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CONROY, D.E., C.M. LAGOA, E. HEKLER, and D.E. RIVERA. Engineering person-specific behavioral interventions to promote
physical activity. Exerc. Sport Sci. Rev., Vol. 48, No. 4, pp. 170–179, 2020. Physical activity is dynamic, complex, and often regulated id-
iosyncratically. In this article, we review how techniques used in control systems engineering are being applied to refine physical activity theory and
interventions.We hypothesize that person-specific adaptive behavioral interventions grounded in system identification and model predictive control
will lead to greater physical activity than more generic, conventional intervention approaches. Key Words: mHealth, behavioral intervention,
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Key Points

• Physical activity has largely been studied as a static individ-
ual difference instead of a dynamic process.

• Control systems engineering approaches can reveal how be-
havioral interventions influence daily andmomentary phys-
ical activity dynamics.

• System identification of behavioral responses to interven-
tions provides the basis for developing and adapting
person-specific decision rules to select and time behavioral
interventions.

• Person-specific behavioral interventions can be developed,
adapted, and scaled to refine health behavior theories and
address broad and unmet public health needs.

• Whether person-specific adaptive behavioral interventions
are superior to more generic intervention approaches is an
open empirical question.

INTRODUCTION
Most American adults fail to attain recommended levels of

physical activity (1). Insufficient population-level physical ac-
tivity adversely affects health and creates substantial burden
for health care systems (2). Significant time and resources have
been invested to promote physical activity. Yet, to date, these
investments by policy makers, the health care industry, em-
ployers, and consumers have not been sufficient to meet the

challenge. A fundamental barrier to addressing the inactivity
crisis is the misalignment between the nomothetic assumptions
of behavioral theories and interventions that seek to work at
the population level and the idiographic nature of behavioral
dynamics at the individual level. Put simply, a one-size-fits-all
approach to theory and behavioral intervention development
is unlikely to be sufficient for complex, multiply-determined be-
havioral phenomena such as physical activity. We propose that
methods developed in the field of control systems engineering
can be integrated with behavioral science to optimize the ex-
planatory and predictive power of person-specific models of be-
havior. These person-specific models can provide a basis for
refining theories to explain individual behavior and developing
person-specific adaptive intervention approaches. These ap-
proaches use periodically updated models of behavioral re-
sponses to intervention to refine decision rules for delivering
interventions. In this article, we review research applying sys-
tem identification methods to develop person-specific models
of physical activity dynamics and propose that this research sets
the stage for improving physical activity interventions using
model predictive control tools to deliver person-specific adap-
tive behavioral interventions.

ALIGNING THEORY, DATA, AND METHODS FOR
DYNAMIC PHENOMENA

Most theories used to explain physical activity were developed
to differentiate between people engaged in more versus less
physical activity (3). Static summaries of individual differences
in physical activity have been common in this literature. This
approach has been effective for explaining infrequent health
behavior decisions (e.g., whether to get vaccinated against flu
or screened for cancer) but may not be as effective for explaining
and predicting health behavior decision processes (e.g., whether
to move or not) that vary continuously in time (4).
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Studies using ecological momentary assessment and ambula-
tory monitoring methods for capturing intensive longitudinal
data are increasingly common and important in the physical ac-
tivity literature (5). Advances in mobile and sensor technology
have made it possible to capture intensive longitudinal data on
physical activity and associated psychological processes in the
natural context of daily life with limited expense for researchers
or burden for participants (6,7). Intensive longitudinal data
have energized the research community because of their poten-
tial to reveal processes involved in initiating and maintaining
behavior change (8). Access to intensive longitudinal data on
behavior is necessary but not sufficient to study behavioral dy-
namics. Appropriate modeling strategies also are needed (7).

To date, multilevel modeling has been the most common
technique applied to model intensive longitudinal data (9,10).
These models have been applied profitably to test hypotheses
about synchronicity and sequentiality, but, for reasons noted
below, they are not suitable for all modeling purposes with in-
tensive longitudinal data (5). Multilevel models provide fixed
effect estimates that represent the average within-person associ-
ation between two variables (11–13). Caution is needed when
attempting to generalize associations at the interindividual
level to explain within-person processes or system dynamics be-
cause those population-level estimates may not adequately de-
scribe any individuals in the data set (14). At the individual
level, within-person associations can vary quite dramatically
from person to person, so multilevel models often include ran-
dom effects to capture that variance. Even with random effects
in a model, conclusions about fixed effects are conditioned on
an assumption that observations of each participant were made
under similar conditions (15). Just as scientists are cautious
about generalizing conclusions about behavior in the laboratory
to behavior in the natural context of daily life, they also should
be cautious in generalizing conclusions about behavior ob-
served in different contexts of daily life (15). Collecting more
data to represent more diverse contextual exposures is not the
answer to this problem by itself. Approaches that predict future
responses of an individual based on incoming data about that
individual are needed to create a cumulative understanding of
dynamics at the individual level. Multilevel models are not well
suited to that challenge.

Dynamic approaches assume that systems evolve as a function
of both past and present conditions of the system. These systems
require a memory of recent conditions because past states and be-
haviors may impose constraints on future states and behaviors.
For example, future physical activity may be constrained by phys-
iological limits on energy availability or psychological limits for
tolerating fatigue or pain. The science of physical activity promo-
tion will advance most rapidly if person-specific psychological,
contextual, and behavioral dynamics can be leveraged to adapt
or “tune” interventions to the specific requirements of each indi-
vidual. With person-specific models generated, one could then
go on to identify principles that do (and do not) generalize
across members of the population (16).

TRANSLATING BEHAVIORAL THEORIES INTO
COMPUTATIONAL MODELS OF PHYSICAL ACTIVITY

Behavioral interventions to promote physical activity are al-
ways either explicitly or implicitly grounded in a theory or con-
ceptual model of behavior change. In our view, theories are

explanatory tools that integrate principled reasoning and evi-
dence to make sense of observations; they explain why relations
exist between variables. In contrast, conceptual models are de-
scriptive tools for organizing observations and specifying hypoth-
esized causal influences (including feedback loops); they
summarize how variables are related. Conceptual models are
useful because they can be used to operationalize theories math-
ematically and allow users to simulate how changes in one var-
iable might influence change in another.

Conceptual models can vary in complexity. At one end of
the spectrum, models can be quite simple, merely describing
the expected direction of an association between two variables.
At the opposite end, models can be formal mathematical ex-
pressions of systems of relations that unfold between constructs,
behaviors, or contexts and may even change over time. Com-
putational models refer to a broad class of approaches used to
specify beliefs about the dynamic behavior of complex systems
(17). These models can be used to simulate how future behavior
would unfold over time under a variety of conditions. Most
models of physical activity — indeed all health behaviors —
have been closer to the simple than complex end of this con-
tinuum because they rarely address the dynamics of behavior
directly (18). This simplicity is constraining theory and inter-
vention development for complex health behaviors. To
advance the science of physical activity promotion, behavioral
models need to be refined — that is, formally expressed, ex-
panded, and elaborated— into testable computational models.
These models can then be used to guide development of exper-
iments, such as system identification experiments, that formally
test these computational models.

This work is underway. Computational models of health be-
havior emerged in the past decade, initially based on the theo-
ries of reasoned action and planned behavior (19,20). The first
attempts to translate social-cognitive theory into formal compu-
tational models of physical activity occurred shortly thereafter
(6,21). This work implemented a specific class of computational
modeling techniques that describe system dynamics. Figure 1 il-
lustrates a simplified dynamic system in which an input alters a
network of states in the system to effect change on an output.
Inputs represent external factors that influence the states and
outputs being studied. Some inputs are controllable using be-
havior change techniques; others are exogenous and not con-
trollable (e.g., weather conditions). States describe internal
processes that can be modified indirectly (e.g., self-efficacy

Figure 1. Generic dynamical system model showing inputs influencing
states that influence outputs. This system evolves over time, borrowing
information about the recent and present inputs and states to predict
future outputs.
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beliefs). Outputs represent measurable outcomes connected to
the behavior being studied (e.g., step counts). Proof of concept
for computational modeling of physical activity was provided
via secondary analysis of bottom-up change processes in a small
data set from a subsample of data from theMobile Interventions
for Lifestyle Exercise and Eating at Stanford study (6,21,22).
Martín et al. (23) specified a computational model with two in-
puts (skills training and reminders to set goals) and two outputs
(self-efficacy beliefs and daily step counts). The model was used
to simulate values for self-efficacy and daily step counts under
varying conditions. When predicted values were compared
with observed values, the model accounted for approximately
a third of the variance in efficacy beliefs and half of the variance
in physical activity levels.
Martín et al. (21) and Riley et al. (24) extended that ap-

proach in a top-downmanner to represent social-cognitive the-
ory more fully. Their model, shown in Figure 2, applied a fluid
analogy model commonly used to manage supply-chain dynam-
ics. Psychological processes were represented as flowing from in-
puts through states to outputs, much like fluid flow between
tanks, or energy traveling between capacitators in the power
grid. It included dynamic variables that functioned as both
states and behavior, including self-management skills (e.g., goal

setting, self-monitoring), outcome expectancies, self-efficacy
beliefs, cues to action (e.g., invitations to walk with someone),
behavior, and behavioral outcomes (e.g., well-being). For ex-
ample, the output of physical activity was expressed as a func-
tion of a network of states involving outcome expectancies,
self-efficacy beliefs, and cues to action. In this model, recycle
flows were introduced to accommodate feedback loops where
recent or present values of one construct influence future
values of another construct, and those values subsequently
influence future values of the original construct. For exam-
ple, self-efficacy beliefs served as an inflow to physical activ-
ity outputs, and physical activity served as an input to
self-efficacy belief outputs. This arrangement represents
what Bandura (25) described as reciprocal determinism based
on agency (self-efficacy beliefs influencing future physical ac-
tivity) and mastery experiences (physical activity influencing
future self-efficacy beliefs). The extended model also incorpo-
rated a set of variables that served exclusively as inputs to the
model, such as skills training for enhancing self-management
skills, observed behavior, verbal persuasion and social support,
perceived barriers, intrapersonal states, environmental context,
and a variety of internal and external cues that influence cues
to action.

Figure 2. Social-cognitive theory expressed as a computational model. (Reprinted from (23). Copyright © 2020 IEEE. Used with permission.

172 Exercise and Sport Sciences Reviews www.acsm-essr.org

Copyright © 2020 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.

http://www.acsm-essr.org


A series of simulations were conducted by varying a limited
number of parameters in the model to observe responses in out-
puts (24). Results of those simulations aligned with predictions
of the theory. For example, self-efficacy moderated the effects of
cues to action on behavior; cues had a limited effect when
self-efficacy was low, but a sustained positive effect when
self-efficacy was high. These effects were not unbounded. In-
creasing the frequency of cues to action for several days led to
diminishing returns and ultimately became counterproductive.
This model holds promise for application with real participant
data and can yield new insights for designing and refining be-
havioral interventions (18).

SYSTEM IDENTIFICATION OF DAILY PHYSICAL
ACTIVITY RESPONSES TO INTERVENTION

Control systems engineering provides a set of tools for
1) specifying computational models of dynamic systems,
2) identifying model coefficients from intensive longitudinal
data (system identification), and 3) simulating how outputs
are expected to respond to different inputs over time (26).
When multicomponent behavioral interventions introduce
components at different occasions, system identification can
be applied retrospectively to identify which components ac-
tively stimulated behavior change (and which were inert). This
bottom-up approach uses interventions to excite the system so
its dynamics can be characterized.

Identifying Inputs Associated With Maintenance of
Daily Physical Activity

The earliest known application of system identification for
decomposing the effects of a multicomponent treatment pack-
age involved a secondary analysis of daily physical activity re-
ports from a subsample of participants in the Active Adult
Mentoring Program (27). Participants were selected from the
treatment group of a 16-week randomized controlled trial that
used peer volunteers to deliver a physical activity intervention
grounded in social-cognitive theory. This intervention in-
volved multiple components, including self-monitoring, gym
memberships, behavioral initiation training, and maintenance
training. At the end of the 16-week intervention period, both
the treatment group and the control group increased their phys-
ical activity, but only the treatment group maintained some of
those gains at an 18-month follow-up (28).

In secondary analyses, participants in the treatment group
who completed the intervention period (n = 34) were divided
into subsamples of maintainers (n = 10) and nonmaintainers
(n = 24) based on whether they reported engaging in 150 min
or more of moderate to vigorous physical activity at the
18-month follow-up (participants who did not report that level
of activity were classified as nonmaintainers). Hekler and col-
leagues then applied system identification tools to model daily
self-reported physical activity (output variable) as a function
of the onset and offset of individual intervention components
and time-varying determinants of physical activity (input vari-
ables). Using continuous-time linear models, physical activity
was modeled as a first-order system, meaning that physical ac-
tivity was modeled as a function of previous-day states and ac-
tivity and inputs from time-varying intervention components
(note: higher-order systems would involvemore than one previ-
ous day of data, increasing the memory built into the model).

System identification modeling yielded different models for
maintainers and nonmaintainers. Nonmaintainers’ physical ac-
tivity was a function of inputs that included self-monitoring,
having a gymmembership, and engaging in more exercise bouts
outdoors. In contrast, maintainers’ physical activity was a func-
tion of inputs that included self-monitoring, behavioral initia-
tion training, maintenance training, and engaging in more
exercise bouts outdoors. Thus, system identification provided
the unique insights that 1) having gym memberships did not
discriminate maintainers from nonmaintainers, but 2) uptake
of behavioral initiation and maintenance training were critical
for discriminating those subgroups at follow-up. One implication
of this system identification analysis for optimizing future inter-
ventions is that it may be useful to reconsider the cost-benefit
analysis of providing gym memberships as a part of this multi-
component package. This component adds expense but neither
stimulated a greater behavioral response during the interven-
tion period nor supported maintenance of physical activity at
follow-up. Indeed, the data suggesting better maintenance
among those who exercised outdoors suggest a plausible iatro-
genic effect to gym membership related to maintenance, which
makes sense when considering the gym membership was re-
moved at that time. Thus, any behavioral routines generated
in the context of a gym were no longer available to the person.
A second implication is that the behavioral initiation and
maintenance trainings used should be refined to address the
needs of nonmaintainers more effectively.

Identifying Person-Specific Intervention Inputs of
Daily Physical Activity

Another bottom-up application of system identification was
used to test a dynamic formulation of social cognitive theory
using data from the Just Walk intervention (29,30). After a
2-week baseline period of activity monitoring with a consumer
device, 20 adult participants received a pseudorandomized
schedule of daily step count goals with varying reward values
for a 12-week intervention period. The pseudorandomized
schedule was designed to produce the behavioral variation (ex-
citation) needed for dynamic modeling of two independent in-
puts on behavior. In this case, those inputs were the two
intervention components: daily step goals and reward values.
The ability to experimentally manipulate these inputs allows
for estimation and validation of computational models, thus
allowing system identification to be used to test these models.

Daily step goals were tailored based on initial activity levels
during the baseline period. They varied from “doable” (matching
the median daily steps during baseline) to “ambitious” (up to
175%–250%of themedian daily steps during baseline depending
on initial step counts). Whenever participants met their daily
step goal, they earned reward points that could be exchanged
for gift cards. These values were announced with the step goal
in a message at the beginning of every day. Daily reward values
ranged from 100 to 500 points (corresponding to monetary
equivalents ranging from $0.20 to $1.00). These two interven-
tion components were manipulated in an orthogonal manner
so participants could be incentivized with small or large rewards
for attaining doable or ambitious goals.Daily reward receiptwas a
third input but was not experimentally manipulated. Before de-
livering intervention messages, participants were prompted to
self-report other hypothesized time-varying determinants of
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physical activity (e.g., expected stress, expected busyness, ex-
pected typicality of the day).
System identification modeling was used to estimate the ef-

fects of controllable (manipulated) inputs, the intervention
components, and the uncontrollable (disturbance) inputs and
states, on daily step counts. This experiment was open loop be-
cause the output (behavior change) in this dynamic system was
not used to provide information that would be used to modify
subsequent inputs (whereas closed loop experimentation uses
changes in the output variable to adjust subsequent inputs).
Separate linear systems with exogenous inputs were estimated
for every participant. For each participant, 16 separate models
were estimated. The base model included the daily steps goal,
expected reward value, and rewards received. The 15 additional
models included all possible combinations of five inputs: ex-
pected busyness, expected stress, expected typicality, and whether
it was a weekend or weekday (separate binary variables). Final
model selection for each participant was based on theoretical
plausibility, empirical consistency, and reliability.
This process resulted in individual models of varying com-

plexity (e.g., 45% of the final models had four inputs, 40% of
the final models had five inputs). Model fit was calculated by
comparing observed daily steps with model-simulated daily
steps for each individual. Fit for the 20 participants ranged from
6.3% to 46.0%of the observed daily step variance (mean= 19.2,
SD = 9.3, median = 19.1). Themost common input variables in
the 20 individual models were whether it was a weekend or
weekday and the expected typicality of the day. These findings
revealed potential tailoring variables that could inform decisions
about whether to deliver incentivized step goals to participants.

Implications for Developing Person-Specific Behavioral
Interventions
The person-specific dynamical models estimated for system

identification can also be used to simulate treatment responses
under varying conditions. Freigoun et al. (30) provided an ex-
ample of an individual’s step responses to different goal intensi-
ties, expected rewards, granted rewards, and expected busyness.
Simulated responses from individual dynamical models can be
used to determine the optimal combinations of intervention
components for a given individual. These response simulations
can reveal components that are more likely to be active versus
inactive for stimulating behavior change. That information
can be leveraged to optimize interventions by including only
active components.
These examples of system identification from the Active

Adult Mentoring Program and the Just Walk intervention
modeled physical activity at a daily time scale. It also is possible
to predict behavioral responses to physical activity interven-
tions on faster time scales (e.g., hourly), provided that corre-
sponding behavioral data are available, if interventions are
expected to be delivered on a more frequent schedule. Faster
time scales can be attractive for dynamical modeling because
they yield the required intensive data in shorter periods. Yet,
there is a danger in selecting a time scale that is too fast because
noise can drown out the signal from intervention responses.
Noise represents unique variance in measurements that is unre-
lated to the signal in the sensor measurements (similar to
unique variance of item responses unassociated with a latent
variable in a latent factor model). Thus, researchers need to

exercise their judgment and test different measurement time
scales to select one that balances the duration of data acquisi-
tion with an acceptable signal-to-noise ratio.

These two examples also assume that a common model un-
derlies person-specific behavioral dynamics across all contexts.
Developing person-specific models to describe real-world be-
havior represents a major advance in physical activity re-
search. It also is possible that behavioral dynamics differ
systematically across contexts. For example, consistent with na-
tional physical activity data, the Just Walk study models indi-
cated that physical activity varied consistently between
weekends and weekdays (29,31). In this instance, there may
be advantages to modeling behavior as a switched system by
constructing submodels with (a) separate functions for model-
ing behavior on weekends versus weekdays, and (b) rules for
determining when to switch to each model when predicting
behavior. Switched systems are useful when behavioral dynam-
ics differ under specific known conditions, such as on week-
ends versus weekdays. The next example extends applications
of system identification to model the dynamics of acute behav-
ioral responses to physical activity interventions in a switch
model that allows for different control dynamics on weekends
and weekdays.

SYSTEM IDENTIFICATION OF MOMENTARY PHYSICAL
ACTIVITY RESPONSES TO INTERVENTION

Text messages represent a common mode of physical activity
interventions that can be delivered multiple times every day at
very little cost (32–36). The conventional approach to evaluat-
ing text message interventions is to treat them as a treatment
package by comparing the physical activity of groups who re-
ceived text messages and groups who did not receive text mes-
sages at the end of an intervention period. This approach has
shown that, as a treatment package, text messages seem to have
small- to medium-sized positive effects on physical activity
(34–36). Yet, little is known about the parameters for optimiz-
ing messaging effects. Interventionists are left with little guid-
ance to answer important dosing questions: When should
messages be sent? Which messages should be sent? How many
messages should be sent? In what contexts and states should a
message be sent? How long does it take for the buildup of an ef-
fect? How long is the half-life or degradation of an effect? How
long is a given message expected to have an active effect on be-
havior before another message is needed? System identification
can be applied to answer these questions.

In a recent study, Conroy et al. (37,38) enrolled 10 adults to
receive text messages and wear activPAL activity monitors for
16 wk. Participants received five text messages distributed in
equal-sized blocks from 8:00 a.m. to 8:00 p.m., with message de-
livery constrained so all messages were separated by at least 1 h
to avoid message pileup. Messages were drawn randomly from
one of three content libraries — “move more,” “sit less,” and
trivial facts. The “move more” and “sit less” message content
was informed by social-cognitive theory for consistency with
previousmessaging interventions and existing evidence for physical
activity motivation (34,39,40). Participants were incentivized
to confirm message receipt with a brief, timely reply. Message
confirmation rates (>98%) suggested high fidelity of treatment
delivery and receipt throughout the study (41).
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One of the challenges in modeling these data was the inten-
sity of data from the physical activity monitors that sampled at
20Hz and provided output in 15-s epochs. Assuming 16 waking
hours daily, each participant produced over 430,000 physical
activity measurements over the 4-month study period. To pro-
duce a suitable signal-to-noise ratio, data were aggregated up to
15-min epochs (after exploring a number of possibilities). Using
a bottom-up approach, dynamical models were specified to esti-
mate the effects of receiving each type of text message (input)
on activity behavior (output) in subsequent 15-min epochs.
Past behavior also predicts future behavior. Memory of past be-
havior was added to the model by including recent activity be-
haviors as inputs. Model order (the number of previous epochs
of behavior used as inputs) was varied to evaluate effects on
model uncertainty. A fifth-order model (i.e., using the last five
epochs of behavior as inputs) was selected. Next, separate
piecewise models were specified to estimate the effects of text
message and recent behavior (inputs) on weekend and weekday
physical activity (outputs).

Conroy et al. then used coefficients generated from observed
data to simulate impulse responses to each type of text message.
As seen in the left panel of Figure 3, impulse response curves in-
dicate the expected change in activity behavior (output) during
each 15-min epoch after delivery of a single message of each
type. Impulse responses reveal how long it takes for that single
message to have its peak momentary effect (i.e., whether it
changes behavior instantly or 30 min after message delivery).
They also suggest when messages may become inert and no lon-
ger have an effect on activity behavior. This information can be
useful for optimizing the frequency of message delivery sched-
ules. We have also found it helpful to examine cumulative step
response curves. As seen in the right panel of Figure 3, cumula-
tive response curves indicate the overall effect of an individual
message over time, as indicated by the steady state achieved at
the asymptote of the curve. These two curves summarize (a)
the latency for a single message to initiate its expected momen-
tary effect (delay of initial change), (b) the latency for a single
message to achieve its expected peak momentary effect (delay
of peak instantaneous change), (c) the magnitude of a single
message’s peak expected effect (peak instantaneous change),
(d) the duration a message is actively exerting an effect on
behavior before behavior achieves a steady state (settling
time), and (e) the expected overall effect of a single message

(steady state). This information is important when individual
messages are used to stimulate desired behavior change in
a system.

These two plots can reveal the heterogeneity of behavioral
responses to individual text messages. Figure 4 presents simu-
lated impulse response (panels A, C, E, and G) and correspond-
ing step response (panels B, D, F, and H; cumulative behavior
change) curves after delivery of three types of messages for
two participants. These curves represent simulated responses
based on the empirically generated person-specific models of
behavior change. The output of these models, represented by
the y axis, involved changes in the number of minutes moving
after message delivery relative to what would be expected if a
message had not been delivered. The maximum impulse re-
sponse is theoretically constrained by the size of the epoch
(e.g., an individual cannot exceed 15 min of movement time
during a 15-min epoch) but also practically constrained by
model-predicted outputs in the absence of message delivery
(e.g., if 4 min of movement time were predicted for an epoch
without a message, the maximum impulse response during that
epoch would be 11 min with a message).

Both participants in this example were more responsive to
messages delivered on weekends (panels A, B, E, and F) than
on weekdays (panels C, D, G, and H). This difference suggests
that occupational or social factors during weekdays may have
constrained their ability to respond to messages. On weekends,
each participant showed a behavioral response to a specific type
of message, but these responses differed. The first participant
(Figs. 4A, B) responded to “move more” messages by moving
for an additional 8 min over the next 5 h but had only trivial
responses to the other messages. The second participant
(Figs. 4E, F) responded to “sit less” messages by moving for an
additional 10 min over the next 5 h. Taken together, these re-
sults can be used to deliver messages on schedules specific to
each participant. They can inform a decision rule that controls
when messages are sent (i.e., on weekends rather than on
weekdays), which messages are sent (i.e., “move more” mes-
sages for the first participant, “sit less” messages for the second
participant), and how many messages are sent to achieve a be-
havior change goal (i.e., five messages for the first participant,
four for the second participant). Similar heterogeneity of re-
sponses was found when sedentary time was the output in each
model (37).

Figure 3. Impulse response (left panel) and cumulative step response curves (right panel) depicting the simulated response to an individual message. These
curves reveal a number of important response features, including the latency to initiate a momentary message effect (a), latency to peak momentary message
effects (b), magnitude of peak momentary message effects (c), settling time for responses to a message (d), and steady-state response to a message (e).
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USING COMPUTATIONAL MODELS TO INFORM
PERSON-SPECIFIC BEHAVIORAL INTERVENTIONS
The promise of precision medicine has been hyped (42). Ge-

netic applications have captured the greatest interest and largely
failed to live up to the hype (so far) (43). Precision medicine ap-
proaches could be expanded to address public health needs by fo-
cusing on prevention and addressing social determinants of
health (44,45). The approach described here provides a basis

for developing context-sensitive, person-specific adaptive behav-
ioral interventions informed by intensive longitudinal data. A rich
variety of data types can be incorporated in thesemodels and inter-
ventions, including behavioral or physiological data fromwearable
sensors, psychological data from self-reports or personal sensing,
contextual data linked to spatial locations, and temporal data.

Building on the text message intervention described above, the
system identification coefficients provide a basis for developing

Figure 4. Heterogeneity of physical activity responses to different message types on weekends (A, B, E, and F) and weekdays (C, D, G, and H) for two indi-
viduals (top [A–D] and bottom [E–H] halves).
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person-specific decision rules for selecting and timing message
delivery based on recent behavior, historical responses to different
messages, and contextual tailoring variables (e.g., weekend vs
weekday, location, weather conditions, built environment
features). In this way, decision rules can ensure that people
only receive messages they respond to, when they are likely to
respond, and as often as needed to achieve their behavior
change goals. Automating the design of these context-
sensitive, person-specific decision rules can promote health eq-
uity by making behavior change accessible across a variety of
social contexts that constrain physical activity.

This extension of system identification to develop person-specific
decision rules will rely on another set of tools from control sys-
tems engineering.Model predictive control is a real-time frame-
work for developing decision rules (controllers) that directly
incorporate system identification models (46,47). These con-
trollers are optimization algorithms that implement the deci-
sion rules for intervention delivery and can be configured for
multicomponent interventions, while recognizing constraints
that limit dosages or keep outcomes of interest at acceptable levels.
Figure 5 presents one pipeline for person-specific adaptive behav-
ioral interventions. System identification tools are used to de-
velop a dynamical model of the behavior. That model is used
to design a controller for achieving a specific objective, such
as increasing physical activity by 30 min daily. The controller
draws on information about recent and present values of the
state to determine whether to deliver an intervention, which
intervention to deliver, when to deliver the intervention,
and how often to deliver the intervention. Behavioral re-
sponses to the intervention are tracked and used to adapt future
intervention decisions by the controller and to adapt the model
underpinning the controller. This integration of system iden-
tification and model predictive control in this way has been
described as a control optimization trial (46). This approach
can even be extended to permit periodic adaptations as
the intervention algorithm learns more about how a specific
individual responds to different interventions (inputs) under
different conditions (states and external factors such as the
day of week or weather conditions). This intervention ap-
proach would be adaptive (in the control systems sense) be-
cause the person-specific decision rules are refined as new
information about that person’s behavioral dynamics accumu-
lates. It is akin to the continuous tuning interventions described
by Hekler et al. (45).

System identification can also be used to develop just-in-
time adaptive interventions (JITAI) (48). The JITAI approach
was developed to deliver context-sensitive behavioral interven-
tions at moments of vulnerability/opportunity and receptivity.
These interventions require that intervention developers

specify decision points (the frequency of determining whether
or not to intervene), a tailoring variable that will be used to deter-
mine vulnerability/opportunity at each decision point, a decision
rule that will be used to determine whether the level of the tai-
loring variable should trigger an intervention, one ormore inter-
vention options that can be delivered, and proximal and distal
outcomes that are targeted. The decision rule in most JITAI ap-
proaches is generic, meaning that the same rule is applied for all
participants. The person-specific adaptive intervention ap-
proach described here is different. It may start with a generic de-
cision rule, but it progressively adapts that rule to be
increasingly person specific over time as it acquires new infor-
mation about an individual’s behavioral responses to different
interventions under different conditions. Unlike many
existing JITAI approaches, this model also has built-in mem-
ory that stores recent values of the state and behavior to inform
decisions about whether or not to intervene. Another differ-
ence between these approaches is that existing JITAI ap-
proaches do not monitor responses to interventions to inform
whether future interventions should be delivered.

To be sure, system identification and model predictive con-
trol are not the only approaches available to model intensive
longitudinal data and inform intervention development.
Mixed-effect location-scale modeling is an approach for esti-
mating individual differences in variance adjusted for means
(49). Time-varying effect models are useful for characterizing
how (instantaneous) relations between variables change over
time (50). Machine learning is a buzzword used to describe a
large family of methods for classification and prediction tasks.
Machine learning approaches can overlap with the system
identification described herein because both use past or cur-
rent information to predict future behavior, a critical feature
for intervention development.

With respect to intervention development, if a generic deci-
sion rule can be applied to all participants, then the established
JITAI framework can be applied to develop context-specific be-
havioral interventions (48,51). Microrandomized trials can be
used to provide an experimentally derived, generic decision rule
for delivering these interventions (52). The HeartSteps inter-
vention was the first example of a microrandomized trial for
physical activity promotion (53). Another approach to per-
sonalizing interventions involves recommender systems. For
example, the MyBehavior app uses a multiarm bandit method
to provide personalized physical activity recommendations
(54,55). This intervention incorporated an explore-and-exploit
algorithm to leverage both the familiarity of frequently-enacted
physical activities with the novelty of new physical activities to
stimulate behavior change. If one has access to large volumes
of data, it may even be possible to develop amodel and controller

Figure 5. Precision behavioral intervention pipeline.
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simultaneously using reinforcement learning tools; however, this
approach has yet to be applied to develop a physical activity in-
tervention (56). As these and other approaches for personalizing
physical activity interventions become more popular, it will be
valuable to compare them directly to determine which ap-
proaches lead to the most effective interventions in the least
amount of time.

CHALLENGES OF DEVELOPING PHYSICAL ACTIVITY
INTERVENTIONS USING COMPUTATIONAL MODELING
Control systems engineering offers a powerful suite of tools

that can be applied to develop person-specific behavioral inter-
ventions, but it presents unique challenges for researchers.
These challenges include research design, data processing, and
communicating results to a research community that may be
unfamiliar with these methods.
From a research design perspective, intensive longitudinal

data are clearly needed. The question is, “Howmuch?” The fac-
tors used to inform statistical power analyses— sample size, ef-
fect size, and type 1 error rates — are less informative for
planning studies using system identification. Instead, the rele-
vant considerations involve the time scale of interest (e.g.,
daily vs hourly), the types and timing of inputs, the potency
of the inputs (relative to potential unmeasured influences),
whether feedback is included in the design, model complexity,
and uncertainty in the model.
Sensors, such as accelerometers, have enabled high-frequency

data collection. Raw sensor signals are typically processed by
software or firmware for an activity monitor to provide physical
activity indices at different levels of abstraction (e.g., counts/
minute, steps/minutes, daily duration of moderate to vigorous
physical activity). Our experience has shown that more fre-
quent data are not always better because the noise-to-signal ra-
tio can be inflated. As a part of data processing, researchers will
need to explore a variety of sampling frequencies to determine
the optimal one for their applications.
Finally, system identification approaches are well established

in control system engineering but largely unfamiliar to the phys-
ical activity promotion community. These models have unique
evaluation and reporting requirements. Researchers may need
to educate reviewers and editors who are not accustomed to this
type of work. None of these challenges are insurmountable, but
they will require a flexible, team science approach to introduce
computational modeling approaches into the world of physical
activity promotion.

CONCLUSIONS
In sum, we reviewed early-stage research applying a

well-established suite of tools from control systems engineering
to develop, identify, and interpret computational models of
physical activity. These models provide a basis for designing, re-
fining, and optimizing physical activity interventions at a vari-
ety of time scales. Whether a single time scale is sufficient to
model physical activity dynamics is not clear, and efforts are un-
derway to develop multi–time scale models of physical activity
dynamics (18). We propose that single or multi–time scale
models can be extended using model predictive control tools
to deliver interventions that are sensitive to recent behavior,
historical responses to treatments, and a variety of contexts un-
der which behavior is executed over time. As information is

acquired about behavior in new contexts and about different re-
sponses to treatment, these models can be adapted to ensure
they remain person specific as people develop and change. Al-
though intervention development has been our focus, the accu-
mulation of person-specific dynamic models has potential to
accelerate theory development (16). To date, health behavior
theories have not been articulated in ways that describe the dy-
namics of physical activity. The accumulation of person-specific
dynamic models can be used to identify common processes and
distinct subgroups characterized by predictable boundary condi-
tions or processes (16). We look forward to further applications
of system identification and model predictive control tools to
improve the science and practice of physical activity promotion.
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