
Democratizing Parallel Filesystem Monitoring

Richard Todd Evans
Texas Advanced Computing Center, University of Texas at Austin

Austin, USA

rtevans@tacc.utexas.edu

Abstract—Parallel filesystems (PFSs) are one of the most
critical high-availability components of High Performance Com-
puting (HPC) systems. Most HPC workloads are dependent
on the availability of a POSIX compliant parallel filesystem
that provides a globally consistent view of data to all compute
nodes of a HPC system. Because of this central role, failure
or performance degradation events in the PFS can impact every
user of a HPC resource. There is typically insufficient information
available to users and even many HPC staff to identify the causes
of these PFS events, impeding the implementation of timely and
targeted remedies to PFS issues. The relevant information is
distributed across PFS servers; however, access to these servers
is highly restricted due to the sensitive role they play in the
operations of a HPC system. Additionally, the information is
challenging to aggregate and interpret, relegating diagnosis and
treatment of PFS issues to a select few experts with privileged
system access.

To democratize this information, we are developing an open-
source and user-facing Parallel FileSystem TRacing and Analysis
SErvice (PFSTRASE) that analyzes the requisite data to establish
causal relationships between PFS activity and events detrimental
to stability and performance. We are implementing the service for
the open-source Lustre filesystem, which is the most commonly
used PFS at large-scale HPC sites. Server loads for specific PFS
I/O operations (IOPs) will be measured and aggregated by the
service to automatically estimate an effective load generated by
every client, job, and user. The infrastructure provides a real-
time, user accessible text-based interface and a publicly accessible
web interface displaying both real-time and historical data.

Index Terms—file system, monitoring, storage, Lustre

I. INTRODUCTION

We are implementing, validating, and deploying in produc-

tion High Performance Computing (HPC) systems a Parallel

FileSystem Tracing and Analysis SErvice (PFSTRASE) that

will enhance the reliability and performance of parallel filesys-

tems (PFSs). As the principle means by which HPC systems

serve data and present globally coherent storage to system

services, applications, and users, the PFS is the most critical

high availability component in many HPC systems. PFS per-

formance and failure events can be unintentionally triggered

in a multitude of ways, often in the form of overloading PFS

servers with IO requests, and can be frequent occurrences in

HPC environments with diverse workloads. The prevalence of

such events can also be expected to grow as data-intensive

This work was supported by the US National Science Foundation [OAC-
1835135].

workloads, such as those found in many Machine Learning-

based applications, consume a greater proportion of cycles

on HPC systems. While performance degradation and failure

events within the PFS can negatively impact every user of a

HPC system, there are no tools that precisely and accurately

portray the current and past condition of the PFS and make

this data widely accessible. PFSTRASE fills this gap.

Much of the reason events are difficult to understand and

resolve is that the PFS is a shared resource with loads induced

from multiple contemporaneous but not necessarily related

IO activities. These activities can cause contention for PFS

resources with no straight-forward way to quantify which

activities have the greatest impact. The information required

to understand and resolve PFS events is typically available

but distributed throughout the PFS in the form of pseudo-files

hosted locally on PFS servers. The extraction, aggregation,

and interpretation of this data requires privileged access to the

PFS servers along with significant time and expertise.

With this data, it is possible to identify a PFS event before

it has widespread impact on users and mitigate its effects,

for example by cancelling an problematic workload (e.g. a

job) or subset of workloads executing on a system before

they overwhelm PFS resources. That workload may then be

inspected and modified to reduce the load it generates on the

PFS. Reducing load can be achieved in many ways and varies

by workload, but usually involves reducing the rate of IOPs

or PFS synchronizations it generates. Negative PFS events can

also be avoided by identifying patterns in multiple distinct,

non-problematic workloads, that when run simultaneously,

may induce pathological loads. Expert administrators may

then restrict the sets of problematic workloads that can run

simultaneously or ensure they are using distinct filesystem

resources. After an event has started impacting users, the signal

identifying the source may be lost because the compromised

PFS components are no longer servicing job requests in

a typical fashion. Historical PFS data is critical in these

situations to diagnose the cause.

PFSTRASE provides aggregated PFS data in a location ac-

cessible to unprivileged users and staff, along with an estimate

of the effective load (load_eff) induced by each client,
job, and user on the filesystem. Both real-time and historical

data are available. In this way the service democratizes PFS

monitoring and health maintenance. All users and staff can

readily see in real-time what load a workload is generating

and it’s contribution to the total load on the PFS. Along

with post-mortem diagnostics of events, the historical data

454

2020 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-6677-3/20/$31.00 ©2020 IEEE
DOI 10.1109/CLUSTER49012.2020.00065

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 20,2021 at 19:23:39 UTC from IEEE Xplore. Restrictions apply.

facilitates the classification of applications according to IO

pattern and development of best practices for how the PFS

can be configured to support them.

We choose to implement PFSTRASE for the Lustre filesys-

tem. Lustre is an open-source, community supported, scalable

PFS well-suited as an HPC storage solution, with clusters of

servers acting in parallel to respond to compute node clients’

requests for data [1]. As the PFS and compute components of

a cluster grows, additional servers can be added to handle new

storage or service requests, enabling scalable performance.

Lustre is a transparent storage solution for users. The same

commands and system calls used to manipulate data on local

storage systems are used on Lustre filesystems from the

perspective of applications and the user. These combined

characteristics of scalable performance and ease of use make

Lustre prevalent PFS in HPC. This open-source PFS was used

in 70% of the top 100 fastest supercomputing sites as of the

writing of this paper [2].

At TACC we’ve been running PFSTRASE on the Lustre

filesystem of the NSF-funded Wrangler cluster for several

months [3]. The Wrangler filesystem has 31 Lustre servers

serving 99-103 clients each. We’ve designed PFSTRASE to

have a minimal overhead and footprint on the PFS, requiring

a constant 0.5% of a single core and 1MB of memory. This

setup currently provides real-time I/O data accessible by any

Wrangler user.

II. PRIOR WORK

Lustre provides access to much of the data necessary to

track and understand IO activity and resource usage in the

Linux procfs filesystem. procfs is a pseudo-filesystem
in the Linux root (‘/’) directory that permits users to query

the current state of certain kernel data structures. A series of

standardized kernel routines are run every time a pseudo-file

in procfs is open and read that display this up-to-date kernel
data as the pseudo-file’s text contents. In the case of Lustre

this data consists of monotonically incrementing counters with

additional statistics. A typical record in a Lustre maintained

pseudo-file contains the following fields for a given IOP:

type, count, min value, max value, sum of values, sum of

squared values. It is possible to compute the average and

standard deviation of the rate for each IOP over specific

time ranges from these quantities. Lustre provides related but

distinct information in this procfs format on the filesystem
clients and servers. Current Lustre monitoring tools, including

PFSTRASE, collect all of their data from these files, with each

focusing on either client-side or server-side collection.

A particularly useful, built-in feature for extracting this

data is Jobstats, available in Lustre release 2.3+ [4]. This
feature tags procfs Lustre IOP data with either the process
name and user id or the value of an administrator-specified

environmental variable (such as JOBID). This feature thus

enables the association of IOPs the server is handling to

sources of IO activity. The data must still be exported from

the server to be accessible, at which point it could be grouped

by clients, jobs, or users with the appropriate processing

infrastructure.
There are a number of third-party tools that collect and

present the data in procfs in various ways:
1) The Lustre Monitoring Tool, or LMT, monitors server
activity [5]. It does not provide information about

clients, or have a mechanism for associating activity

data with processes or job ids. It stores data in a MySQL

database which can be displayed with its lstat, ltop,
or lwatch utilities. lstat and ltop perform func-

tions similar to the Linux utilities stat and top, dis-
playing data such as PFS disk space and inode capacities

and instantaneous server loads, bandwidths, and memory

usage. The data can be stored in a MySQL database and

available for past and current times. lwatch is a GUI
interface to this data that is no longer supported.

2) lltop is a tool which can take a snapshot of filesystem
activity over a configurable time interval [6]. It reports

read/write bandwidths and total IOPS aggregated over

the whole system and can group the data by job if

the source code has been modified and configured to

use a particular system’s job scheduler. Thus it does

provide information connecting overall PFS activity to

jobs and users. It also records PFS server loads. It

does not compute a load_eff and does not break

IOPs down by type, making IO patterns impossible

to recognize. It also relies on direct curl queries to
daemons running on the PFS servers and thus is not

suitable for unprivileged usage - if large numbers of

queries were made simultaneously the performance of

the servers could be compromised.

3) xltop is a real-time version of lltop [7]. It’s top-like
interface heavily influences PFSTRASE’s ncurses-
based text interface.

4) TACC Stats collects a wide variety of performance data
including client-side Lustre statistics [8]. It associates

data with jobids and processes and has a searchable web

interface that automatically flags jobs that may require

further attention, including a list of recent jobs that have

incurred the highest IOP rate. It does not collect PFS

server load or storage target data and cannot correlate

IOPs to load.

5) OVIS project collects a wide variety of performance

data including client-side PFS statistics similar to TACC

Stats [9], [10]. It is additionally able to combine these

statistics with log data in some cases. In June 2019, the

ability to collect PFS server data was added. It does not

have an automatic mechanism to correlate IOPs to load.

None of these existing tools are capable of quantitatively

connecting user and application activities to server loads in

a widely accessible user interface.

III. PFSTRASE DESIGN

A. Data Collection and Aggregation
Because PFS servers are so mission critical to HPC systems

operations and often have software environments that can be

455

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 20,2021 at 19:23:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The pfstop text-interface grouped by job is shown. The filesystem (fid), PFS server (server), job id (jid) and user (uid) are shown with the
nclients, load, load_eff, total IOPS (iops), total MB/s (bytes) and other IOP type rates aggregated over all clients associated with that job. The
interface can be grouped by filesystem, server, user, jobid, or client dynamically by single keystrokes. The data can also be sorted by load_eff, iops, or
bytes by single keystrokes. The interface updates at a configurable interval. The user names have been truncated in this figure to maintain anonymity.

challenging to modify, we’ve designed the PFSTRASE collec-

tion mechanism to be as low overhead and minimally invasive

as possible. The collection is performed by either a init.d
or systemd governed daemon running on each server. The
daemon is written in C with only two package dependencies

external to standard glibc-wrapped Linux system calls -

libev for event synchronization and json-c for data or-
ganization. It is vital for wide adoption of PFSTRASE that

dependency requirements are minimized because PFS servers

often run their own vendor-customized Linux OS distributions

that have limited software support.

The CPU overhead of the daemon on each PFS server is

impacted by the processor architecture, number of clients, and

the frequency of sampling. We have measured an average

overhead of 0.5% on a single Intel Xeon E5-2680 v3 (Haswell)

core at a 5s sampling frequency on a Lustre server with

101 clients. Comparable CPU overhead could be maintained

on larger systems by reducing the sampling frequency or

newer CPU architectures and/or additional cores. The memory

footprint of the daemon is determined by the number of clients

mounted on the server and is found to be 1040KB for 100

clients, or about 10KB per client. Thus the memory footprint

will be small even for very large systems.

Existing monitoring tools that collect and aggregate data

from the PFS servers require direct access to the servers or ac-

tively poll the servers. These mechanisms violate the isolation

of the servers and can introduce unpredictable load on them

based on how many requests are in flight and at what time res-

olution. Thus such tools are unsuitable for unrestricted usage

by users and staff. The PFSTRASE collection daemon sends

collected data off-node to a pfstrase_server daemon

running in a publicly accessible space such as a login node at

a constant rate. In contrast to other server collection methods,

the collection daemon need never be accessed externally to

the PFS server and thus generates a constant and predictable

overhead regardless of demand for the data it provides.

The pfstrase_server daemon aggregates the data and
publicly exposes it in a read-only, memory-mapped file while

concurrently sending the data to a database backend. The

data it exposes is tagged by filesystem, server name, client

name, job id, and user. Much of the data sent from each

PFS server is in a per-client format but labeled by what is

known internally to Lustre as a nid rather than a hostname.
This is because the clients’ hostnames are unknown to the

PFS servers, and thus a map of client nids to client hostnames

must be maintained within pfstrase_server. The same

mapping allows the data to be unambiguously tagged by client,

job, and user on a single-tenant system (the development of

efficient means for handling shared nodes is still an open

topic of research). nid-to-client, client-to-job, and job-to-user

mapping data is conveyed to pfstrase_server through a
TCP socket that accepts json formatted text. The socket-based

approach to updating the mapping enables updates to be made

in a multitude of ways at whatever frequency is determined

to be appropriate. We recommend updating the job mapping

every time a job starts and stops in order to have the most

up-to-date mapping.

The pfstrase_server daemon has very few depen-

dencies, although the publicly accessible node it runs on is

typically far more flexible regarding the software that can be

installed and supported on it compared to the PFS servers. The

server is also written in C in order to maintain low overhead on

the public node. For Wrangler’s filesystem, comprised of 31

filesystem servers with 99-103 clients, pfstrase_server
requires 15% of a core on average and roughly 170 MB of

memory. This requirement is independent of the number of

queries made to the server because the data is exposed in a

read-only, memory-mapped file and database backend.

B. Real-time Text Interface

The data in the shared memory-mapped file can be accessed

and viewed by any user using pfstop, a top-like text
interface heavily inspired by xltop. Unlike xltop, pfstop
does not query the PFS servers directly and can be safely

run by any user. It can display IOPS and effective loads

(load_eff) per server grouped by clients, users, jobs, or
servers dynamically. The default view displayed by pfstop is
grouped by client and thus tagged by client name (client),
job id (jid), and user (uid). In this view the total server

load (load), load per group by which the data is aggregated
(load_eff per client in this case), IOPS per client (iops)
and total Megabytes/s per client (bytes) are also shown. A
detailed view of the data is also available with a key-stroke

that breaks down IOPS by type. Views can then be grouped by

jid, uid, and server. The data are dynamically sortable
by load_eff, iops, or bytes with a keystroke.
A captured image of the pfstop detailed view is shown

in Fig. 1. The PFS server data in this figure are grouped by

jid. The tags showing fid, server, jid and uid can
be seen, while the data from the clients participating in each

job have been aggregated. The load, load_eff, iops,
bytes, and IOPS by type (ping, write_byte, preprw)
per filesystem, server, job and user are shown. While all IOPS

456

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 20,2021 at 19:23:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The PFSTRASE web interface with charts displaying the iops for each server grouped by uid at an instant in time is shown. Different colors and
widths in the annular charts indicate each user and the fraction of total iops than can be attributed to each user. The colors in the center of the annular
charts indicate the total iops on the server. Data can be grouped by jid, uid, or client using the buttons in the upper left of the webpage. IOP type to
display can be chosen from the dropdown menu to the right of those buttons. Data is currently available for any time PFSTRASE was running.

types are displayed in the text interface’s detailed view, some

are omitted in this figure for readability.

load and load_eff are currently expressed as the num-
ber of cores being used at any given time, similar to what is

shown in a command such as uptime. This may be expressed
as a percent CPU utilization in the future based on user

feedback. Additional information collected and aggregated by

the PFSTRASE server, but not currently displayed in pfstop,
includes memory usage per server, 5, 10, and 15 minute load

averages, and PFS disk usage information including inode and

disk space usage. The incorporation of these quantities and

metrics derived from them into the pfstop interface is on-
going work. There are also other statistics we are not currently

collecting but may in the future such as file locks per second

or statistics concerning data transfer sizes of individual read

and write operations.

The most useful definition of load_eff is also still under
investigation. Currently it is computed as an equally-weighted,

linear combination of all IOPS normalized by the total number

of IOPS. We believe this approach to be simplistic, as certain

IOPS may contribute more to the load than others due to a vari-

ety of factors including variation in CPU resources required to

execute an IOP and disc synchronization requirements. While

we don’t expect to achieve perfect correlation of IOPS to load

we expect some linear combination of IOPS to be meaningful,

self-consistent, and provide actionable insight.

We will also be implementing a mechanism to anonymize

the data presented to unprivileged users in pfstop for

HPC sites where this capability is desired or necessary. This

mechanism will show a user their own PFS activity while

obscuring the labeling of other users’ activities. Determining

the privilege-level of a user can be readily determined, for

example, using Linux group memberships.

C. Real-time and Historical Web and Database Interface

pfstop is only capable of displaying real-time data. A
database backend and website is under development to en-

able the exploration of historical trends and enable off-line

analyses such as IO pattern characterization of applications.

The pfstrase_server sends the same data available to
pfstop from the public host (e.g. login node) to a local or

remote database at a configurable interval. We have chosen

to use the TimeScaleDB extension of PostgresSQL for the

database backend [11], [12]. This database has the advantage

that it is highly optimized to work with time-indexed data

while also presenting a conventional SQL interface. Database

calls are made using the pyscopg2 Python Package to

PostgreSQL, while the Django web application framework

serves that data to a website [13], [14]. Interactive plots are

dynamically generated using the Python Bokeh library [15].

An instance of the web interface showing iops on a

subset of filesystem servers at an instant in time is shown

in Fig. 2. The annular chart for each server is broken down

by uid, where the color indicates a particular uid, and
the color’s width indicates the fraction of iops that uid is
generating. The colors in the center of the charts indicate the

total iops for each server. uids and iops can be seen by
hovering over the corresponding sections of the charts. The

data can be grouped by jid, client, or uid by clicking
the corresponding button in the upper left of the webpage. The

IOP type to display in the charts can be chosen from the drop

down menu to the right of those buttons. Data for any time

can be displayed. A heat map displaying the total for each

IOP type on each server in time is also currently available but

not shown here. The colors in the heatmap correspond to the

colors in the center of each chart.

In future work, we will include memory, inode, and disc

usage per server in this web site. We are also exploring other

visualizations and analyses to help identify problematic IO

patterns. This website will be made available to all users with

data anonymized in a configurable manner.

IV. SUMMARY

We have introduced our PFSTRASE project, the current

status of its development, and the next steps of the project.

A prototype of the infrastructure has been implemented,

deployed, and is successfully running on one of TACC’s

production filesystems.

457

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 20,2021 at 19:23:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] OpenSFS and EOFS, “Lustre Wiki,” wiki.lustre.org, accessed: July 2020.
[2] R. Henwood, “Why Use Lustre,”

https://wiki.whamcloud.com/display/PUB/Why+Use+Lustre, accessed:
July 2020.

[3] Texas Advanced Computing Center, The University of Texas at Austin,
“Wrangler Home Page,” https://www.tacc.utexas.edu/systems/wrangler,
accessed: July 2020.

[4] Lustre, “Lustre Software Release 2.x Operations Manual,”
http://doc.lustre.org/lustre manual.xhtml, accessed: July 2020.

[5] LMT, “LMT Home Page,” https://github.com/chaos/lmt/wiki
[http://code.google.com/p/lmt/], accessed: July 2020.

[6] J. Hammond, “lltop,” https://github.com/jhammond/lltop, accessed: July
2020.

[7] J. Hammond, “xltop,” https://github.com/jhammond/xltop, accessed:
July 2020.

[8] R. Evans and J. Hammond, “TACC Stats,”
https://github.com/TACC/tacc stats, accessed: July 2020.

[9] J. M. Brandt, B. J. Debusschere, A. C. Gentile, J. R. Mayo, P. P.
Pébay, D. Thompson, and M. H. Wong, “Ovis-2: A robust distributed
architecture for scalable ras,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on. IEEE, 2008,
pp. 1–8.

[10] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. IEEE Press, 2014, pp. 154–165. [Online]. Available:
https://doi-org.ezproxy.lib.utexas.edu/10.1109/SC.2014.18

[11] Timescale, “Timescale Home Page,” https://www.timescale.com, ac-
cessed: July 2020.

[12] The PostgreSQL Global Development Group, “PostgreSQL Home
Page,” https://www.postgresql.org, accessed: July 2020.

[13] F. D. Gregorio and D. Varrazzo, “Pyscopg - PostgreSQL database
adapter for Python,” https://www.psycopg.org/docs, accessed: July 2020.

[14] Django, “Django Home Page,” https://www.djangoproject.com, ac-
cessed: July 2020.

[15] NumFOCUS, “Bokeh Home Page,”
https://docs.bokeh.org/en/latest/index.html, accessed: July 2020.

458

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 20,2021 at 19:23:39 UTC from IEEE Xplore. Restrictions apply.

