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ABSTRACT

Objective: Cancer is a leading cause of death, but much of the diagnostic information is stored as unstructured
data in pathology reports. We aim to improve uncertainty estimates of machine learning-based pathology pars-
ers and evaluate performance in low data settings.

Materials and methods: Our data comes from the Urologic Outcomes Database at UCSF which includes 3232
annotated prostate cancer pathology reports from 2001 to 2018. We approach 17 separate information extrac-
tion tasks, involving a wide range of pathologic features. To handle the diverse range of fields, we required 2
statistical models, a document classification method for pathologic features with a small set of possible values
and a token extraction method for pathologic features with a large set of values. For each model, we used iso-
tonic calibration to improve the model’s estimates of its likelihood of being correct.

Results: Our best document classifier method, a convolutional neural network, achieves a weighted F1 score of
0.97 averaged over 12 fields and our best extraction method achieves an accuracy of 0.93 averaged over 5
fields. The performance saturates as a function of dataset size with as few as 128 data points. Furthermore,
while our document classifier methods have reliable uncertainty estimates, our extraction-based methods do
not, but after isotonic calibration, expected calibration error drops to below 0.03 for all extraction fields.
Conclusions: We find that when applying machine learning to pathology parsing, large datasets may not always
be needed, and that calibration methods can improve the reliability of uncertainty estimates.
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INTRODUCTION electronic medical record systems as unstructured free text. Without
An estimated 1.8 million Americans will be diagnosed with cancer manual data abstraction, these important details are unavailable for
in 2020." In nearly all cases, diagnosis is made via tissue analysis, scalable and algorithmic approaches for case identification, risk
described in detail in a pathology report, which is stored in most stratification, prognostication, treatment selection, clinical trial

©The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:/creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com 431

120z Jequiardag 0z uo Jasn Aleiqi Sey [einieN B 8ouslosolg - Aleiqi eluloled 10 Alun Aq 88/226S/L £1/S/S/a1onle/uadoeiwel/woo dnooiwepese//:sdiy woll papeojumod


http://orcid.org/0000-0003-0975-0812
https://academic.oup.com/
https://academic.oup.com/

432

JAMIA Open, 2020, Vol. 3, No. 3

LAY SUMMARY

When a patient has a tumor removed, the details of the diagnosis are written in an unstructured free-text pathology report.
The unstructured nature of such reports renders this information unusable for automated methods that can recommend per-
sonalized treatments or facilitate clinical trial enrollment. To address this, natural language processing systems have been
created to extract information such as the tumor grade from these reports. However, due to the expertise required, annotat-
ing reports is expensive and time-consuming. Second, errors from these systems can lead to incorrect clinical research con-
clusions and negative outcomes for patients. Both of these issues are major obstacles to deployment. In this article, we de-
velop a system for classifying tumor attributes and extracting values from reports. Then we analyze how many labeled
reports are needed across a range of tasks. We find that with only 64 reports we achieve high accuracy, a much smaller
number than many existing datasets, which are in the several hundreds or thousands. Furthermore, we analyze our system’s
ability to estimate the probability of correctness of its outputs. For some tasks, it can reliably estimate this probability but
for others, it's generally overconfident. However, by rescaling these estimates, we greatly improve their reliability.

screening, and surveillance.”> Moreover, access to these data in
structured formats can drive algorithmic personalized treatment
strategies based on pathologic information. For nearly 50 years
investigators have worked to develop natural language processing
(NLP) algorithms to extract these details from pathology reports.*’
However, only a limited number of categorical data elements are
typically extracted and model outputs often lack reliable uncertainty
estimates, limiting the clinical applicability of these systems, only
10% of which have been reported to be in real-world use.’

Parsing pathology reports has traditionally been approached us-
ing rule-based methods.® ' However, designing rules is labor inten-
sive and requires deep involvement of clinical experts. The
complexity and conflicts between rules grow rapidly as the number
of rules increases, and as the underlying documents shift, rules
quickly become ineffective.!* NLP has been applied to pathology re-
port information extraction with promising results, using both clas-
sic NLP (boosting over a bag-of-n-grams representation of the
document) and deep learning approaches (convolutional, recurrent,
and hierarchical attention networks).®'> While most work focuses
on classification tasks involving fields with a small number of labels
(such as histology or margin status), Li and Martinez'?
categorical fields as well as numeric fields such as the tumor size and
the number of lymph nodes examined. Furthermore, many other in-

investigate

formation extraction tasks and methods have been applied to pa-

thology reports, such as Coden et al'*

which creates a knowledge
representation model to represent cancer disease characteristics; Si
and Roberts'® which uses a frame-based representation to extract in-
formation from clinical narratives focusing on cancer diagnosis, can-
cer therapeutic procedure, and tumor description; Xu et al*® which
considers attribute detection as a sequence labeling problem; and

Oliwa et al'”

uses NLP to classify gastrointestinal pathology reports
into internal and external reports and uses Named Entity Recogni-
tion to label accession number, location, date, and sub-labels.
Despite these developments, there has been comparatively little
effort in understanding 2 additional important criteria that are the
basis for reproducibility and real-world use. The first is evaluating
performance as a function of training data size, which informs prac-
titioners about how much data they may need to deploy similar sys-
tems. Creating an annotated corpus is costly and time-consuming,
and accurate assessment of necessary sample size can aid deploy-
ment.'®22 Second, accurate uncertainty estimates for the predicted
results are critical for clinical deployment, as different uses have
varying acceptability thresholds. Having accurate uncertainty esti-
mates means that for all cases where the model score outputs a prob-

ability p, it is correct p percent of the time. An example of a model
with inaccurate uncertainty estimates would be one that gives a pre-
dicted probability of correctness of 90% on all examples but is actu-
ally only correct 10% of the time. Accurate uncertainty estimates
are important for deployment, as lower certainty may be acceptable
if the results are used for initial screening with manual verification
to follow, but higher certainty is required for a clinical decision sup-
port system. Resources can be directed to verification for cases of
high uncertainty, supplanting the need for full manual abstraction.
The source code for this project will be made available under an
open source license to facilitate adoption of NLP tools in cancer pa-
thology.

OBJECTIVE

Our objective was to investigate 2 practical issues that arise when
deploying machine learning-based information extraction systems to
pathology reports, using prostate cancer as a test case. First, we eval-
uate the performance of models as a function of dataset size for
tasks that involve categorical values, such as histologic grade or
presence of lymphovascular invasion, as well as numeric values,
such as tumor size. Second, we describe an approach to model cali-
bration and calculation of uncertainty estimates for each prediction
and assessing the quality of the model’s uncertainty estimates. We
address these gaps in the literature to guide practitioners as they im-
plement these systems in real-world settings.

MATERIALS AND METHODS

Data sources

We used a corpus of 3232 free-text pathology reports for patients
that had undergone radical prostatectomy for prostate cancer at the
University of California, San Francisco (UCSF) from 2001 to 2018,
which were extracted from UCSF’s electronic health record (Epic
Systems, Verona, WI, United States). For each document, annota-
tions for 17 pathologic features, such as Gleason scores, margin sta-
tus, extracapsular extension, and seminal vesicle invasion were
extracted (Table 1) in the Urologic Outcomes Database, which is a
prospective database that contains clinical and demographic infor-
mation about patients treated for urologic cancer. Since 2001, data
have been manually abstracted by trained abstractors under an insti-
tutional review board (IRB) approved protocol. This study was sep-
arately approved by the IRB.
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Table 1. Data elements extracted from pathology reports

Data elements

Description

Document classifier algorithm fields
Gleason GradePrimary, secondary, tertiary

Tumor histologic type

Cribriform pattern
Treatment effect

Margin status for tumor

Margin status for benign glands

Perineural invasion
Seminal vesicle invasion
Extraprostatic extension
Lymph node status

Token extractor algorithm fields
Pathologic stage classification
T (primary tumor)
N (regional lymph nodes)
M (distant metastasis)
Tumor volume
Prostate weight

Histologic grading of tumor aggressiveness based on the Gleason grading system. Each specimen

is assigned a primary, secondary, and occasionally a tertiary score, each of which are whole
numbers from 1 to 5

Primary histologic type, such as acinar adenocarcinoma, ductal adenocarcinoma, and small cell
neuro-endocrine carcinoma

Whether the cells exhibit a cribriform growth pattern (Gleason 4 only)

Indicator whether there is evidence of a prior treatment, such as hormone treatment
or radiation therapy

To evaluate surgical margins, the entire prostate surface is inked after removal. The surgical
margins are designated as “negative” if the tumor is not present at the inked margin and
“positive” if tumor is present at the inked margin

The benign margins are designated as “positive” if there are benign prostate glands present
at the inked margin and “negative” otherwise

Whether cancer cells were seen surrounding or tracking along a nerve fiber within the prostate

Invasion of tumor into the seminal vesicle

Presence of tumor beyond the prostatic capsule

Whether tumor was identified in lymph nodes

Based on American Joint Committee on Cancer TNM staging system for prostate cancer.

Based on the edition used in each report (5th-8th edition)

Amount of tumor identified in prostate specimen (cubic centimeters)
Opverall weight of the prostate (g)

The full corpus was divided into 4 parts, 64% training, 16% val-
idation, 10% test, and 10% true test. We looked at the true test
only while compiling results. In order to handle our diverse set of
fields, we used 2 separate information extraction methods. For cate-
gorical fields, we used a document-based classification method
which has been previously applied to information extraction from
pathology reports.®'? For fields with a large number of possible val-
ues (such as numeric quantities), we used a sequence labeling task to
extract individual tokens from the document.** We applied our
methods to the full training dataset as well as randomly selected sub-
sets of 16, 32, 64, 128, and 256 reports. All models are implemented
in using scikit-learn and pytorch.>*** Detailed explanation of the
pre-processing pipeline and dataset statistics are presented in the
Supplementary Material.

Document classifier methods

For categorical data fields, such as the presence of lymphovascular
invasion, we treat it as a document classification problem. These
fields have between 2 and 6 possible classes (Table 1). We apply
classical methods, such as logistic regression, random forests,
support-vector machines (SVMs), and adaptive boosting (AdaBoost)
on bag-of-n-gram features, as well as deep learning methods, such as
convolutional neural networks and long short-term memory net-
works.

Token extractor methods

Many critical clinical data elements, such as tumor volume, are not
suited for classification because they are not categorical in nature. In
order to broaden the variety of data fields extracted from the
reports, we employ an additional approach which we refer to as to-
ken extractor methods. These methods are well-suited to extract nu-
merical quantities from a document (such as the estimated tumor

volume or the patient’s medical record number, Table 1). For these
fields, we take each token’s surrounding context of k& words repre-
sented as a bag-of-n-grams as the primary features. We additionally
append the token type encoded as a vector to the bag-of-n-grams
context vector. The token type vector specifies whether a particular
token is an ordinary word, a numeric value, or a hybrid of the 2.
These features are used to predict whether or not the token is the to-
ken we aim to extract using logistic regression, AdaBoost, or ran-
dom forest methods. Unlike the document classifier methods, we
excluded SVMs and deep learning methods for the token classifier
due to the impractical computational requirements for our compute
resources. Because our labeled data did not contain the location in-
formation of the token of interest within the document, we labeled
all tokens that matched our label as a positive example at the time
of training. At test time for each token, we compute the score under
the model that this token should be extracted and then choose the
token with the largest score as our final prediction. This token ex-
traction method is applied to the following fields: pathologic T, N,
and M stage, prostate weight, and tumor volume. For additional
details regarding the pathologic stage field, we refer the reader to
the supplementary material. We would like to give a comparison
with a related but slightly different information extraction task of
Named Entity Recognition (NER), which classifies named entities in
text into categories. Like token extraction, this too is a sequence la-
beling task. In NER, this involves labeling each token into a prede-
fined category and in our case, for a given field, we label each token
with a 0 or 1 as to whether or not it is the desired token for this field
and document. As a clarifying example for the distinction between
the tasks, an NER system with procedure as a predefined category
would label all mentions of procedures in a pathology report as the
procedures class. However, this is not what we want, as pathologists
will often discuss multiple procedures in a report, but we are inter-
ested in only the specific procedure that resected the tumor.
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Dataset size and performance

We investigate the performance over varying data-regimes, since for
informaticists who wish to build a machine learning parser on their
data, a critical question is the quantity of data points needed for ade-
quate performance and which methods are most likely to perform
well. We fixed the training set size to 16, 32, 64, 128, and 256
reports, which were randomly drawn from the full training set and
averaged the results over 5 random draws.

Evaluation metrics

For each field, we report the weighted F1 score of the classifier,
which is the weighted sum of the F1 scores for each class in the field,
where the term for each class is weighted by the portion of true
instances of the class. In the Supplementary Tables S1-S4, we report
the micro F1 and macro F1 to better compare to existing literature.
For token extractor models, we compute the accuracy of whether
the token extracted from the report was correct.

Hyperparameter tuning

To tune hyperparameters for the classification models on the full
data, we used random search with a validation set to tune each
method. For each model, we randomly select 20 model-specific
hyperparameter configurations, train the model on the training set,
and obtain weighted F1 scores on the validation set. The model with
the hyperparameter configuration with the highest score is used to
obtain results on the test set. To tune hyperparameters for the classi-
fication models in the low data regimes (training on <256 reports),
we used random search across 20 configurations of hyperparameters
but with 4-fold cross-validation to calculate weighted F1 scores. For
extractor models, we used random search with 20 hyperparameter
configurations and 4-fold cross-validation for both the full data and
low data regimes.

We chose 4-fold cross-validation as it provided a good balance
between performance and computational cost in preliminary experi-
ments. For more details regarding hyperparameter ranges for differ-
ent models, we refer the reader to the Supplementary Materials.

Calibration of systems

To support multiple use cases for the outputs of our model, it is de-
sirable to estimate the model’s uncertainty reflecting the true proba-
bility of correctness for each predicted value. For example, values
that have a low probability of being correct can be flagged for man-
ual verification, or results can be limited to only those with a high
probability of being correct. More rigorously, for a model f and data
distribution X ideally we would like a function P*such that

Pi(f(x) = y [P"(x) = p) =plorallp e [0,1]

One common definition of the discrepancy between the model’s
predicted probability of correctness and its true probability of cor-
rectness is given by the expected calibration error (ECE) which is the
expected difference between the models confidence and its true
probability of being correct.”®

EJIP(f(x) = Y| P (x) = p) - pl]

where f(x)is the model’s prediction for a datapoint point x, Yis the
true value, and P(x) is the model’s predicted probability of being
correct for point x. However, this is typically not able to be mea-
sured in practice, for example if/P\(x)takes on a continuous set of
values, so instead f\(x)is discretized into bins and the ECE*” is de-
fined as follows:

ECE = 3" |By|/n acc(B,) — conf(B,,)|

Where B,,is the mth bin, acc(B,,) is the average accuracy of the
model in bin 2, and conf(B,,)is the average value of P(x) of the
model in bin .

To improve the calibration of our system, we apply isotonic re-
gression.”® In the binary case, it takes the confidence of the models
output of the positive class and fits a monotonic function where the
x-axis represents the model’s confidence score and the y-axis repre-
sents whether or not the model was correct. In the multivariate case,
the calibration method attempts to calibrate the probability estimate
of each class. It does this by first calibrating the probability of each
class in a one-vs-all setting, then after fitting, estimating the proba-
bilities by normalizing the one-vs-all probability for each class.

Error analysis

To understand the potential failure modes of our models, for each
field we manually analyzed 10 errors randomly chosen in our test
set split of the best models in Table 2 by comparing the model out-
put and annotated label with the text of the report to check the
source of the error. If there were fewer than 10 errors for a field, we
analyzed all the model’s errors.

If the error was a result of an incorrect label in our original data
set, it was named as an annotation error. Model errors occurred
when the model extracted the incorrect value for a certain field.
Next, an error was classified as a report anomaly if there was some-
thing wrong with the raw text of the report, such as if the sentences
of a report were repeated many times in the text or there was inter-
nal inconsistency in the report. Lastly, the evaluation error means
that the extracted value was correct but the evaluation method in-
correctly penalized the model such as if the correct extracted token
was 2 for volume of tumor and the model extracted the token “2-
cm” for example.

RESULTS

Document classifier performance

We calculated the weighted F1-score for each data field using the
true test set (Table 2). When working with the full training corpus
(n=2066), convolutional networks perform the best (mean
weighted F1 0.972 across all 12 clinical data elements). However,
we see that the best non-deep-learning method is not far behind with
AdaBoost having a weighted F1 score of 0.965.

Token extractor performance

For token extraction, we measure the accuracy of extracting the cor-
rect token from each document (Table 2). In greater detail, we
choose the most probable token over all tokens in the document and
compare this to the ground truth. We observe that random forests
perform the best out of all the methods with a mean accuracy of
0.883 across § fields.

Performance as a function of dataset size

We see in (Table 3) for the classification fields, the classical machine
learning methods (logistic regression, SVM, AdaBoost, and random
forests) clearly outperform the deep learning methods on average,
likely due to the small amount of training data available. The results
also show that 128 reports are needed for the best methods to
achieve a 0.90 weighted F1 on average across all classification fields.
For the token extractor fields, the results seem to plateau at 64
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Table 2. Weighted F1 scores for classification fields and mean accuracy for token extractor fields on full training data sample (n=2066)

Data elements Logistic AdaBoost Random SVM CNN LSTM Majority class
regression classifier forest accuracy
Gleason grade—primary 0.978 0.971 0.941 0.932 0.981 0.628 0.709
Gleason grade—secondary 0.958 0.943 0.913 0.912 0.968 0.576 0.467
Gleason grade—tertiary 0.923 0.930 0.844 0.886 0.930 0.741 0.901
Tumor histology 0.989 0.995 0.995 0.993 0.995 0.994 0.991
Cribriform pattern 0.963 0.981 0.963 0.968 0.987 0.966 0.997
Treatment effect 0.981 0.979 0.981 0.981 0.981 0.973 0.985
Tumor margin status 0.941 0.953 0.888 0.918 0.950 0.630 0.799
Benign margin status 0.977 0.975 0.972 0.981 0.978 0.967 0.997
Perineural invasion 0.944 0.978 0.938 0.929 0.972 0.613 0.771
Seminal vesicle invasion 0.943 0.974 0.940 0.965 0.976 0.784 0.904
Extraprostatic extension 0.954 0.953 0.882 0.939 0.961 0.778 0.712
Lymph node status 0.983 0.952 0.983 0.973 0.986 0.824 0.570
Mean weighted F1 across classification models 0.961 0.965 0.937 0.948 0.972 0.790 0.817
T stage 0.951 0.954 0.948 - - - -
N stage 0.954 0.954 0.948 - - - -
M stage 0.972 0.969 0.969 - - - -
Estimate tumor volume 0.605 0.765 0.873 - - - -
Prostate weight 0.846 0.855 0.914 - - - -
Mean accuracy for token extractor models 0.866 0.899 0.930 - - - -

CNN, convolutional neural network; LSTM, long short-term memory neural network; SVM, support vector machine.

Table 3. Mean weighted F1 score =+ standard deviation for classification models for classification models and mean accuracy * standard de-
viation for token extractor models on increasing numbers of reports (n) after 5 trials

Model n=16 n=32 n=64 n=128 n=256
Classification models (mean weighted F1 score across all classification fields + SD)
Logistic 0.781 = 0.175 0.846 = 0.117 0.875 = 0.090 0.911 = 0.059 0.934 = 0.041
AdaBoost 0.829 + 0.140 0.878 + 0.100 0.907 = 0.066 0.928 + 0.049 0.945 + 0.034
Random forest 0.795 = 0.169 0.835 = 0.128 0.867 = 0.101 0.882 = 0.088 0.901 = 0.070
SVM 0.738 = 0.214 0.763 = 0.209 0.786 = 0.194 0.842 = 0.112 0.860 = 0.140
CNN 0.720 = 0.225 0.790 = 0.163 0.851 = 0.122 0.893 = 0.086 0.935 = 0.055
LSTM 0.688 = 0.205 0.729 = 0.187 0.743 = 0.203 0.739 = 0.214 0.739 = 0.212
Token extractor models (mean accuracy across all token extractor fields = SD)
Logistic 0.844 + 0.085 0.897 = 0.079 0.892 + 0.096 0.902 + 0.087 0.896 + 0.092
Adaptive boost 0.877 = 0.097 0.892 = 0.080 0.890 = 0.084 0.896 = 0.082 0.890 = 0.092
Random forest 0.897 + 0.180 0.898 + 0.064 0.915 + 0.054 0.920 = 0.041 0.924 = 0.038

CNN, convolutional neural network; LSTM, long short-term memory neural network; SVM, support vector machine.

reports. Our experiments show that a training set size in the thou-
sands is not always needed to adequately extract structured data
from these pathology reports, an important observation for practi-
tioners weighing the cost of creating an annotated dataset.

Effect of calibration

We apply calibration to 2 of our models. For the classification
model, we apply isotonic calibration to boosting and for the extrac-
tor model we apply isotonic regression to the random forest
model.> For the extractor case, we treat the probability of the token
with the highest probability as the confidence score of the model.
We fit our isotonic regression calibration methods on the develop-
ment test set and evaluate the ECE on the test set, binning our uncer-
tainty estimates P(x) into bins of width 0.1 (Table 4). Additional
experiments investigating the ECE as a function of the bin size,
which we include in Supplementary Figures S1 and S2, show that

while the average ECE increased, the difference in the average ECE
between the smallest bin size (4) and the largest (64) was less than
0.02 for both classification and extraction tasks.?”

We find that for most classifications fields, the model had
expected calibration scores less than 0.1 and that isotonic regression
generally improves upon this. Since for each class the one-vs-all
probabilities are calibrated, the calibrated model’s predictions may
differ from the original model if it is not a binary classification prob-
lem, so in addition to the ECE of the model, we list the weighted F1
score of the calibrated model. Conversely, extractor models are not
well calibrated out of the box in general, but surprisingly, by only
using the probability of the token with greatest probability, per-
forming isotonic regression on this single value is enough to achieve
sub 0.05 ECEs.

We also examined when the model was most overconfident,
where we look for examples with high estimated probabilities of be-
ing correct, but which were nevertheless wrong. We found the most
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Table 4. Upper-: classifier accuracy and expected calibration error for boosting before and after isotonic calibration and Lower: expected cal-
ibration error for random forest model before and after isotonic calibration

Data elements Weighted-F1 ECE Isotonic weighted-F1 Isotonic ECE
Classification calibration
Gleason grade—primary 0.95 0.03 0.93 0.03
Gleason grade—secondary 0.94 0.08 0.92 0.14
Gleason grade—tertiary 0.91 0.05 0.91 0.03
Tumor histology 0.99 0.009 0.99 0.007
Cribriform pattern 0.995 0.007 0.995 0.017
Treatment effect 0.99 0.007 0.99 0.003
Tumor margin status 0.96 0.15 0.94 0.013
Benign margin status 0.994 0.007 0.995 0.019
Perineural invasion 0.95 0.26 0.96 0.02
Seminal vesicle invasion 0.987 0.16 0.97 0.02
Extraprostatic extension 0.96 0.12 0.96 0.01
Lymph node status 0.96 0.04 0.98 0.01
Data elements ECE Isotonic ECE
Extractor calibration
T stage 0.155 0.016
N stage 0.144 0.013
M stage 0.007 0.005
Estimated volume of tumor 0.221 0.021
Prostate weight 0.278 0.033

overconfident example in each field and observed that in 10 of the
15 examples the algorithm was correct and the label was actually in-
correct.

Error analysis

The most common type of evaluation error for the token extractor
occurred when the model extracted the right token, but the evalua-
tion method did not correctly score the model (Supplementary Table
S6). For example, if the label for the estimated volume of tumor was
2 (in cm) and the model extracted the token “2-cm”, the model
would be penalized. The most common type of report anomaly oc-
curred when the text in the report was repeated. For example, in one
case, each sentence in the report was repeated 3 times. This was an
issue in the raw text of the report and was not an aberration in pre-
processing. Overall, error analysis shows that the scores given for
the models are likely underestimates and the models actually per-
form better than the raw results show.

For a comprehensive breakdown of errors, we refer the reader to
Supplementary Table S5. Because the pathologic stage errors are
highly correlated (due to the fact that the different types of stages
are encoded in the same token in the text), only the results for the
pathologic T-stage are shown.

DISCUSSION

We have investigated several practical issues in the clinical deploy-
ment of a machine learning-based pathology parsing system and de-
veloped a system that can accurately parse prostate reports across a
variety of fields and provide reliable per-label uncertainty estimates.
Furthermore, we evaluated the number of samples required for ade-
quate performance to guide outside practitioners who are consider-
ing using a learning-based parsers for their datasets.

The dual classification/extraction approach to our pipeline was
developed to accommodate a larger variety of data fields. Yala et al®

applied boosting across twenty binary fields on 17 000 labeled
breast cancer reports and observed strong performance with F1
scores above 0.9 for many fields. Gao et al'? applied hierarchical at-
tention networks to predict tumor site and grade from pathology
reports within the NCI-SEER dataset and noted improvement in
micro-F1 (up to 0.2 greater) compared to baselines across 2 fields
(primary site and histologic grade) for a dataset of lung and breast
cancer pathology reports. Much of the previous work does not at-
tempt to extract all relevant data fields since they rely primarily on
document classification methods which cannot handle continuous
values, such as tumor size or prostate weight or perform the related
but slightly different task of NER. Although Li and Martinez (2010)
attempt to extract data fields based on numeric values using a hier-
archical prediction method, the final prediction step relies on a rule-
based method that has no clear way to be calibrated.'® Furthermore,
while our 2 methods are not run on the same fields, our algorithm
appears to have higher performance in general. Our solution is de-
veloping a sequence tagging algorithm that extracts tokens corre-
sponding to the desired values directly, as well as employing
classifier methods to extract categorical data fields. Each method is
also capable of outputting a score that can be directly calibrated us-
ing isotonic regression. One limitation of our extraction methods is
that we only consider simple bag-of-n-grams-based representations
and it would be interesting to see how sample efficiency or calibra-
tion errors change under a deep learning approach.

Second, we investigated the necessary number of reports needed
for accurate classification for our pathology reports by varying the
size of the training set of reports from 16 to 256 across both classifi-
cation and extraction. While others have performed sample effi-
ciency analysis of NLP algorithms across many tasks,”° to our
knowledge, this has not been investigated for the important applica-
tion of clinical information extraction from pathology reports, with
the exception of Yala et al. who plot dataset size vs performance
over only one method (boosting) and over fields that only take 2 val-
ues.® Overall, we found that only 128 labeled reports were needed
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for the best methods for classification and only 64 for the token ex-
tractor, a small number compared to the dataset sizes used in prior
work. It is important for practitioners who have a smaller dataset to
understand approximately how much performance to expect from a
machine learning-based approach as it can be expensive and time-
consuming to create a large corpus of annotated documents. We
hope this encourages more groups to explore these approaches, as
large datasets may not always be required. Our study is limited by
focusing on a single cancer from one institution, and further work
can assess generalizability to other cancers and sites. Of note, there
was heterogeneity in report structure and style over 20 years.

Another important observation is that the classical statistical
learning methods outperformed deep learning methods by a large
margin when fewer than 256 data points were available, while deep
learning only slightly outperformed logistic regression when using
all 2066 reports in the training set. This suggests deep learning only
adds marginal value and the complexity of the problem, at least for
the reports we worked with, is more suited to classical methods.

Finally, we investigated the reliability of uncertainty estimates of
the model, which to the authors’ knowledge, has not been investi-
gated in other pathology information extraction work. Knowing
which reports are likely to be incorrect can decrease the time needed
to manually verify extracted data and filter uncertain predictions for
tasks like clinical research with small populations, where each pre-
dicted value may have a large impact on conclusions. Through our
calibration work, we observed that the classification model was typ-
ically well calibrated without any modification, whereas our token
extraction algorithm was not. However, by just using the probabil-
ity of the selected token, isotonic regression was a very effective cali-
bration solution. We furthermore investigated when the model is
most likely to be overconfident and found that two-thirds of these
errors were due to incorrect annotation labels, not incorrect algo-
rithm outputs.

CONCLUSION

Creating annotated datasets and reliable systems are serious practi-
cal concerns when developing and deploying biomedical informa-
tion extraction systems due to the high cost of creating annotations
and the impact of errors on patients outcomes. We show when ap-
plying machine learning to pathology parsing, accurate results can
be obtained using relatively small annotated datasets and calibration
methods can improve the reliability of per-label uncertainty esti-
mates.
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