type. However, 
the terms in 𝑢  are pre-multiplied by the inertia matrix  
𝐷(𝑞𝑑 − 𝑒). Therefore, the computed torque control is not a 
linear controller as is the classic PID.  The classic PID control 
can be inefficient because the controller contains ambiguity 
when environmental conditions or dynamics change. 
Experiments that compare the performance of proposed the 
dynamic control with that of PID control is presented in Section 
IV.D.(1). 
 The closed-loop equation is obtained by substituting the 
control action, 𝜏, from (12) in the robot dynamic model (11) 
 ( ) ( ) d d p iD q q D q q K e K e K edt = + + +

   (13) 

The overall controller of the virtual robot is shown in Fig. 5. 
The values of the controller gains, i.e., 𝐾𝑑 , 𝐾𝑖 , and 𝐾𝑝, were 
determined according to an iterative experimental process to 
maximize controller performance. The desired joint space 
vector, 𝑞𝑑 ∈ ℝ𝑛×1 (𝑛 = 4 for one-section and 𝑛 = 8 for two-
section), derived from the desired configuration space in 
Section II, served as the control system setpoint. Their first and 
second order derivatives were numerically estimated and served 
as the inputs to the controller through ℝ𝑛×1 vectors 𝑞𝑑, 𝑞̇𝑑, and 
𝑞̈𝑑. The output of the controller, 𝑢 ∈ ℝ𝑛×1, was then used to 
establish the torque signal 𝜏 ∈ ℝ𝑛×1  along with systems 
𝐷(𝑞) ∈ ℝ𝑛×𝑛 , 𝐶(𝑞, 𝑞̇) ∈ ℝ𝑛×𝑛 , and 𝑔(𝑞) ∈ ℝ𝑛×1  matrices. 
Next, the control action, 𝜏 ∈ ℝ𝑛×1, was converted to actuation 
space in the form of pressure and applied to the physical 

continuum robot, which in turn feeds back the current 
continuum robot shape configuration via encoder data. The data 
was subsequently converted to virtual robot rotation and 
translation signal vector 𝑞 ∈ ℝ𝑛×1 , whose first derivative 𝑞̇ 
was numerically estimated and input to the controller to form 
the error and drive the control action. 

 

IV. EXPERIMENTAL IMPLEMENTATION 

A. Experimental Setup 
To further demonstrate the validity of the proposed controller 

based on the virtual rigid-link dynamics model, the experiments 
are conducted on the tip and mid-sections of the OctArm 
continuum manipulator [27], [28]. The OctArm, whose 
structure is shown in Fig. 6a, is a 9-DoF pneumatically actuated, 
extensible, continuum robot capable of motion in three 
dimensions. The kinematically redundant manipulator is 
comprised of three serially connected sections: base, mid, and 
tip-section. Each of the three sections can extend (with arc 
length 𝑠 ) and bend in any direction (with curvature 𝜅  and 
orientation 𝜙 ), providing three DoF for each section. The 
OctArm is constructed using compressed air-actuated 
McKibben extension muscles with three control channels per 
section; see Fig. 6c [27]. The mid-section has three pairs of 
McKibben actuators spaced radially at 120 degrees intervals, 
forming one control channel per pair. Such mid-section design 
leads the muscle actuators to be designed for a larger radius and 
results in higher stiffness and load capacity, though at the 
expense of manipulability. The tip-section of the device is 
comprised of three single McKibben actuators arranged radially 
at 120 degrees intervals, resulting in greater manipulability as 
compared to the mid-section. 

To acquire the configuration space (arc length 𝑠, curvature 𝜅, 
and orientation 𝜙) of the OctArm in real-time, shape sensing is 
added to the robot by mounting nine draw wire encoders at the 
base section: one for each control channel (Fig. 6b). Each 
encoder senses the length of the respective control channel, and 
the shape of each manipulator section is inferred assuming 
constant section curvature.  

A set of experiments utilizing the OctArm and the described 
model were implemented. The model and controller were 
implemented in MATLAB/Simulink environment [38]. 
Interfacing with the OctArm was accomplished using two 
Quanser Q8-USB data acquisition boards [39]. State estimation 
of the system was provided through internal measurements of 
the OctArm via a series of string encoders that run along the 
length of each section muscle. After output torques and forces 

 
Fig. 4.  (a) One-section and (b) Two-section continuum robot model framework. 
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Fig. 5.  Block diagram for computed-torque controller designed for virtual 
RRPR (one-section) and RRPRRRPR (two-section) robot. 
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are computed from the proposed controller, they are converted 
to pneumatic pressures via a series of pressure regulators using 
an output voltage from the Quanser boards. The pressures are 
then applied onto the corresponding McKibben extension 
muscles, where one regulator is assigned to one muscle or one 
muscle pair in the case of the mid-section; see Fig. 7. A full 
torque/force to pneumatic pressure conversion technique is 
formulated and discussed in Section V.B. Experiments on both 
one section (tip-section, 3-DoF) and two sections (tip and mid-
sections, 6-DoF) are conducted in three-dimensional space to 
examine configuration space tracking performance of the 
proposed control method for multi-section continuum robots. 
Results of experiments are presented in Sections V.C and V.D 
and, with discussions and future research contained in Section 
V.E. 

 
B. Torque to Pressure Conversion 

To facilitate the implementation of the proposed controller 
into pneumatically actuated continuum architectures like the 
OctArm, the computed torques [𝜏1 𝜏2 𝑓3 𝜏4] 

𝑇  for 
controlling the virtual rigid-link robot model in (16) must be 
converted into applied pneumatic pressures onto each of the 
pneumatic “McKibben” muscles in the single tip-section. Such 
conversions can be inspired by the movements of the OctArm 
which can be categorized into three distinct motions: (1) 
extension/contraction which determines the continuum robot 
arc length 𝑠 ; (2) bending which accounts for the OctArm 
curvature 𝜅; and (3) torsion which translates to continuum robot 
orientation 𝜙.  

For pure extension/contraction motion, the calculated 
extension force 𝑓3 that results from the RRPR model is equally 
applied to the three muscles to achieve balanced pure extending 

movement. In order to generate simultaneous extending, 
bending, and torsion motions at the single tip-section of the 
OctArm shown in Fig.6c left, the controller generated torques 
𝜏1, 𝜏2, and 𝜏4 which are responsible for driving the rotation 𝜙 
and curvature 𝜅  need to be incorporated. Therefore, the 
pressure applied to the three tip-section McKibben muscle 
control channels can be represented as 
 ( )4 3 1cosp t tP k f b  = +   +      (14a) 

 ( )5 3 1cos 120p t tP k f b   = +  +  +
 

  (14b) 

 ( )3 3 1cos 120p t tP k f b   = +  +  −
 

  (14c) 

where Δ𝜏𝑡 = (𝜏2  𝜏4) 2⁄ , 𝜙𝑡  denotes the current tip-section 
rotation, 𝑘𝑝 is the conversion gain from torque to pressure, and 
𝑏 is a constant. In (14), the terms 𝑓3, Δ𝜏𝑡, and 𝜏1 account for 
extending, bending, and torsion maneuvers of the tip-section, 
respectively. The difference of pressure given to three distinct 
sets of control channels will generate a bending effect of 
constant curvature that matches the continuum robot kinematics 
model. 

 
Pressure conversion of the two-section OctArm which can be 

modeled as a virtual RRPRRRPR robot is achieved similarly to 
that of the one section. After the derivation of the torque vector 
𝜏 = [𝜏1 𝜏2 𝑓3 𝜏4 𝜏5 𝜏6 𝑓7 𝜏8]

𝑇 , whose first four 
terms model the mid-section and last four terms model the tip-
section, the pressures on three mid-section control channels 𝑃1, 
𝑃2 , and 𝑃3  and the pressures on three tip-section control 
channels 𝑃4, 𝑃5, and 𝑃6 (shown in Fig. 6c), are determined by 
 ( )1 3 1cosp m mP k f b  = +   +     (15a) 

 ( )2 3 1cos 120p m mP k f b   = +  +  +
 

  (15b) 

 ( )3 3 1cos 120p m mP k f b   = +  +  −
 

  (15c) 

 ( )4 7 5cosp t tP k f c  = +   +      (15d) 

 ( )5 7 5cos 120p t tP k f c   = +  +  +
 

  (15e) 

 

 
Fig. 6.  (a) The OctArm manipulator with base, mid, and tip sections, (b) 
OctArm based-mounted draw wire strain sensors, (c) OctArm actuator cross-
section configurations for tip (left) and mid (right) sections (Dotted lines show 
three control channels) 
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Fig. 7.  Experimental control loop block diagram for two section OctArm virtual 
8-DoF RRPRRRPR discrete-jointed model dynamics control. 
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 ( )6 7 5cos 120p t tP k f c   = +  +  −
 

  (15f) 

where Δ𝜏𝑚 = (𝜏2  𝜏4) 2⁄  drives the mid-section bending 
behavior, Δ𝜏𝑡 = (𝜏6  𝜏8) 2⁄  drives the tip-section bending, 
𝜙𝑚  denotes the current mid-section rotation, and 𝑐  is a 
constant. The values of 𝑘𝑝, 𝑏, and 𝑐 are first approximated to 
ensure that the converted pressure falls in the reasonable range 
in which the OctArm can operate properly. Then, the values are 
finely tuned through iterative experimental process to maximize 
controller performance. 

C. One-section OctArm Experiment 
The first experiment conducted on the OctArm manipulator 

reported here is simultaneous extension/contraction, bending, 
and torsion on one OctArm section. The experiment includes 
the one-section continuum robot model derived in Section II.A 
and intends to actuate only the Octarm tip-section. Detailed 
video footage of the experiment can be found via the link 
https://urlzs.com/HiYMH. In this experiment, the system is fed 
desired arc length 𝑠 a sinusoid with an amplitude 0.03m and a 
frequency of 0.08Hz, as shown in Fig. 8. The desired curvature 
𝜅 is also a sinusoidal signal with an amplitude of 1𝑚−1 and a 
frequency of 0.08Hz while the desired orientation 𝜙 is a ramp 
function with a slope of 0.3 (rad/s) to generate a full 360° 
rotation on the tip-section. During the experiment, the OctArm 
initiated from its natural unpressurized length of 0.34m and 
rapidly converged to the desired arc length with minor error in 
the crest of the sine wave. The actual arc length 𝑠 and curvature 
𝜅 settle relatively fast and no obvious overshoot or oscillations 
are detected. Possibly due to intrinsic settling nature of the PID 
controller, the high-frequency oscillatory motion observed in 
the first cycle of arc length and curvature sinusoid terminates 
after 7 seconds before the system reaches a steady state. Also, 
the robot accomplishes three full 360° rotations in conjunction 
with the sinusoidal arc length and curvature variations. 
Highlighting the effectiveness of the controller, the arc length 
and curvature error plot illustrated in Fig. 9 show that the 
control algorithm implemented on the OctArm only outputs arc 
length and curvature error of ±5 mm and ±0.35 𝑚−1 , 
respectively, which is considered within a reasonable range for 
such a complex maneuver with this robot.  

 

 
To further demonstrate the control performance of the one 

section continuum robot during concurrent extending, bending, 
and rotation in joint space, the virtual RRPR joint variables of 
the OctArm tip-section are displayed in Fig. 10. Directly 
derived from the encoder generated OctArm configuration 
space variables, the joint space variables not only demonstrate 
the efficacy of the controller but also reflect the accuracy of the 
proposed continuum architecture approximation using virtual 
RRPR rigid-link model. The actual joint variable values from 
the OctArm encoders track the desired joint variables from the 
virtual RRPR robot inverse kinematics relatively well. The 
oscillation at the beginning of the experiment, and minor error 
at the sinusoid crest observed in the configuration space 
occurred in the joint space as well.  

 
D. Two-section OctArm Experiment 

The models for the complete, two-section continuum robot 
are formed in the Section II.B by deriving the forward 
kinematics, inverse kinematics, and dynamics for the virtual 
RRPRRRPR rigid-link robot. After implementing the models 
into the system described in Fig. 2, the computed torques 
applied on all eight virtual joints are converted to six pressure 
signals which are used to actuate the OctArm mid and tip-
sections. In this section, three experiments were conducted to 
study (1) the difference between classic static PID controller vs 
the proposed dynamic controller, (2) the controller’s ability to 
handle fast maneuvers, and (3) the controller’s performance 
under complex manipulator trajectory. 
1) Two section experiment 1: Classic PID vs Our Approach 

In a first experiment, the proposed dynamic model-based 

 
Fig. 8.  One section experiment (OctArm tip section) — Desired (blue solid 
line) and actual (red dashed line) arc length 𝑠, curvature 𝜅, and orientation 𝜙 in 
configuration space 
  

 
Fig. 9.  One section experiment (OctArm tip section) — Arc length 𝑠, and 
curvature 𝜅 error on OctArm in configuration space 
 
  

 
Fig. 10.  One section experiment (OctArm tip section) — Desired and actual 
𝜃1, 𝜃2, 𝑑3, and 𝜃4 of the virtual RRPR rigid-link model in OctArm joint space. 
 
  

https://urlzs.com/HiYMH
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controller is tested against the classic static PID controller. 
Therefore, the dynamic terms, 𝐷(𝑞), 𝐶(𝑞, 𝑞̇), and 𝑔(𝑞), along 
with the feedforward term, 𝑞̈𝑑, in Eq. (12) are deactivated, such 
that only PID terms are active (𝜏 = 𝐾𝑝𝑒  𝐾𝑑𝑒̇  𝐾𝑖 ∫ 𝑒𝑑𝑡). 
The gains 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖 used for the static PID and proposed 
dynamic controller are identical. The desired arc length and 
curvature for both sections remains constant: 𝑠𝑚𝑖𝑑 = 0.36𝑚, 
𝑠𝑡𝑖𝑝 = 0.37𝑚 , 𝜅𝑚𝑖𝑑 = 2𝑚−1 , and 𝜅𝑡𝑖𝑝 = 3𝑚−1 . The mid-
section follows a sinusoidal rotation 𝜙𝑚𝑖𝑑 = 2 sin(0.6𝑡) − 1 
whereas the tip section has no desired torsional motion. 

The desired and actual arc configuration space variables for 
both dynamic model-based controller and the classic static PID 
controller are presented in Fig. 11. Both controllers achieved 
decent arc length tracking performance: ±4𝑚𝑚  error for 
dynamic controller and ±5𝑚𝑚 error for PID controller during 
steady state (Fig. 12). However, the dynamic controller rose to 
and settled at the steady state much faster than the PID 
controller. A similar trend was observed in the mid and tip 
section curvature tracking which further verified excellent 
performance delivered by the dynamic controller. Not only was 
the dynamic controller’s error much smaller (Fig. 13), but also 
its rise and settling times were much shorter, a fact that ensures 
superior responsiveness at the sacrifice of minor overshoot. The 
mid and tip curvature error improvement of the dynamic 
controller compared to the PID controller is 48.1% and 20.5%, 
respectively. We improved the rise time by 94.8%, the dynamic 
controller’s rise time for mid-section curvature is 0.92s while 
the PID controller’s rise time is 17.62s. The proposed virtual 
RRPRRRPR dynamics model based dynamic controller 
captures the nonlinearities of continuum robots and is important 
for industrial applications where time is important along with 
the accuracy. 

 

 
2) Two section experiment 2: Slow rotation vs fast rotation 

The first two-section experiment features two tests with the 
same desired mid and tip sections curvature and arc length. 
However, mid-section rotation of the second test is two times 
faster than that of the first test: 𝜙𝑚𝑠𝑙𝑜𝑤𝑑𝑒𝑠 = 2 sin(0.3𝑡) − 1 
and 𝜙𝑚𝑓𝑎𝑠𝑡𝑑𝑒𝑠 = 2 sin(0.6𝑡) − 1 (see Fig. 13). Detailed video 
footage of the both tests can be found via the link 
https://shorturl.at/kzFU8 (slow) and https://shorturl.at/nyY28 
(fast). This experiment is focused on trajectory tracking 
performance distinction between the two tests with the aim to 
examine the reliability of the 8-DoF dynamics and control 
framework under high-speed working conditions.  

 
The desired and actual configuration space variables for the 

first experiment are shown in Fig. 14 and the configuration 
space tracking error can be found in Fig. 15. Both tests achieved 
remarkable performance regarding mid and tip section arc 
length tracking. The slower experiment demonstrated slightly 
worse arc length trajectory following ability but better 
curvature tracking performance than the faster one, as shown in 
Fig. 15. In addition, the robot with faster mid-section rotation 
demonstrated smaller percent overshoot and shorter settling 
time during curvature tracking than the robot with slower mid-
section rotation. The sinusoidal torsional displacement of the 
mid-section is accomplished smoothly by both tests. 
Collectively, the 8-DoF dynamics model-based controller 
demonstrates excellent performance with decent error 
convergence and fast response in the configuration space for 
both slow and fast maneuvers. 

 
Fig. 11.  Two section experiment 1 (OctArm tip and mid sections) — Desired 
(black solid line) and actual arc length 𝑠, curvature 𝜅 , and orientation 𝜙  in 
configuration space (dynamic controller in blue dotted line, and classic PID in 
red dotted line). 
  

 
Fig. 12.  Two section experiment 1 (OctArm tip and midsection) — Arc length 
𝑠, and curvature 𝜅 error on OctArm in configuration space (dynamic controller 
in blue line, and classic PID in red line) 
  

 
Fig. 13.  Two section experiment 2 (OctArm tip and mid sections) — Desired 
and actual mid-section orientation under slow and fast speed rotations. 
 

https://shorturl.at/kzFU8
https://shorturl.at/nyY28
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3) Two section experiment 3: More demanding maneuver 

A more complicated maneuver with a sinusoidal tip-section 
curvature and arc length trajectory (see Fig. 16), whose video 
footage link is https://shorturl.at/iszP2, is imposed to examine 
the control method resilience against demanding continuum 
robot operations. The desired and actual configuration space 
variables are exhibited in Fig. 17. The arc length for both tip 
and mid-section display outstanding performance with minor 
overshoot on the tip-section. Although the mid-section follows 
the desired curvature trajectory well, it exhibits relatively large 
overshoot and long settling time of approximately 9.3 seconds. 
The tip-section curvature also experiences a major overshoot 
before it reaches a steady state after 15 seconds. Both the tip 
and mid-section track the desired orientation well. Collectively, 
experiment 3 with a more demanding tip-section trajectory to 
follow maintained a decent tracking performance, as shown in 
Fig. 18, where configuration variable errors for both sections 
remained in a reasonable interval.  

 

 

 
E. Discussion and Future Research 

The main objective of the experiments was to evaluate the 
tracking capability of the proposed controller for multi-section 
continuum robots in configuration space. There are four critical 
findings inferred from the experimental evaluations on the 

 
Fig. 14.  Two section experiment 2 (OctArm tip and mid sections) — Desired 
(black solid line) and actual arc length 𝑠 and curvature 𝜅 in configuration space 
(slow rotation in blue dotted line, and fast rotation in red dotted line). 
 

 
Fig. 15.  Two section experiment 2 (OctArm tip and midsection) — Arc length 
𝑠, and curvature 𝜅 error on OctArm in configuration space (slow rotation in 
blue line, and fast rotation in red line) 
 
 
  

 
Fig. 16.  Two section experiment 3: Mid-section rotates from 2.57𝑟𝑎𝑑  to 
−1.43𝑟𝑎𝑑 while the tip section curvature and arc length follows a sinusoidal 
path. The tip section at 26.2s is more curled than the tip section at 36.6s. 
  

Time=26.2s
𝜙𝑚 = 2.57𝑟𝑎𝑑, 
𝜅𝑡 = 4𝑚

−1, 
𝑠𝑡 = 0.3 0𝑚.

Time=36.6s
𝜙𝑚 = −1.43𝑟𝑎𝑑, 
𝜅𝑡 = 2𝑚

−1, 
𝑠𝑡 = 0.35𝑚

Time=32.4s
𝜙𝑚 = 0.08𝑟𝑎𝑑, 
𝜅𝑡 = 2.71𝑚

−1, 
𝑠𝑡 = 0.364𝑚.

 
Fig. 17.  Two section experiment 3 (OctArm tip and mid sections) — Desired 
and actual arc length 𝑠, curvature 𝜅, and orientation 𝜙 in configuration space. 
  

 
Fig. 18.  Two section experiment 3 (OctArm tip and mid sections) — Arc length 
𝑠, and curvature 𝜅 error in configuration space. 
  

https://shorturl.at/iszP2
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OctArm. First, the virtual discrete-jointed robot model-based 
controller accomplishes the configuration space tracking for 
both the single section and two section OctArm trajectories 
satisfactorily. Second, the proposed dynamic model-based 
control, which output less error and faster rise and settling time, 
proves to be superior to the classic PID control. The dynamic 
control also has approximately 75% less arc length error and 
less chattering than the SMC implemented by Kapadia [30]. 
The chattering from the SMC causes high wear of moving 
continuum robot mechanical parts and is an obstacle for its 
implementation. Third, the 8-DoF dynamics based two-section 
continuum robot control design is capable of tracking high 
frequency signals and following complicated configuration 
space trajectories. Finally, the configuration space errors 
exhibit sequential and cyclical nature in both one section and 
two section experiments. The cyclical pattern observed is likely 
due to unmodeled dynamics and the discrepancies between the 
physical system and the ideal model used. Corrections made to 
the model as well as compensation to the physical system could 
reduce or eliminate these behaviors. 

Further studies should investigate the disturbance rejection 
capabilities of the proposed control method. Also, potential 
energy terms for elastic and damping effects can be added to 
the proposed virtual discrete-jointed dynamics model to capture 
the oscillatory and elastic nature of continuum robots and 
pneumatic actuators [40]. Finally, upon the successful 
realization of configuration space control, the proposed 
dynamic control framework should be examined for its task-
space tracking capability.  

V. CONCLUSION 
In this paper, a novel model-based dynamic feedback control 

architecture was introduced for spatial multi-section continuum 
robots. Inspired by conventional rigid link robot computed-
torque control techniques, the control law utilizes the model of 
a virtual, conventional rigid link robot with discrete joints, in 
whose coordinates the controller is developed, to generate real-
time control inputs for the continuum robot. The computed-
torque input was translated to pneumatic pressures applied to 
each pneumatic artificial muscle in the actuator space of the 
continuum robot through a carefully designed converter. This 
controller was implemented on the OctArm—a pneumatically 
actuated spatial continuum manipulator with three sections—
using a control architecture with both feedback linearization 
and PID controller. The forward and inverse kinematics, as well 
as dynamics model approximated by a virtual discrete-jointed 
robot model, are derived for both single and two-section 
continuum robots. The proposed controller was experimentally 
validated on both single and two sections of the OctArm. 
Results from the test demonstrate that the curvature tracking 
error and rise time can be reduced up to 48.1% and 94.8% with 
the proposed dynamic controller when compared to the 
traditional PID controller during multi-section maneuvers. 
Accompanying this paper is video footage showing the 
configuration space tracking motion of the OctArm in 3D space 
as reported in the experimental results. 
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