
Ergodic opinion dynamics over networks:
learning influences from partial observations.

Chiara Ravazzi, Member, IEEE, Sarah Hojjatinia, Member, IEEE, Constantino M. Lagoa, Member, IEEE, Fabrizio
Dabbene, Senior Member, IEEE

Abstract—In this paper we address the problem of inferring
direct influences in social networks from partial samples of a
class of opinion dynamics. The interest is motivated by the study
of several complex systems arising in social sciences, where a
population of agents interacts according to a communication
graph. These dynamics over networks often exhibit an oscillatory
behavior, given the stochastic effects or the random nature of the
local interactions process.

Inspired by recent results on estimation of vector autore-
gressive processes, we propose a method to estimate the so-
cial network topology and the strength of the interconnections
starting from partial observations of the interactions, when the
whole sample path cannot be observed due to limitations of the
observation process. Besides the design of the method, our main
contributions include a rigorous proof of the convergence of the
proposed estimators and the evaluation of the performance in
terms of complexity and number of sample. Extensive simulations
on randomly generated networks show the effectiveness of the
proposed technique.

I. INTRODUCTION

Recent years have witnessed the growth of a new research
direction, at the boundary between social sciences and con-
trol theory, interested in studying dynamical social networks
(DSN). As pointed out in the recent survey [1], “this trend
was enabled by the introduction of new mathematical models
describing dynamics of social groups, the advancement in
complex networks theory and multi-agent systems, and the
development of modern computational tools for big data anal-
ysis.” Aim of this line of research is to study the mechanisms
underlying opinion formation, that is to analyze how the in-
dividuals’ opinions are modified and evolve as a consequence
of the interactions among different agents connected together
through a network of relationships.

To this end, several models have been proposed in the
literature based on different communication mechanisms, see
again [1] for a nice survey. These models were proven to be
able to explain certain behaviors observed in the evolution of
opinions, such as the emergence of consensus as in French-
De-Groot models [2], [3], [4], or the persistent disagreement
in social systems when stubborn agents are present [5], [6],
[7]. Among these models, special attention has received the
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Friedkin and Johnsen (F&J) model [8], which has been
experimentally validated for small and medium size groups
[5], [9]. In the F&J model, the agents are influenced by the
others’ opinions, but are not completely open-minded, being
persistently driven by their initial opinions. More precisely, at
each round of communication the agents update their beliefs
by taking a convex combination of the opinions coming from
the neighbors, weighted with respect to an influence matrix,
and their prejudices. It should be noted that this model extends
the French-DeGroot model with stubborn agents, which is
included as a particular case.

A common characteristic of most of the models presented in
the literature is to assume synchronous interactions: in iterative
rounds, all individuals interact with their neighbors (adjacent
nodes in the relationship graph), and their opinions are updated
taking into account others’ opinion and their relative influence
(strength of the interactions). Recently, the F&J model has
been extended to situations in which the interactions occur
following a gossip paradigm [10]. In particular, it was shown
that the average opinion still exhibits the salient convergence
properties of the original synchronous model.

The study of DSN has been very active in these years. On
the one side, the theoretical properties of the proposed models
have been thoroughly investigated [1]. On the other side, these
models have been used to detect communities [11] and to
define new centrality measures to identify social leaders [12],
[13]. These latter have opened the way to the research on
control of DSN, intended as the ability of placing influencers
in an optimal way [14], [15].

However, most research in this field is based on the as-
sumption that the social network is given, and in particular the
influences among individuals are known. For instance, in the
experiments performed by Friedkin and Johnsen in [16], the
relative interpersonal influence was “measured” by introducing
a mechanism in which actors were asked to distribute “chips”
between the actors they interacted with. Clearly, these ad-hoc
solutions are not viable in case of large networks. At the same
time, however, there are now large amounts of data available,
especially in the case of online social networks, and tools for
measuring in real-time the individuals opinions are becoming
available (as e.g. “likes” on Facebook or Twitter, instant polls,
etc.).

These considerations have led to a new research direction,
less explored so far, which aims at directly identifying the
influence network based on collected observations. This prob-
lem has seen an increasing interest from various communities,
such as computer science [17], [18], [19], [20], [21], signal
processing [22], [23], and control community [24], [25], [26],



to mention just a few. We refer the reader to [27] for an
excellent survey of these techniques.

A. Relation to prior literature
One of the first works presenting the idea of using observed

opinions to infer the topology of the underlying inference
structure is given by [28], in which the authors consider
French-De-Groot models with stubborn agents.

We observe that two different approaches, known as finite-
horizon and infinite horizon identification procedures, can be
adopted [29]. In the finite-horizon approach the opinions are
observed for T subsequent rounds of conversation. Then, if
enough observations are available, the influence matrix is
estimated as the matrix best fitting the dynamics for 0 ≤
k ≤ T , by employing classical identification techniques. This
method however requires the knowledge of the discrete-time
indices for the observations made, and the storage of the
whole trajectory of the system. The loss of data from one
of the agents in general requires to restart the experiment.
More importantly, the updates usually occur at an unknown
interaction rate, and the interaction times between agents are
not observable in most scenarios, as observed in [30].

These considerations motivated the infinite-horizon identi-
fication procedure proposed in [28]. This approach performs
the estimation based on the observations of the initial and final
opinions’ profile only, hence it is applicable only to asymp-
totically convergent dynamics. This technique was adopted
in [31] to estimate the influence matrix of a F&J model,
under the assumption that the matrix is sparse (i.e. agents are
influenced by few friends only). In particular, by using tools
from compressed sensing theory, under suitable assumptions,
theoretical conditions to guarantee that the estimation problem
is well posed and sufficient requirements on the number of
observation ensuring perfect recovery are derived.

While the infinite horizon approach is surely innovative
under various aspects, it suffers the clear drawback of being
static. Indeed, the identification does not exploit the dynamical
nature of the system, and it requires knowledge of initial
and final opinion on several different topics to build up the
necessary information to render the problem identifiable. Even
if [31] shows that the number of topics that is necessary to
correctly identify the network is strictly smaller than the size
of the graph, and in many cases scales logarithmically with it,
this information may be sometimes hard to collect.

The present work proposes a solution that goes in the direc-
tion of overcoming the main difficulties of both approaches:
we propose a technique which exploits the dynamical evolu-
tion of the opinions, but at the same time does not require
perfect knowledge of the interaction times, and it can be
adapted to cases when some information is missing or partial.
The main idea is to make recourse to tools recently developed
in the context of identification of vector autoregressive (VAR)
processes [32], [33]. The reader is referred to Section IV-C for
a detailed discussion on the relationship among these results.

A preliminary version of this work appeared in [34]. This
paper improves upon the results presented there both in terms
of the proposed identification procedure and of theoretical
analysis.

B. Paper organization

Section II introduces the main notation and some basic
definitions that are used in the paper. In Section III, the adopted
social interaction model is described, and a precise formulation
of the estimation problem addressed in this paper is provided.
The proposed approach to social network estimation is de-
scribed in Section IV and the corresponding algorithms are
presented in Section V. The theoretical results underpinning
the proposed algorithms are provided in Section VI. Numerical
results illustrating the performance of the proposed approach
are presented in Section VII. Finally, concluding remarks are
provided in Section VIII. The technical proofs are collected
in the Appendix.

II. GENERAL NOTATION

Throughout this paper, we use the following notation: The
set of real numbers is denoted by R and the set of non-negative
integers is denoted by Z≥0. The symbol | · | denotes either the
cardinality of a set or the absolute value of a real number. We
denote column vectors with lower case letters and matrices
with upper case letters. The vector of all ones of appropriate
dimension is represented by 1, and ei is i-th vector of the
standard basis; i.e., the vector that has 1 in its i-th entry and
zeros for all other entries. Given a matrix A, A† and A> denote
its pseudo-inverse and its transpose, respectively. Moreover,
sr(A) is the spectral radius of the matrix A, and a square
matrix A is said to be Schur stable if sr(A) < 1. We denote
the 2-norm, 1-norm, and 0-pseudo norm of a vector x with the
symbols ‖x‖2, ‖x‖1, and ‖x‖0, respectively. The max norm
of a matrix is defined as ‖A‖max

.
= maxij |Aij |, where Aij is

the entry of A in the i-th row and j-th column. For a matrix
A, the symbol ‖A‖2 will stand for its induced 2-norm and
‖A‖F denote the Frobenius norm. We define

supp(A) = {(i, j) : Ai,j 6= 0}.

A matrix A with positive entries is said to be row stochastic
if A1 = 1, and it is said to be row substochastic if A1 ≤ 1,
where the inequality is entry-wise. The symbol vec(A) denotes
the vector composed of the columns of A stacked, and, for a
given vector v, diag(v) is a matrix whose main diagonal is
composed of the entries of the vector v and the rest of the
matrix is zero. Given two matrices A and B, their Kronecker
product is denoted by A ⊗ B, and, for A and B of same
dimension, their entry-wise (Hadamard) product is denoted by
A ◦B. Given a matrix A ∈ Rn×n, we denote by

P+(A) = argmin
M∈Rn×n:Mij≥0

‖A−M‖

the projection of the matrix onto the cone of matrices with
non-negative entries, or, equivalently,

[P+(A)]ij =

{
Aij if Aij ≥ 0

0 otherwise.

A directed graph is a pair G = (V, E), where V is the set of
nodes and E ⊆ V × V is the set of edges. A path in a graph
is a sequence of edges which joins a sequence of vertices. A
directed graph G is called strongly connected if there is a path



from each vertex in the graph to every other vertex. Given a
matrix W ∈ RV×V with non-negative entries, the weighted
graph associated to W is the graph GW = (V , EW ,W ) with
node set V , defined by drawing an edge (i, j) ∈ EW if and
only if Wi,j > 0 and putting weights Wi,j . Moreover, every
node corresponding to a row which sums to less than one is
said to be a deficiency node.

Given a probability space, we denote the expected value of
random variable x by E[x].

III. PROBLEM STATEMENT

In this section, we introduce the adopted opinion dynamics
model, and we formulate the learning problem we are aiming
to solve.

A. Randomized F&J opinion dynamics

We consider a finite population V of interacting individuals
(agents) in a social network. To avoid trivialities, we assume
that |V| > 2. Mathematically, the social network is described
by means of a weighted graph G = (V, E ,W ), where V
represents the agents, E are the potential interactions or
communications, and the influence matrix W ∈ RV×V reflects
the intensity of these interactions. The influence matrix is
adapted to the graph. We denote the orientation of an agent
v ∈ V towards some subject by a scalar value xv . We will
refer to xv as the opinion of agent v.

In the F&J model [35], the opinions can attain a continuum
of values and the times of interactions are discrete. The
dynamics evolve as follows [36]: each agent i ∈ V starts from
an initial belief xi(0) = ui ∈ R, conceived a priori. Then, at
each interaction time k ∈ Z≥0, a subset of nodes Vk of fixed
cardinality is randomly selected from a uniform distribution
over V . If the node i is active at time k (i.e.; i ∈ Vk), agent
i interacts with a randomly chosen neighbor j and updates
its belief according to a convex combination of its previous
belief, the belief of j, and its initial belief. Namely,

xi(k + 1) = λi
(
(1−Wij)xi(k) +Wijxj(k)

)
+(1− λi)ui ∀i ∈ Vk

x`(k + 1) = x`(k) ∀` ∈ V \ Vk, (1)

where λi are parameters defining how sensitive each agent is
to the opinions of the others based on interpersonal influences.
We will refer to λi as the susceptibility of agent i. We assume
that W is row-stochastic, i.e., W1 = 1, and we set Λ

.
=

diag(λ). We assume that Λ 6= I and λi ∈ (0, 1], ∀i ∈ V . We
denote the set of neighbors of node i ∈ V by the notation
Ni

.
= {j ∈ V : (i, j) ∈ E}, the degree di

.
= |Ni| and maximal

degree dmax
.
= maxv∈V dv .

The dynamics (1) can be formally rewritten in the following
form: given Vk and letting θ(k)

.
= {θi}i∈Vk , we have

x(k + 1) = A(k)x(k) + b(k), (2)

where

A(k)
.
=

(
I−
∑
i∈Vk

eie
>
i (I − Λ)

)(
I+
∑
i∈Vk

Wiθi(eie
>
θi − eie

>
i )

)
,

θi = j ∈ Ni with probability 1/di, b(k) = B(k)u, and

B(k)
.
=
∑
i∈Vk

eie
>
i (I − Λ).

It should be noted that the opinions sequence {x(k)}k∈Z≥0

is a Markov process [37], i.e. the conditional distribution of
x(k + 1) given the current state x(k) does not depend on
the past values. Due to the random nature of the dynamical
system and to the pairwise interactions, the Markov process
fails to converge in a deterministic sense, and shows persis-
tent oscillations. However, under suitable conditions, we can
guarantee the convergence of the expected dynamics and the
ergodicity of the oscillations. More precisely, we make the
following assumption involving the topology of the network.

Assumption 1. From any ` ∈ V there exists a path in G from
node ` to a node i such that λi < 1.

Then, the following two results are a direct consequence of
the results in [10].

Proposition 1 (Convergence in expectation). Under Assump-
tion 1, it holds

E[x(k + 1)] = AE[x(k)] + b

where

A
.
= E[A(k)] = (1− β) I + βΛ(I −D−1(I −W )),

b
.
= β(I − Λ)u,

β = |Vk|/|V|, and D is the degree matrix of the network, a
diagonal matrix whose diagonal entry is equal to the degree
di = |Ni|. Moreover, the sequence E[x(k)] converges to

E[x(∞)] = (I −A)−1b.

Theorem 1 (Ergodicity of F&J dynamics). Let Assumption 1
hold. Then

1) x(k) converges in distribution to a random variable x∞
and the distribution is the unique invariant distribution
for (1);

2) the process is ergodic, i.e. there exists a random variable
x∞ such that almost surely

lim
k→∞

1

k

k−1∑
`=0

x(`) = E[x∞]; (3)

3) the limit random variable satisfies E[x∞] = (I−A)−1b.

These properties play a crucial role for our developments
and are illustrated through the following example.

Example 1. We consider the Zachary’s Karate Club dataset
extracted from [38], whose graph is depicted in Figure 1. This
network represents the friendships between 34 members of a
karate club at a US university in the 1970s. The number of
connections is equal to |E| = 78, and the maximal degree of
the network is dmax = 17. The nonzero entries of influence
matrix W are generated according to a uniform distribution
in the range [0, 1], and then the rows are normalized to make



Fig. 1. Zachary karate club network.

(a) Evolution of the opinions.

(b) Evolution of the time averages.

Fig. 2. Friedkin and Johnsen dynamics with random interactions in Zachary
karate club network

W row-stochastic. The sensitive parameters λi are extracted
from a uniform distribution in the range of [0.9, 1].

Figure 2(a) shows the evolution of the opinions. It should be
noticed that the dynamics does not converge and the oscilla-
tions are persistent over the time. However, these fluctuations
are ergodic and the time averages converge to a limit point
corresponding to the limit point of the expected dynamics (see
red circles in Figure 2(b)).

B. Sampling dynamics over networks

Let us consider the opinion dynamics in (1) where the
influence matrix W is unknown. Our goal is to learn the
influence matrix W , or, at least the topology of the influence
network, that is supp(W ), given access to partial observations
from the F&J dynamics. More precisely, at each time we
observe information of the form

z(k) = P (k)x(k), (4)

where P (k) is a random measurement matrix defined by

P (k) = diag(p(k)),

and p(k) ∈ {0, 1}V is a random selection vector independent
of x(k) with known distribution and E[p(k)] > 0. This
provides a general sampling model that can address many
sampling schemes and theoretical results are proven in this
general framework.

Example 2. As an example, consider the so-called intermittent
observations scheme. If we let

p(k) =

{
1 w.p. ρ
0 otherwise

then at k ∈ Z≥0 all observations are available with probability
ρ, or no observations at all are performed. This model allows
to capture the typical situation in which the actual rates at
which the interactions occur are not perfectly known, and thus
sampling time is different from interaction time.

Given the sequence of observation {z(k)}tk=1 we are inter-
ested in constructing an estimation of the matrix W , call it
Ŵt, and in deriving theoretical conditions on the number of
samples that are sufficient to have an error not larger than a
fixed tolerance ε with high probability.

Remark 1 (On the observation scheme). Different observation
schemes other than intermittent observations are possible. For
instance, partial observation schemes as those discussed in
[32], [34], in which at each step each opinion is observed
independently with probability p, are captured by the proposed
framework. However, it should be noted at this point that
different schemes collect different “amounts of information.”
This can result in substantial changes in the performance of
the proposed approach. Hence, although asymptotic results
are proven for arbitrary sampling schemes, the number of
measurements needed for meaningful results can differ sub-
stantially from scheme to scheme.



IV. LEARNING ALGORITHM

Before presenting our approach for the opinions model
identification, we provide a second moments analysis of the
evolution dynamics and its observations.

A. Second moment analysis

We start by introducing the opinions’ cross-correlation
matrix, which is defined as follows

Σ[`](k)
.
= E

[
x(k)x(k + `)>

]
.

The following theorem provides a description of the evolution
of the covariance matrix Σ[`](k), ` = 0, 1, 2, . . . The proof is
provided in Appendix A.

Theorem 2. Assume that in the graph associated with W for
any node v ∈ V there exists a path from v to a node i such
that λi < 1. Then for all k, ` ∈ Z≥0 we have

Σ[`+1](k) = Σ[`](k)A
>

+ E[x(k)]b
>
. (5)

Moreover Σ[`](k) converges to Σ[`](∞) for all ` ∈ Z≥0,
satisfying

Σ[`+1](∞) = Σ[`](∞)A
>

+ E[x(∞)]b
>
. (6)

It should be noted that the relation in (6) is a sort of Yule-
Walker equation, [32], used for estimation in autoregressive
processes.

Using Proposition 1 and after some manipulations, equa-
tion (6) can be rewritten as an algebraic quadratic matrix
equation.

Corollary 1. Solving (6) is equivalent to finding the solutions
of the following matrix equation

f [`](Q) (7)

:= QΣ[`](∞)Q> +Q
(

Σ[`+1](∞)− Σ[`](∞)
)
− bb>

= 0,

with A = I −Q.

Corollary 2. Solving (6) is equivalent to finding the solutions
of the following matrix equation

Σ[`+h+1](∞)− Σ[`+1](∞) = (Σ[`+h](∞)− Σ[`](∞))A
>

(8)

for any given h ∈ Z≥0

Theorem 2, Corollary 1 and Corollary 2 provide some hints
on how to identify the influence matrix W . The main stream
of the methodology is summarized in Figure 3.

B. Proposed methodology

Our approach consists in the following steps (see also
Figure 3):

(a) Sampling the opinion dynamics according to (4).
(b) Estimation of the cross-correlation matrices Σ[`](∞),

` = 0, 1, . . . , NΣ from partial observations {z(k)}tk=1

exploiting ergodicity of the dynamics;

(c) Use of the cross-correlation matrices estimations to
approximate A exploiting the relation (6), (7), or (8)
and project onto the cone of matrices with non-negative
entries.

(d) Use of the transition matrix estimation to recover the
influence network W .

Before presenting the main algorithm some considerations
are in order. Assume that the cross correlation matrices are
known exactly. Then, we need to solve equation (7) in order to
get an estimation of average transition matrix A (see point (c)).
This approach requires to solve a quadratic matrix equation
which is similar to an Algebraic Riccati Equation [39] but
with the main difference that the unknown matrix Q is not
symmetric. However, we can attempt to find a solution to (7)
by solving the following optimization problem

min
Q∈Rn×n

1

2
‖f [`](Q)‖2F . (9)

If f [`](Q) were convex, the minimization problem would admit
a unique solution [40] and several iterative algorithms could
be used for the minimization, as conjugate gradient methods
(see Polak & Ribiére version and Fletcher & Reeves version
in [41]). The main feature of these iterative methods is that
each step requires the evaluation of the gradient and the exact
line searches and the complexity is of order O(|V|6) for each
iteration. An alternative is to use a Matlab function, nleqn,
using the Gauss-Newton and the Levenberg-Marquardt meth-
ods. However, these would need to evaluate the Jacobian
matrix that can be very demanding for large networks.

Remark 2. It is worth remarking that relations in (6) and (7)
require the knowledge of parameters u, β and Λ in order
to compute term b. In case of missing knowledge of these
parameters one can exploit the relation in (8).

In next section we propose two algorithms for social influ-
ence learning that will be compared in terms of accuracy and
prior information on parameters of the dynamics required. The
main difference consists in how to perform point (c), i.e. the
average transition matrix estimation.
• Social Influence lEarNiNg Algorithm I (SIENNA I). The

estimation of average transition matrix A is based on the
relation in (6) to avoid nonlinear optimization. This will
require an estimator of the expected opinions E[x(∞)]
and allow us to perform estimation by solving a linear
matrix equation at the cost of a certain approximation
error that will be evaluated in Theorem 3.

• Social Influence lEarNiNg Algorithm II (SIENNA II).
The estimation of average transition matrix A will lever-
age on the relation (8) in Corollary 2 for a fixed h ∈ Z≥0.

C. Relationship with VAR processes identification

The approach presented in this paper takes inspiration upon
recent works on the identification of vector autoregressive
(VAR) processes from partial measurements.

In particular, the works [32], [33] consider VAR processes
of the form

x(k + 1) = Ax(k) + w(k), with w(k) ∼ N (0, Qw) (10)
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Fig. 3. SIENNA: Main stream of the methodology.

with x(k) ∈ Rn. The goal there is to recover the state
transition matrix A from partial observations of the state x.
We observe that the observation framework considered in
[32], [33] bears some similarities with the one discussed in
Section III-B. Moreover, the flow of the estimation and the
methods proposed in [32], [33] share some common features
(covariance estimation and solution of a sort of Yule-Walker
equations). However, the system (2) considered in this study
is not captured in the VAR setup. Indeed, while (10) considers
a fixed transition matrix A, and the only source of randomness
is given by the additive Gaussian noise, in the setup of this
paper the whole matrix A = A(k) is random. Moreover, as it
can be noticed in the Appendix the tools used for the proofs
are very different.

V. SIENNA: SOCIAL INFLUENCE LEARNING ALGORITHM

The estimators presented in this work (cross-correlation
matrices, transition matrix estimator, etc.) will be computed
on-line, in the sense that, each time a new sample set is
aquired, the estimators will be updated. In the rest of the
paper, the index k will be used for the time representing the
evolution of opinions and the index t is related to the evolution
of estimators.

A. Estimating the expected opinion profile

In order to estimate the expected opinion profile E[x(∞)],
we consider time-averaged observations of z(k). The proof of
the next proposition is a direct consequence of the indepen-
dence assumption and is omitted for brevity.

Proposition 2. The following relation holds

E[z(k)] = π ◦ E[x(k)]

where π = E[p(k)] > 0.

We estimate E[z(∞)] using time averages z(t)
.
=

1
t

∑t
k=1 z(k), and E[x(∞)] by leveraging on Proposition 2

x̂i(t)
.
= zi(t)/πi. (11)

B. Estimating the cross-correlation matrices

In order to estimate the cross correlation matrices Σ[`](∞),
we consider the empirical covariance matrix of the observa-
tions z(k). Let us denote

S[`](k)
.
= E[z(k)z(k + `)>].

We have the following proposition, whose proof follows from
basic arguments, and is given in Appendix B for completeness.

Proposition 3. The following relation holds

S[`](k) = Π[`](k) ◦ Σ[`](k)

where Π[`] .= E[p(k)p(k + `)>].

Since S[`](k) is unknown, we construct an estimate of it
using time averages

Ŝ[`](t)
.
=

1

t− `

t−∑̀
k=1

z(k)z(k + `)>

from which, using the relation in Proposition 3, we compute

Σ̂
[`]
ij (t)

.
= Ŝ

[`]
ij (t)/Π

[`]
ij . (12)

Example 3. It should be noticed that in the special case of
intermittent observations we have π = ρ1

Π[0] = ρ11> and Π[`] = ρ211> if ` 6= 0

from which x̂(t) = z(t)/ρ and Σ̂[`](t) = Ŝ[`](t)/ρ2.

C. Estimating the average transition matrix

Given estimations Σ̂[`](t) of Σ[`](t), we use them to approx-
imate A by exploiting relation in (6). More precisely, we start
by choosing the number NΣ of covariance matrices that are
going to be used in the estimation of dynamics. In particular,
given estimates Σ̂[`](t), define

Σ̂−(t)
.
=

1

NΣ

NΣ−1∑
`=0

Σ̂[`](t); Σ̂+(t)
.
=

1

NΣ

NΣ∑
`=1

Σ̂[`](t).

Using relation (6) and projecting onto the cone of matrices
with non-negative entries. one obtains

Â(t)> = P+

[
Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)]
or, equivalently,

Â(t)> = P+

[
I+Σ̂−(t)†

(
1

NΣ

(
Σ̂[NΣ]−Σ̂[0](t)

)
− x̂(t)b

>
)]

(13)

Remark 3 (On NΣ). It should be remarked that, from a
theoretical point of view, one could simply use NΣ = 1 to
perform the identification. This is exactly the approach we
originally introduced in [34]. However, we observe that larger
values of NΣ can significantly improve performance, espe-
cially when the probability of observation decreases. Indeed,
as the probability of observation decreases, the probability of
the entries of z(k)z(k + 1)T being zero increases, leading to



poorer estimates of covariance matrices when using NΣ = 1.
By using not only z(k)z(k + 1)T for the identification of the
influence matrix, but also z(k)z(k+2)T , ..., z(k)z(k+NΣ)T ,
we have more information and are able to better estimate the
dynamics of the social network.

Remark 4 (On prior information). The procedure presented
in this paper can be easily modified to incorporate prior
information available on the network to be identified. More
precisely, instead of (13), the following estimator can be used

min
A

{
Σ̂−(t)A−

[
Σ̂+(t)− x̂(t)b

>]}
+ γf(A)

s.t. A ∈ Ω

where f is used to “encourage” some property of the net-
work, γ provides a trade-off between accuracy and the desired
property and Ω enforces a priori known structure. For example,
if one wants to determine a sparse network that is compatible
with the data collected, then a good choice for f(A) is the `1
norm of the off-diagonal elements of A [42]. Moreover, if it
is known that there is a set of connections that do not exist,
then Ω is the set of matrices whose entry (i, j) is zero for the
pairs (i, j) that are not connected.

D. Estimating the network topology and the influence matrix

Once an estimate of the average transition matrix A has
been obtained, we can retrieve the topology of the influ-
ence network in a straightforward manner, by noticing that
supp(A) = supp(W ). Hence, we can reconstruct the support
of W by taking the elements of the estimated matrix Â that
are significantly larger than zero.

When parameters β and Λ are also known and λi ∈ (0, 1],
we can estimate the intensity of the influence by exploiting
Proposition 1, writing

Ŵ = D̂Λ−1(A− (1− β)I − βΛ(I − D̂−1)),

where D̂ represents an estimate of the degree matrix D
obtained from the reconstructed support. That is, D̂ is the
diagonal matrix with elements

D̂ii = ‖ai‖0,

with a>i being the i-th row of matrix Â.

VI. PERFORMANCE ANALYSIS

In this section, we provide a theoretical analysis on the
performance of the proposed estimators.

Theorem 3 (Error in expected opinion profile). Let ∆x
.
=

x̂(t) − E[x(∞)] and ∆Σ[`](t)
.
= Σ̂[`](t) − Σ[`](∞). We have

the following bounds

P(‖∆x(t)‖2 ≥ ε1) ≤ C1n

ε21(t+ 1)(1− sr(A))(π?)2

P(‖∆Σ[0](t)‖F ≥ ε2) ≤ C2n
2

ε22(t+ 1)(1− sr(Q))(Π?)2

where C1 and C2 are some positive constants (independent of
t and n), Π? = minij Π

[`]
ij , π? = mini∈V πi, and

Q
.
=

 E[A(k)⊗A(k)] E[A(k)⊗B(k)] E[B(k)⊗A(k)]
0 A⊗ I 0
0 0 I ⊗A

 .
Moreover, if ` 6= 0,

P(‖∆Σ[`](t)‖F ≥ ε3) ≤ C`n
2

ε23(t+ 1)(1− sr(Γ))(Π?)2

with

Γ
.
=

 A⊗A A⊗B B ⊗B
0 B ⊗ I 0
0 0 I ⊗A


and B = E[B(k)].

The proof of Theorem 3 is given in Appendix C. We
can rewrite the results in the following equivalent form that
expresses the speed of convergence of the proposed estimators
as a function of the size of the network and number of samples.

Corollary 3. With probability at least 1− δ we have

‖∆x(t)‖2 ≤
C1
√
n

π?
√
δ(t+ 1)(1− sr(A))

,

‖∆Σ[0](t)‖F ≤
C2n

Π?

√
δ(t+ 1)(1− sr(Q))

,

and, for any ` 6= 0,

‖∆Σ[`](t)‖F ≤
C3n

Π?

√
δ(t+ 1)(1− sr(Γ))

.

where C1, C2, and C3 are some positive constants (indepen-
dent of t and n). Finally, there are positive constants C+, C−
(independent of t and n) such that

‖∆Σ+(t)‖F ≤
C+n

Π?

√
δ(t+ 1)(1− sr(Γ))

and

‖∆Σ−(t)‖F ≤
C−n

Π?

√
δ(t+ 1)(1−max(sr(Γ), sr(Q))

.

Note that we can roughly estimate sr(A) ≤ 1 − β +
βλmax where λmax = maxj λj (see proof of Lemma 2
in Appendix A) and, from Kronecker properties and Schur
stability of A, sr(Γ) ≤ (1 − β + βλmax). In particular, for
the intermittent sampling framework, we have π? = ρ and
Π? = ρ2. Hence, we obtain that in this case the errors in the
estimation of E[x(∞)] and Σ[`](∞) are inversely proportional
to the sampling probability and to the square of the sampling
probability, respectively.

Leveraging on this bounds we can roughly estimate the error
in the average transition matrix as follows. The proof is given
in Appendix D



Theorem 4. Let ∆A(t)
.
= A(t) − Â(t). With probability at

least 1− δ we have

‖∆A(t)‖F

= O

 n3/2(σ+
max + n)

(σ−
min)2Π?

√
δ(t+ 1)(1−max(sr(Γ), sr(Q), sr(A))

 .

(14)

where σ+
max = ‖Σ+‖2 and σ−

min

.
= min(σ−

min, σ̂
−
min), being σ−

min,
σ̂−

min the minimum singular value of Σ− and Σ̂−, respectively

It should be noted that the estimation error on the transition
matrix is based on the previous estimation of the cross-
correlation matrices. In particular, in order to compute (11)
we have to invert (Σ̂+) and the estimation error depends on
the minimum singular value (see also the Proof in Appendix
D).

VII. NUMERICAL EXPERIMENTS

In this section, we provide numerical results that illustrate
the performance of the proposed approach. As mentioned
before, in this paper we mainly focus on a specific observation
scheme; i.e., intermittent observations. In all the examples we
used β = 1 in order to observe a social system where all agents
have updated their opinion. This choice does not affect the
analysis since the rate of convergence will be affected only by
a constant. Diagonal values in matrix Λ were randomly chosen
uniformly between 0.9 and 1. Initial conditions were also
generated randomly with a value between 0 and 1. Moreover,
when not mentioned otherwise, we have chosen NΣ = 5.
The quantity used to measure the performance of covariance
estimation is the residual

RΣ̂+
(k)

.
=
‖Σ̂+(k)− Σ̂−(k)A

>
+ x̂(k) b

>‖F
‖Σ̂+(k)‖F

.

Finally, distance/similarity between two finite sets is mea-
sured using the so-called Jaccard index. The Jaccard index J
of two finite sets A and B is defined as

J(A,B)
.
= |A ∩B|/|A ∪B|,

and in our case was used to measure the different between the
real and the identified set of connections.

We start this section by analyzing the performance of the al-
gorithm SIENNA I. First, to test the scalability of the proposed
method, we performed simulations for several network sizes.
More precisely we considered random networks with node
degree 3 with a number of nodes between 40 and 100. Again,
we assumed that the opinions were measured at every time
instant. The averaged results for 20 simulations are depicted
in Figures 4. As expected, the rate of convergence is similar for
all network sizes with “graceful degradation” of performance
with increasing size. This shows that the proposed approach
scales well with the dimension of the problem. Moreover, the
relative error in the estimate of the influence matrix decreases
approximately at a rate of t−1/2, as predicted by the results in
Theorem 4. Again, performance of both methods is similar.

In the results described above it is assumed that the state
was measured at all time instants. To test how the algorithm
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Fig. 4. Convergence of the proposed scheme in a network with ρ = 1,
degree 3 using intermittent measurements for different population sizes.
Average of 20 simulations.



performs under intermittent observations, we performed simu-
lations for different values of the probability of observation ρ.
The results of 20 simulations were averaged and these are
depicted in Figure 5. As expected, as the probability of obser-
vation decreases the accuracy of the estimate also decreases.
However, there is a “graceful” and predictable degradation
of performance with decreasing ρ, where the decrease of
information collected can be compensated by increasing the
number of measurements.

Again, distance between identified and true network struc-
ture was measured using Jaccard index. We see that the
proposed method recovers the true network structure for high
enough number of measurements.

To further test the performance of the proposed approach,
the algorithm was applied to Erdős Rényi networks of size
N = 50 and probability of connection p = 0.08. This
value of p ensures that the networks are connected (with high
probability). The results obtained are depicted in Figure 6. As
it can be seen, the performance is similar to the networks with
homogeneous degree used in the previous examples.

We now provide results on the influence of the number
of covariance matrices NΣ used on the performance of the
proposed approach. To this end, we considered random net-
works of size 50 and a probability of observation of ρ = 0.9
and varied NΣ between 1 and 10. The results of 20 averaged
simulations are depicted in Figure 7. The plots clearly show the
advantage of using NΣ greater than one. There is a very large
jump in performance from NΣ = 1 to NΣ = 2. Moreover,
performance increases until NΣ = 5 and then more or less
stabilizes. This clearly illustrates that additional covariance
information can compensate for a decrease in collected data.

We now study how the stubbornness of agents affects
the performance of the algorithm. Recall that λi defines the
sensitivity of agent i to the opinions of others and to test
its influence we assumed that all agents had the same value;
i.e., we used Λ = λI . The results are depicted in Figure 8.
Although the theoretical results provided in this paper show
that the smaller the value of λ the faster the convergence of
the mean and covariance estimates, the numerical simulations
show better convergence of the algorithm for larger values
of λ. Our conjecture is that, since equation (5) is satisfied for
all values of k, the algorithm can also leverage the transient
values of the estimates to estimate the network structure. In the
case of large (close to 1) values of λ there is a rich transient
behavior that seems to contain a lot of information on the
network and our approach appears to be able to use it. Effort
is now being put in carefully studying this phenomenon.

Finally, we provide simulation results comparing the per-
formance of SIENNA I and SIENNA II. We start be recalling
that SIENNA II uses less a priori information to compute
estimates of the influence matrix. More precisely, as compared
to SIENNA I, SIENNA II does not require knowledge of the
initial condition of the agents nor of their stubbornness. This is
compensated by estimating one more term associated with the
covariance of the agents’ opinions. In Figure 9 we compare
the performance of these two algorithms by averaging the
results of 20 simulations. As it can be seen, although both
algorithms converge as the number of measurements increases,
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Fig. 5. Convergence of the proposed scheme in a network with N = 50,
degree 3 using intermittent measurements for different values of ρ. Average
of 20 simulations.
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Fig. 6. Convergence of the proposed scheme for random Erdős Rényi
graph with probability 0.08 in a network with N = 50, using intermittent
measurements for different values of ρ. Average of 20 simulations.

SIENNA II has a larger initial error and a slower speed of
convergence. Hence, we believe that SIENNA II should only
be used in cases where the information on initial conditions
and/or stubbornness is not available.

VIII. CONCLUDING REMARKS

In this paper we have addressed the problem of estimating
the influence matrix of randomized opinion dynamics over
networks from intermittent observations. The method well
adapts to the realistic situation in which it is not always
possible to know the instants of local interactions between
agents. More precisely, we have considered cases in which the
system is sampled at times which may differ from the actual
system update times. Convergence of the proposed methods
is proven and their performance is illustrated using randomly
generated gossip dynamics over networks.

It should be noted that the methodology proposed in this
work immediately extends to the general problem of identify-
ing ergodic systems starting from partial observation, that is
systems of the form

x(k + 1) = A(k)x(k) + b(k), (15)

with (A(k), b(k)) independent and identically distributed ran-
dom variables; A(k) is a n × n matrix and b(k) is a n × 1
vector [43].
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APPENDIX

A. Proof of Theorem 2

We first provide the following two lemmas, whose intro-
duction is instrumental for proving Theorem 2.

Lemma 1. Consider a substochastic matrix M ∈ RV×V . If in
the graph associated to M there is a path from every node to
a deficiency node, i.e. a node corresponding to a row which
sums to less than one, then M is Schur stable.

The interested reader can find the proof in [36].

Lemma 2. Assume that in the graph associated to W for any
node v ∈ V there exists a path from v to a node i such that
λi < 1. Then

A
.
= E[A(k)] = (1− β)I + βΛ(I −D−1(I −W )) (16)

and A⊗2 .
= E[A(k)⊗A(k)] are Schur stable. Moreover,

sr(A) ≤ 1− β + βλmax.
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Fig. 7. Comparison of performance for different values of NΣ in a network with degree 3, population 50 and for ρ = 0.8 and ρ = 0.9. The relative error
in the estimation of the average transition matrix and the Jaccard index are averaged over 20 simulations.

Proof. Equation (16) follows from the definition of expecta-
tion. It should be noticed that supp(A) = supp(W ) and

Aii = (1− β) + βλi(1− (1−Wii)/di)

Aij = βλiWij/di if i 6= j.

We get
∑
j Aij = (1 − β) + βλi which is strictly less than

1 if λi < 1. Hence, under the hypothesis, we have that A is
a substochastic matrix corresponding to a graph with a path
from any node v to a node m whose row sums up to less than
one. By Lemma 1 A is Schur stable and from (16) we get that
sr(A) ≤ 1− β + βλmax.

We now prove that A⊗2 is Schur stable. We ob-
serve that A⊗2 is a substochastic matrix as A⊗21|V|2 =
vec(E[A(k)1|V|1

>
|V|A(k)>]). Notice that

[A⊗2](i−1)|V|+j,(h−1)|V|+` = E[Aih(k)Aj`(k)].

Since λi > 0, then A(k)ii > 0 with probability one.
Therefore we have E[Aii(k)Aj`(k)] > 0 iff E[Aj`] > 0 and,
with the same argument, we get E[Aih(k)Ajj(k)] > 0 iff
E[Aih] > 0. Given (i0, j0) ∈ V × V , under the hypothe-
sis, we have that there exists a sequence (i0, i1, i2, . . . in, h)
from i0 to a node h such that λh < 1 and a sequence
(j0, j1, j2, . . . jn, `) from j0 to ` with λ` < 1. It should
be noticed that (h, `) is a deficiency node for the product
graph associated to A⊗2. This implies that there exists an
admissible path (i0, j0), (i0, j1), . . . , (i0, `), (i1, `), . . . , (h, `)
in the product graph associated to A⊗2. Using Lemma 1 we
conclude that E[A(k) × A(k)] is Schur stable. Moreover, we
have ∑

h,`

E[AihAj`]

=

{
1− β + βλ2

i if i = j

(1− β(1− λi))(1− β(1− λj)) if i 6= j.

Proof of Theorem 2: It should be noticed that the opinions
x(k) are bounded, as they satisfy

min
v∈V

uv ≤ xi(k) ≤ max
v∈V

uv =: umax (17)

for all i ∈ V and k ≥ 0. Then E[x(k)] and E[x(k)x(k)>] exist
and are bounded.

By defining

y(k)
.
= [y1(k)>, y2(k)>, y3(k)>]>,

with y1(k) = vec(x(k)x(k)>), y2(k) = vec(ux(k)>),
y3(k) = vec(x(k)u>),

Q(k)
.
=

 A(k)⊗A(k) A(k)⊗B(k) B(k)⊗A(k)
0 A(k)⊗ I 0
0 0 I ⊗A(k)

 ,
and M(k)

.
= [(B(k)⊗B(k))>, (B(k)⊗ I)>, (I ⊗B(k))>]>,

we can easily check that

y(k + 1) = Q(k)y(k) +M(k)vec(uu>) (18)

from which

E[y(k + 1)] = E[E[y(k + 1)|y(k)]]

= E[Q(k)]E[y(k)] + E[M(k)]vec(uu>)

with

Q
.
= E[Q(k)]

=

 E[A(k)⊗A(k)] E[A(k)⊗B(k)] E[B(k)⊗A(k)]
0 E[A(k)]⊗ I 0
0 0 I ⊗ E[A(k)]


=

 E[A(k)⊗A(k)] E[A(k)⊗B(k)] E[B(k)⊗A(k)]
0 A⊗ I 0
0 0 I ⊗A


and M

.
= E[M(k)] = (E[B(k) ⊗ B(k)]>, (B ⊗ I)>, (I ⊗

B)>]>. By Lemma 2 the matrix E[Q(k)] is Schur stable and,
consequently,

lim
k→∞

E[y(k)] = (I −Q)−1Mvec(uu>),

from which we conclude that the sequence E[y1(k)] and
Σ[0](k) = E[x(k)x(k)>] are convergent as k → ∞. From
definition it is easy to verify that

Σ[1](k) = Σ[0](k)A
>

+ E[x(k)]b
>

from which, letting k → ∞ and using Proposition 1, we get
that also Σ[1](k) converges to a limit point satisfying

Σ[1](∞) = Σ[0](∞)A
>

+ E[x(∞)]b
>
.
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Fig. 9. Comparison between SIENNA I and SIENNA II in networks of size
20 with ρ = 0.9 and degree 3 using intermittent measurements. Average of
20 simulations.

Moreover, since for all ` ∈ Z≥0 we have

Σ[`+1](k) = Σ[`](k)A
>

+ E[x(k)]b
>
.

Then, by induction, Σ[`](k) converges to some Σ[`](∞) as
k →∞ and the limit satisfies

Σ[`+1](∞) = Σ[`](∞)A
>

+ E[x(∞)]b
>
.

Remark 5. In alternative way, the result in Theorem 2 for
` 6= 0 can be shown by defining

y[`](k)
.
= [y

[`]
1 (k)>, y

[`]
2 (k)>, y

[`]
3 (k)>]

with y
[`]
1 (k) = vec(x(k)x(k + `)>), y[`]

2 (k) = vec(ux(k +

`)>), and y[`]
3 (k) = vec(x(k)u>) and noticing that there exists

matrices Γ[`](k) and Υ[`](k) such that

y[`](k + 1) = Γ[`](k)y[`](k) + Υ[`](k)vec(uu>)



with

Γ
.
= E[Γ[`](k)]

 A⊗A A⊗B B ⊗A
0 A⊗ I 0
0 0 I ⊗A

 ,
that is Schur stable, and

Υ
.
= E[Υ[`](k)] =

 B ⊗B
B ⊗ I
I ⊗B

 .
B. Proof of Proposition 3

By definition we have

S[`] = E[z(k)z(k + `)>]

= E
[
P (k)x(k)x(k + `)>P (k + `)>

]
.

By stacking the columns of S[`] into a single column vector,
we obtain

vec
(
S[`]
)

= E
[
(P (k)⊗ P (k + `))vec

(
x(k)x(k + `)>

)]
= E

[
E
[
P (k)⊗ P (k + `)vec

(
x(k)x(k + `)>

) ∣∣∣∣x(k)

]]
= E [P (k)⊗ P (k + `)]E

[
vec
(
x(k)x(k + `)>

)]
= E [P (k)⊗ P (k + `)] vec

(
E
[
x(k)x(k + `)>

])
= E [P (k)⊗ P (k + `)] vec

(
Σ[`](k)

)
= E [diag(p(k))⊗ diag(p(k + `))] vec

(
Σ[`](k)

)
from which we conclude the statement.

C. Proof of Theorem 3
We now estimate E[‖∆x(k)‖22]. It should be noticed that

by the definition of (1), the opinions x(k) are bounded, as
they satisfy (17). As a consequence, partial observations z(k)
are bounded and all moments of x(k) and z(k) are uniformly
bounded. Let us denote x? := E[x(∞)] and e(`) := (z(`) −
π ◦ x?) and observe that π ◦ (x̂(k) − x?) = z − π ◦ x? =

1
k+1

∑k
`=0 e(`). We thus have

E‖π ◦ (x̂(k)− x?)‖2 = E

∥∥∥∥∥ 1

(k + 1)

k∑
`=0

e(`)

∥∥∥∥∥
2

=
1

(k + 1)2

k∑
`=0

E
[
e(`)>e(`)

]
+ 2

k∑
`=0

k−∑̀
`=r

E
[
e(`)>e(`+ r)

]
.

From (17) we can ensure that there exists a constant η ∈
R such that 1

(k+1)

∑k
`=0 E

[
‖e(`)‖2

]
≤ η

.
= (umax −

umin)2n, ∀k, where umin = minv uv and umax = maxv uv .
Now, it should be observed that

E
[
e(`)>e(`+ r)

]
= E

[
E
[
e(`)>e(`+ r)|P (`), x(`)

]]
= E

[
e(`)>E [e(`+ r)|P (`), x(`)]

]
= E

[
e(`)> (E [z(`+ r)|P (`), x(`)]− π ◦ x?)

]
= E

[
e(`)>π ◦ (E [x(`+ r)|x(`)]− x?)

]
. (19)

By repeated conditioning on x(`), x(`+ 1), . . . , x(`+ r− 1),
we obtain

E
[
x(`+r)|x(`)

]
= E [A(k)]

r
x(`) +

r−1∑
s=0

E[A(k)]sE[B]u,

and by recalling that x? is a fixed point for the expected
dynamics we get

x? = E [A(k)]
r
x? +

r−1∑
s=0

E[A(k)]sE[B(k)]u. (20)

From equations (19) and (20) we obtain

E
[
e(`)>e(`+ r)

]
= E

[
e(`)>π ◦ (E [A(k)]

r
(x(`)− x?))

]
= E

[
(P (`)x(`)− π ◦ x?)>π ◦ (E [A(k)]

r
(x(`)− x?))

]
= E

[
π ◦ (x(`)− x?)>π ◦ (A

r
(x(`)− x?))

]
≤ ηνr,

where, by Lemma 2, ν = sr(A) < 1. Finally, we have

E
[
‖π ◦ (x̂(k)− x?)‖2

]
≤ η

(k + 1)2

(
k + 1 + 2

k−1∑
`=0

k−∑̀
r=0

νr

)

≤ η

(k + 1)

(
1 +

2

1− ν

)
.

Since ν < 1 we have there exists C1 > 0 such that

E
[
‖π ◦ (x̂(k)− x?)‖2

]
≤ 1

(k + 1)

Cn

1− ν

and, consequently, we get

E
[
‖x̂(k)− x?‖2

]
≤ Cn

(k + 1)(1− ν)(π?)2
,

where π? = minv∈V πv .
We thus have for any ε1 > 0

P(‖∆x(t)‖2 ≥ ε1) = P(‖∆x(t)‖22 ≥ ε21)

≤ E[‖∆x(t)‖22]

ε21

≤ C1n

ε21(k + 1)(1− ν)(π?)2

where the first inequality follows from Markov inequality [44].
The proof of the second part of theorem follows the same

arguments using the recursion in (18) and Remark 6 and we
omit for brevity.

D. Proof of Theorem 4

From definition we have

‖∆A(t)‖F ≤
∥∥∥A(t)− P+

[
Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)]∥∥∥
F
.



Using triangular inequality and the fact that P+ is the operator
that project a matrix onto the cone of positive matrices, we
get

‖∆A(t)‖F ≤
∥∥∥A(t)− Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)∥∥∥
F

+

+
∥∥∥Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)
−P+

[
Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)]∥∥∥
F

≤ 2
∥∥∥A(t)− Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)∥∥∥
F

≤ 2
√
n
∥∥∥A(t)− Σ̂−(t)†

(
Σ̂+(t)− x̂(t)b

>)∥∥∥
2
.

Let us compute∥∥∥A(t)− Σ̂−(t)†
(

Σ̂+(t)− x̂(t)b
>)∥∥∥

2

≤ ‖Σ†−(Σ+ − x(t)b
>

)− Σ̂†−(Σ̂+ − x̂(t)b
>

)‖2
≤ ‖∆Σ†−‖2

(
‖Σ+‖2 + b

>
x(t)

)
︸ ︷︷ ︸

T1

+ ‖Σ̂†−‖2
(
‖∆Σ+‖2 + ‖∆x(t)‖2‖b‖2

)︸ ︷︷ ︸
T2

.

Using the inequality derived in [45], and observing that
‖∆Σ−‖2 ≤ ‖∆Σ−‖F one obtains

‖∆Σ†−‖2 ≤ ‖Σ
†
−‖22‖∆Σ−‖2 ≤ ‖Σ†−‖22‖∆Σ−‖F

=
C−n

σ2
minΠ?

√
δ(t+ 1)(1−max(sr(Γ), sr(Q))

.

Notice that b
>
x(t) ∈ [0, βu2

maxn] from which

T1 = O

 n(σ+
max + n)

Π?σ2
min

√
δ(t+ 1)(1−max(sr(Γ), sr(Q))

 .

For the estimation of term T2 we observe

‖∆x(t)‖2‖b‖2 ≤
C1βumaxn

π?
√
δ(t+ 1)(1− sr(A))

and

‖∆Σ+‖2 ≤ ‖∆Σ+‖F ≤
C+n

Π?

√
δ(t+ 1)(1− sr(Γ))

from which

T2 ≤
Cn(σ+

max + n)

(σ̂−min)2Π?

√
δ(t+ 1)(1− sr(Γ))

where C is a positive constant. By summation of T1 and T2
we get

‖∆A(t)‖F

=O

 n3/2(σ+
max + n)

min(σ−
min, σ̂

−
min)2Π?

√
δ(t+ 1)(1−max(sr(Γ), sr(Q, sr(A))

 .
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