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Abstract: An ocean swell refers to a train of periodic or nearly periodic waves. The wave train can
propagate on the free surface of a body of water over very long distances. A great deal of the current
study in the dynamics of water waves is focused on ocean swells. These swells are typically created
initially in the neighborhood of an ocean storm, and then the swell propagates away from the storm
in all directions. We consider a different kind of wave, called seas, which are created by and driven
entirely by wind. These waves typically have no periodicity, and can rise and fall with changes in
the wind. Specifically, this is a two-fluid problem, with air above a moveable interface, and water
below it. We focus on the local dynamics at the air-water interface. Various properties at this locality
have implications on the waves as a whole, such as pressure differentials and velocity profiles. The
following analysis provides insight into the dynamics of seas, and some of the features of these
intriguing waves, including a process known as white-capping.

Keywords: wind-driven waves; seas; white-capping; air-water interface

1. Introduction

In this paper, a “wave” refers to a coherent, localized region in which the fluid flow is
irregular. The localized region remains irregular as the fluid flow continues. Please note
that this definition of a wave does not suggest any sort of periodicity, as one might see
in a swell. Section 2.1 describes the background flow, on the air-water interface before
any waves appear. This is the simplest situation, where the interface is a completely flat
surface. The wind blows in the air above the interface, and if the water below is moving, it
is purely horizontal, due to the flatness of the interface. In addition to the purely horizontal
flow, other features in the flow can appear because of small local regions near the interface.
In these local regions, several properties can create an irregular flow, and then the irregular
flow can create larger, surrounding regions in which the fluid flow is also irregular. Some
such local properties include the irregularity in the fluid itself, the irregularity in the
pressure of the fluid, and the flow having some vertical component in this small region.
The sources of these irregularities are not discussed in depth, but one source can be the
diffusing vorticity. The tangential shear stress is continuous across the interface, so the
z-derivative of U({(z, t)) must be discontinuous at the interface (see (9)). Thus, vorticity is
generated at the interface. This vorticity diffuses into the fluid above the interface and also
into the fluid below. This diffusing vorticity can be a source of irregular fluid motion above
the interface, or below the interface, or both.

One of the foundational bodies of work in the field of propagating water waves came
from J. W. Miles (1957) [1]. Miles viewed the problem as a stability problem, in which waves
on the upper surface of the water can grow by drawing energy from a fixed horizontal shear
flow in the air above that surface. In contrast, our problem is intrinsically time-dependent:
the horizontal shear flows, in the air above the interface and in the water below it, each
evolve slowly in time as vorticity (created at the interface due to viscous effects) diffuses
away from the interface. An important discovery of Miles was that his problem contains a
“critical layer”, where the horizontal speed of the fluid matches the propagation speed of
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the waves on the interface. There is no fixed “critical layer” in the sense of Miles in our
model, because the shear flow in each fluid, as well as the propagating waves, evolve in
time. Also, in order to observe the effects of a critical layer in the sense of Miles, there must
be some connection between the speed of the waves on the interface and the speed of the
air in the critical layer. When working with seas instead of swell, this connection cannot
be made.

Another significant advancement in the field came from B.D. Dore (1977) [2]. Dore
showed that most of the dissipation of the travelling wave comes from the air. Before,
most work assumed a vacuum above the water, since it was believed that the dynamic
viscosity of air is so low that its effects are negligible. A comprehensive overview of the
current progress in understanding wind-driven waves can be found in Chapter 2 of “Wave
modelling—The state of the art” (2007) [3], while most of the other chapters focus on some
aspect of the dynamics of swells. Dore’s work introduces the effects of viscosity in the air,
which is one step closer to the model we propose, but Dore is considering the dynamics of
swell. Our work uses the viscosity of both the water and the air.

Section 2.2 explores the linearized equations for the perturbed motion about the
background flow, and the resulting corrections to the quantities introduced in Section 2.1.
Although small, these corrections are important, and together they define the set of lin-
earized equations for the fluid flow. A few physical results arise from the linearized
equations. One clear example is the “moveable interface”, first mentioned in the first
paragraph of Section 2.2. The idea is that in the presence of fluid motion, including the lin-
earized motion, the interface is allowed to drift within a small range of where is it expected
to be. Thus, the moveable interface is the exact location of where the air and the water meet
at any time and at any x-location. Let #(x, t) denote the height of the movable interface
at horizontal location (x) and time (f). Given a fixed x-location, 77(x, t) evolves over time.
At any one point in time, the highest point of the wave is known as the wave crest. If the
vertical velocity of the fluid is positive and strongest near the crest, then the height of the
crest will continue to grow. As it grows, the horizontal wind (which increases in speed
as one moves higher) drives the crest to rise even higher. At some point, the speed of the
wind is so much higher than that of the wave that the entire crest is torn off. This process
is known as white-capping, and has not been well understood in the past: “white-capping,
or dissipation in deep water, is the third basic physical process that governs the evolution
of wind waves in the open oceans. It is the least understood part of wave evolution” [3].
Section 4 provides some intuition into how the process of white-capping follows from the
analysis of the equations given.

A major difference between all of the mentioned models and ours is that other works
consider the types of waves that appear in swells while we consider the waves within
seas. The lack of periodicity in seas implies a lack of many quantities typically analysed
through experimentation, such as wavelength, phase speed, etc. Thus, experimentally
measuring the seas is a much more difficult task. In addition, much of the work that
has been done to analyze the dynamics of seas numerically or through simulation uses
models with turbulent flow, a feature that is absent in our model. See Section 2.1 of [3] for
more details.

2. Identify the Equations That Define the Linearized Problem
2.1. The Background Flow

We begin with a shear flow, inspired by “Stokes’ first problem” for viscous fluids.
A heavier fluid (such as water) lies beneath a lighter fluid (such as air) under the force of a
constant gravitational field. The upper fluid extends vertically up to +oo, while the lower
fluid extends vertically down to —co . There are no horizontal boundaries, and the flow is
two-dimensional. Both fluids are viscous and incompressible. To make the analogy with
Stokes’ first problem, assume that for ¢ < 0, the (horizontal) interface between the two
fluids admits no tangential stress, and that well above the interface, the upper fluid moves
horizontally with speed U > 0, while well below the interface, the lower fluid moves
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horizontally with speed U_ < U. At the interface itself, the fluid moves horizontally at
speed U(0), with U~ < U(0) < U. At t = 0, the interface suddenly admits tangential
stress, and a boundary layer grows in each fluid, as originally found by Stokes.

In each fluid, there is no vertical velocity in the background flow, and no x-variation
in the horizontal velocity, so the Navier-Stokes equations in each fluid reduce to

o:U = vo2U (1a)
W=0 (1b)
1
—0,P = — (1¢)
0 g

where in each fluid, v denotes its constant kinematic viscosity, p denotes its constant density,
{U(z,t), W} are its two components of velocity, and P(z) is its pressure. The two fluids
can have different values of v, which we denote v, in the upper fluid and v; in the lower
fluid. In addition, the two fluids can have different densities, p,, and p;, with

0< Pu < o1 (2)

as required for static stability. Equation (1a) admits self-similar solutions in terms of the
variables

z z
— >0, — <0, 3
¢ VAt G Tt ®)
in the upper fluid (z > 0) and lower fluid (z < 0), respectively. Then (1a) reduces to
= 20U, (0) = Ww/(2),  —2qU;(5) = Uy (&) )
in each fluid. These ordinary differential equations can be integrated:
¢ _p
U, (¢) = c1/0 e 7 do+cy, >0, (5a)
0
(o) =~ [ e Cdote <0, (5b)
1

where {c1, c2, 3} are positive constants, to be determined. The two integrals in (5a) and (5b)
are each proportional to the error function. The parameter c; = U(0) defines the horizontal
velocity at the interface, so U, (), the horizontal velocity in the upper fluid is faster than
U(0), while U;(g;), the horizontal velocity in the lower fluid, moves slower than U(0).
In fact, (U;({;)) could even flow in the opposite direction from U, ({). The formulae in (5a)
and (5b) are well known. For example, see Carslaw & Jaeger (1959) [4].

© 0
Fact: / e do = / e do = ? (6)
0 —o0

Let Uy denote the maximum horizontal velocity, which is attained as { — +oc0, and let
U_ denote the minimum horizontal velocity, which is attained as {; — —o0. (5a) and (5b)
guarantee that U({) is a monotonically increasing function of ¢, and U, (0) = U;(0) = c; is
an intermediate speed.

Combining these bounds with the results in (5a) and (5b) leads to

() = s~ a0 [Fe o], (@) = U +es Y -

0
5 e 7 do] (7)

4

The overall range of horizontal velocities is

U —U_ = (c1 +¢3) 8)

~I%
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The two formulae in (5a) and (5b) guarantee that the horizontal velocity is continuous

at ¢ = 0 (equivalently, at z = 0). In addition, physics requires that the tangential shear
stress be continuous across the interface:

puvy - 9:Uy (0) = pyv; - 9:U;(0) ©)

where p, denotes the density of each fluid, and v, denotes the kinematic viscosity of the
same fluid. Unless p,v, = p;v;, 9;U({) is discontinuous at = 0.

Define: O<R::%”§1, 0<VV = ';l (10)
1 1

The parameter R defines the ratio of the densities of the two fluids, while V defines the
ratio of the two kinematic viscosities. In the most common situation, with air above water,
at a temperature in the range of 10-20 °C, R = 0.001, while 3 < /V < 4.

An important practical consequence of this information is obtained by making use of
the information in (9), (3) and (5a), (5b). The final result can be written as

3 =RVV.-¢ (11)

The parameter c; in (5a) is an arbitrary scaling parameter. Once c; is fixed, then c3 in (5b)
is fixed by (11).

For the common situation with air above the interface and water below the interface,
(11) shows that the range of horizontal velocities in the air is much larger than the range of
velocities in the water. A diagram of the horizontal velocities in the upper and lower fluids
is shown in Figure 1.

|

Air

Interface

Water

Figure 1. Visual representation of the steady, horizontal flow. (9) guarantees that the shear stress
across the interface is continuous. Using (10) and (11) we can see that the ratio of upper to lower
(6]

velocity is given by o Typically, this ratio is in the range of 0.003-0.004. (Note: Figure not to scale.
In reality, the lower arrows would be much shorter)

An example: In a wind-tunnel tank, the air is blown through the wind tunnel by a
fan at one end, and it exits the tunnel at the other end. Near the interface, the air can drag
a thin layer of water along, because the air and the water are both viscous fluids. As the
water in this thin layer reaches the other end of the tank, it has nowhere for it to go, so there
must be a return flow of the water, but not of the air. The diagram in Figure 1 suggests that
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almost all of the water column travels at one speed, so the return flow of water in the tank
apparently should use most of the water column.

Figure 1 is correct in a coordinate system that is moving to the right with a fixed,
horizontal speed of U(0), the horizontal velocity at the interface. The arrows in the figure
show that all of the fluid above the interface is travelling to the right faster than U(0), while
all of the fluid below the interface is moving to the right slower than U(0). In a coordinate
system moving to the right with speed U(0), the fluid below the interface appears to
be moving to the left, but that appearance occurs because the coordinate system itself is
moving to the right with speed U/(0).

In Section 2.4 and in subsequent sections, equations such as (29a) and (29b) show
that the vertical velocity in the upper fluid is affected by integrals over the fluid above
the interface, while the vertical velocity in the lower fluid is affected by integrals over the
fluid below the interface. Each of these integrals contains a factor of the form dsU,, ({(s, t)).
Figure 1 suggests that these integrals are significant near the interface, but they become less
significant as one moves away from the interface, because .U — 0 as one moves away
from the interface, either up or down.

In addition to the horizontal flow, (1c) shows that the background pressure distribution
is hydrostatic in each fluid, so

Pu(z) =P — ougz, z> 0, (12a)
P(z)=Py—pigz, z<0 (12b)

Equations (1a, 1b, 1c), (3), (5a), (5b), (7), (10) and (11) completely specify the (background)
horizontal velocity field, while (12a) and (12b) describes the background pressure field
in each fluid. The analysis from here on focuses on linearized perturbations about this
time-dependent background flow.

The unknowns in the full problem, in each of the two fluids, are:

Pressure—  P(x,z,t;€) = Py — pgz +€-p(x,z,t) + O(e?);
Horizontal velocity —  ii(x,z,t;€) = U({(z,t)) + € - u(x,z,t) + O(e?); (13)
Vertical velocity — b(x,z,t;€) = +e-w(x,zt) +O0(e?);
Height of the interface—  7j(x,z,t€) = +e-5(x,t) +O(e?);

with subscripts (-), and (+); to denote the upper and lower fluids as needed, and with €,
a small dimensionless parameter that justifies the linearization.

2.2. Guide to the Linearized Problem

The linearized equations for the perturbed motion about the background flow in
Section 2.1 are given in (14). Vishal Vasan (private communication) makes the important
observation that u(x, z, t), the perturbation of the horizontal velocity, plays only a secondary
role in the linearized equations. Therefore the unknown functions needed to describe the
linearized motion in each of the two fluids, above and below the moving interface, are
the (perturbation) vertical velocity, w(x, z, t), the (perturbation) pressure, p(x,z,t), and the
local height of the moving interface, 7(x, t). The equations can be somewhat simplified
by representing these unknown functions in terms of their Fourier transforms in the x-
direction. In what follows, the Fourier transform of the pressure in the upper fluid is
pulk,z,t) - e Kz etc.

The primary objective in Section 2.3 is to write the pressure in the upper and lower
fluid regions explicitly in terms of integrals over the vertical velocity, plus the boundary
value of each pressure at the air-water interface. Then the entire linearized problem can be
stated in terms of four evolution equations (in time), plus compatibility conditions at the
interface. The variables whose evolution in time is given explicitly are as follows.

e @y(k, z,t) is the Fourier transform (in x) of the vertical velocity in the upper fluid.
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Its evolution equation, given in (29a), involves py (k,0,t), the Fourier transform of the
time-dependent pressure in the upper fluid at the interface. A procedure for solving
this equation is given in Section 3.1.

e (k,z,t) is the Fourier transform of the vertical velocity in the lower fluid.
Its evolution equation, given in (29b), involves p;(k, 0, t), the time-dependent pressure
in the lower fluid at the interface. A procedure for solving this equation is given in
Section 3.2.

e 7j(k,t) is the Fourier transform of the vertical displacement of the moving interface.
Its evolution equation is given in (32).

e w(k,t) is the Fourier transform of the vertical velocity at the interface. It is the limiting
value of @y (k,z,t) and of @, (k, z,t) as z — 0 in each fluid. w(k, t) plays an important
role in Section 2.5.

Comment 1. Our assumption that each fluid is incompressible indicates that @, (k, z,t)
and @ (k, z, t) should have the same limit as z — 0. If they have different limiting values as
z — 0, then a connected region that includes z = 0 either develops a vacuum (containing
neither fluid) or it contains both fluids simultaneously. Either option violates our assump-
tion of incompressibility. Even so, incompressibility by itself does not guarantee that
Wy (k, z, t) is continuous at the interface. In Section 2.5, Equation (34) provides a necessary
condition for @, (k, z, ) to be continuous at the interface.

In addition, other variables do not evolve on their own, but evolve in time because they
participate in algebraic relations that involve one or more of the four variables listed above.
These algebraic relations describe the dynamics at the interface. The other variables are:

e pu(k,0,t) and p;(k,0,t) represent the limiting pressures in the upper and lower fluids,
respectively, as z — 0. We do not require that these two pressures coincide.

e Letd,@w(k,z t) denote the rate of change of the vertical velocity as a function of height
(z) above the fixed interface. If we want to find the rate of change of the vertical
velocity at the fixed interface, the symbol changes to 9,@(k, z, t)|,—o. As given in (39¢c),
the z-derivative of the vertical velocity at the interface is the common limit of the
z-derivative in the upper and in the lower fluids, as z — 0.

o 9%, (k,zt) must satisfy a jump condition across the interface, which is given in
Section 2.5.

2.3. Find the (Linearized) Pressure in Each Fluid

In each fluid, the Navier-Stokes equations in two dimensions, linearized about the
background flow in (1a, 1b, 1c), (12a,12b), (13), are the following:

o+ U(L(z,t)) - 0xu +w-9,U(L(z,t)) + ;Bxp =v-Vu, (14a)
orw+ U(Z(z,t)) - oyw + ;E)Zp =v-Vuw, (14b)
oxu + 0w = 0. (14¢)

As noted in Section 2.1, the background flow is purely horizontal, and the background
pressure has no connection to the background flow. Linearizing the background flow
introduces a perturbation pressure, p(x,z,t), and a perturbation vertical flow, w(x, z, t).
This vertical flow is much weaker than the background flow, but it is essential for a well-
known physical application, discussed in Section 4, Discussion, at the end of this paper.
The perturbation pressure, p(x, z, t) is defined implicitly by (14). To find p explicitly,
compute {dy (14a) + 9, (14b)}, and use (14c) to eliminate unnecessary terms. The result is

V2p(x,z,t) = —20-0,U({(z,t)) - xw(x,z,t) (15)
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in each fluid. This is a Poisson equation for p(x, z, t) in a 2-D, semi-infinite domain in each
fluid. Vishal Vasan (private communication) points out that, according to (15), p(x, z,t)
depends on w(x,z,t), but not on u(x,z,t). In addition, (14b) involves {p,w}, but not
u(x,z,t). Therefore (14b) and (15) define a closed system of equations for two unknowns,
{p,w}. After w(x, z, t) has been obtained by solving those two equations, one constructs
u(x,z,t) from (14c).

Comment 2. This suggests that u(x, z,t) has no effect on the dynamics of the linearized
flow. This is nearly correct, but (14c) asserts that at any order in powers of €, there always
is a u(x, z, t) that accompanies w(x, z, ). In Section 2.5, below, this accompanying u(x, z, t)
plays a significant role in the boundary conditions that require the continuity of the normal
and tangential stresses across the interface.

It is necessary to impose some restrictions on {p(x, z, t), w(x, z,t) } in order to solve (15)
for p(x,z,t) in terms of {w(x,z,t),U(Z),p}. In the upper fluid (z > 0), we require that
there are positive constants, K; and Kj, such that:

/ |pu(x,z,t)|dx < Ky < o0 forallz >0, t > 0; (16a)
/ |wy (x,z,t)|dx < Ky < o0 forallz > 0,t > 0; (16b)

Similar restrictions apply in the lower fluid for z < 0 and for z — —oo, and these restrictions
remain valid as z — 0. As z — +oo, py(x, 2, t) and wy(x, z, t) are each uniformly bounded
in x and ¢, and

pu—0, wy —0, Jyw, —0. (17)

Next, we solve (15) by the method of Variation of Parameters in the upper fluid and also in
the lower fluid.

Comment 3. The method of Variation of Parameters appears repeatedly in this analysis.

The first step in this method is to ignore the right-hand side of (15), and to solve the
homogeneous problem (i.e., the Laplace equation). It follows from (16a) that the solution
of the homogeneous problem, py,(x, z, t), has a bounded Fourier transform, and that the
solution of the homogeneous version of (15) can be written as

Pz t) = 5= [ puallnele ek (18)
—o0
forz > 0, and as
L At ikx k|2
pra(ezt) = 5= [ puall yeelak (18b)
J —00
forz < 0.
Comment 4. A consequence of (18a, 18b) is that in the absence of fluid motion (so

oxw(x,z,t) = 0 for all finite z in (15)), for every fixed, real-valued k # 0, the equilibrium
pressure field decays exponentially to zero away from z = 0, like e~ /K% for z > 0 and like
elklz for z < 0. This fact appears repeatedly in Section 3.1 and Section 3.2 of these notes,
where solutions of equations derived in this Part I are found. In addition, py, . (k, t) is deter-
mined uniquely by pj, . (x,0, t), and we have assumed that pj, . (x, 0, t) also satisfies (16a).

Comment 5. The facts in [Comment 4] are irrelevant for our current purpose, because
(18a, 18b) is simply a step along the way to the solution of the nonhomogeneous prob-
lem. The second step in Variation of Parameters is to allow the free parameters in the

problem to vary in z for t > 0. Thus, for z > 0, we replace py, ,(k,t) with p,(k,z,t),
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whose z-dependence is to be determined from (15). Then the functions on the right side
of (18a), (18b) are generalized to

1 ;
pu(x,z,t) = E/ pulk,z,t) - e . e~ K= g (19a)
for z > 0, and to
pi(x,zt) = %/ pi(k,z,t) - e -elklz gk (19b)

forz < 0.

Comment 6. Based on an astute observation from Diane Henderson (private communica-
tion), note that the Fourier transform of p,, is not p, (k, z, t), but instead is p, (k, z, t) - e lklz,
and that the Fourier transform of p; is p;(k, z, t) - elkIz.

It follows from (19a), (19b) that for z > 0,
V2pu(x, z,t) = % /_O:O [ag;au — 2|k|azﬁu]eikxe*|k|zdk; (20a)
and forz < 0,
V2pi(x,2,t) = % /j;[ag;al +2|K[0: pule ek k. (20b)

It is also necessary to write w(x, z, t) in terms of its Fourier transform (in x), in each fluid.
It follows form (16b) that w has a uniformly bounded Fourier transform in each fluid, so
we write

_ e ikx
wy(x,z,t) = o /7w[w*(k,z,t) e"*|dk, (21)
from which it follows that
Dy, (x,2, 1) = % [ ik (2, 0) - 22)

Substituting (20a), (20b) and (22) into (15) yields
025, — 2[k|9=puleME = —20,[0-UL(Z (2, 1)) - ikivy] (23a)
forz > 0,and
(0201 + 2|k|o=prlel® = —20)[0:Ui(&1 (=, 1)) - ikay] (23b)
for z < 0. Equivalently,
92102 pu - e~ HMF)elME = —2ikp, [0. UL (L (2, 1))] - [u] (23¢)
forz > 0, and

9:10:p - K2 )e M= = —2ikpy[0.Uy (21 (2, 1))] - )] (23d)

for z < 0. Recall that {(z, t) and ;(z, t) are defined in (3).
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The solution of each of the second-order, ordinary differential equations (in z) in
(23¢), (23d) has two constants of integration. (15) is an elliptic PD.E, so in each fluid, one of
the constants is determined as |z| — oo and the other is determined as z — 0. It follows that

3. pu(k,z,t) - e 2Kz = 2z'kpu/ (05U, (Z(s, 1)) - Wy (K, s, £) - e K] ds (24a)
z

forz > 0,and

v4
9,1k, 2, ) - K2 = _2ikp, / UL (215, 1)) - Dy (k, 5, ) - €¥I5]ds (24b)

—00

forz < 0.

Please note that @y, (k, s, t) is bounded as s — oo by (16b) and that if 4v,t > 1, then

_2 2
195U (§(s, 1)) - e k5] < |K| - et - < |K3| - et (240)

VAav,t

for some constant, finite |K3|, so the integral in (24a) decays faster than exponentially as
z — oo, which guarantees that 9, pu(k, z, t) — 0 as z — co. After multiplying (24a) by ez‘k‘z,
one can integrate in z again, to obtain

pulk 2, t) = pu(k,0, 1)
+2ikpu /OZ [62|k|17(/q°°{asuu(€_(5, t)) -y (k, s, l’) . e_‘k‘s}dS)]dq. (25a)

Similarly,

ﬁl(k,Z, t) = ﬁl(krof t)
+2ikoy | L2k [ U@, 0) ks, 1) - e)ds))dg (25b)

Multiply (25a) by e~ KI7, and multiply (25b) by el¥* to obtain

pulk,z,t) - e "2 = p, (k,0,¢) - e K1z
+2ikpy - e k2 /O [kl / T AU (C(s 1)) - Dulkys, £) - e FoVds)dg.  (26a)
q

forz > 0, and
prlk,z ) - e = py(k,0,1) - ez
0 q
2iko; - ek / [e=2Kla( / (U (Ty(s, 1)) -y (K, 5, 1) - k15 ds)]dg. (26b)
z —o0

forz < 0.

An important objective of this section is to find explicit formulae for the perturbation
pressure in the upper and lower fluids, respectively. The Fourier transform in x of p,(x, z, t)
is pu(k,z,t) - e lklz, given by (26a); the Fourier transform of p;(x,z,t) is p;(k, z,t) - elklz,
given by (26b).

Given the explicit formulae in (26a), (26b) for the Fourier transforms of the perturba-
tion pressures in the upper and lower fluids, respectively, the inverse Fourier transforms of
these two equations give respectively the perturbation pressures in the upper and lower
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fluids. One shows by direct calculation that the pressures whose Fourier transforms are
given in (26a), (26b) satisfy (15) and (16).

What are needed in (14b) are piuaz(ﬁu(k, z,t) - e’|k|z) in the upper fluid (for z > 0),
and %E)Z( pi(k,z,t) - elkl?) in the lower fluid (for z < 0). These can be computed directly
from (26a), (26b). For z > 0,

1 k
;az(ﬁu (k’ Z’ t) : e_‘k‘z) = - uﬁu (k/ Or t) : e_‘k‘z
u

u

ik[k| - e~ ¥z /0 (2Kl / T U ((s,1)) - ulk,s, £) - oKV ds)dg (27a)
q

42k - oKz . g2Ikiz / U (Z(s,1)) - W (k,s, ) - e~ ¥I5]ds,
z

and forz <0,

laz(ﬁl(k,zl t) .e|k\2) _ mﬁl(kror t) . e|k|z
o1 01
0 q
+2ik|k| - elklz / [e—2kla / (01 (21 (5, 1)) - oy (K, 5, 1) - elkIs Yds)dg 27b)
z —00

Z
—2ik - elklz . e*2|klz/ [0sU; (Zy(s, 1)) -y (k, s, £) - ) ds.

—00

2.4. An Equation for @(k, z,t) in Each Fluid

The starting point for this part of the analysis is (14b). Taking the Fourier transform
(in x) of (14b) and using (21) yields one evolution equation for @y (k, z, t) in the upper fluid
(z=0),

Aty + ik - Uy (L (2, ) - oy + plaz(;au(k, z,t) e 2y = v, (2w, — KPwy), (28a)

u

and a second evolution equation for @ (k, z, t) in the lower fluid (z < 0),
. 1
Ay + ik - Up(Qy(2, 1)) -y + ;az(;al(k, z,t) - elF?) = v (8%, — KPw;).  (28b)
1

Use (27a) to replace p% 0z (pulk,z,t) - e’|k|z) with equivalent integrals over @, and use

(27b) to replace p17 -32(py(k,z,t) - elkl?) with equivalent integrals over @, and obtain (for
z > 0)

oy + ik - Un(Z(2,1)) - W
v4 [}

2ik|k| - e~ IkIz /0 [e2Iklg / (0:U(Z(s, 1)) - Du(k,s, 1) - e ¥y ds]dg
q

+2ik - elklz /Oo[asuu(g(s,t)) <y (k, s, t) -e*‘kb]ds (29a)

_ M Pu(k,0,1) - e ¥ 4y, (32 — K)aby,

Ou
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and obtain (for z < 0)
0ty + ik - Uy (g (2, 1)) - Wy
0 q
AHMH@W/kﬁW/‘@wwﬁﬂf@@@ﬂ%mwﬂm
z —0Q
v4
—2ik - eIk / Uy (i(5,1)) - Wy (K, s, 1) - o] ds (29b)

k
:_Lymmaﬂﬂm+m£—ﬂmb

(29a) describes the dynamics of the upper fluid, which is the region beginning from z = 0
and extending as z — co. On the right-hand side of (29a), the term p,(k,0,t) provides
external pressure, defined at the fixed interface, and it can change over time. As one
moves away from the interface, but still in the upper fluid, this external pressure field
weakens according to pulk,z=0,t) - e"k‘z, for z > 0. This pressure field operates as an
external forcing function in (29a). Another external variable is U, ({(s, t)), defined for
0 < s < co. This variable determines the strength of the external forcing due to the integral
terms. Please note that (29b) has a similar structure to (29a): the external pressure field is
defined by p;(k,z = 0, t), and another other external variable is U;({;(s, t)). In the lower
fluid (z < 0), the pressure field weakens according to p;(k,z = 0,t) - elklZ. As shown in
Sections 3.1 and 3.2, exploiting this structure provides an avenue to solve these equations
exactly. At this point in the analysis, the velocity field in the upper fluid evolves according
to (29a), while the velocity field in the lower fluid evolves according to (29b).

In either fluid, each of these terms provides information about a region away from
the interface. p.(k,z = 0,t) provides information that appears at the interface, while
U, ({(s,t)) provides information from regions above or below z = 0. Although these terms
both provide external forcing, they have no relation to each other. Each forcing term decays
exponentially fast, or faster, as one moves away from the interface, in either fluid. Hence,
once these two forcing functions are known, then the velocity fields in the upper fluid and
in the lower fluid are determined completely by these forcing functions and by the initial
data in each fluid. In addition, the pressure fields in the upper and lower fluids are defined
in (26a), (26b), each in terms of the velocity field in its own fluid, plus a similar forcing
function (at z = 0) for that fluid. Finally, the perturbation horizontal velocity in each fluid
is determined by the vertical velocity in its own fluid, according to (14c).

Comment 7. In addition to the external pressure field in each fluid, a second external
forcing field in the upper fluid, of the form 9;U,, ({(s, t)), appears in the integral terms in
(29a) while a similar external forcing term, of the form osU;({;(s, t)), appears in the integral
terms in (29b).

Comment 7a. (29a) is an evolution equation (in time) for @, (k, z, t) with z > 0. Wy (k, z, t) is
complex valued, so within the term is an amplitude and a phase.

¢  Keeping only the first line of (29a) provides an approximate equation for the evolution
of the phase, with the solution:

Wk, 2, t) = W (k,z,0) - e~k Jo Uu (@) (30)

e Keeping the first three lines of (29a) changes the phase of @, (k, z, t) in a complicated
way.

¢ Keeping the t-derivative from the first line of (29a), plus the boundary-pressure term
from the 4th line, increases the amplitude of @, (k, z, t), provided p,(k,0,t) > 0.

e Keeping the t-derivative of @, (k, z,t) from the first line plus the last set of terms in
the 4th line creates the heat equation in two spatial dimensions for @, (k,z,t), so this
combination introduces the diffusion of @, (k, z, t)
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Comment 7b. The mathematical structure for (29b) is very similar to that of (29a), except for
some signs.

Comment 7c. The objectives of Sections 3.1 and 3.2 are to describe the dynamics of the
fluid in the upper fluid (in Section 3.1), and the dynamics of the lower fluid (in Section 3.2).
The governing equations for the upper fluid are (44), along with (45a), (45b), (45¢c). These
equations are equivalent to (29a), with somewhat different notation. The governing equa-
tions for the lower fluid are (73), along with (74a), (74b), (74c). These equations are
equivalent to (29b), with somewhat different notation. The most important results in
Sections 3.1 and 3.2 are families of exact solutions of (44) and (73), respectively. The families
of exact solutions for the upper fluid, in Section 3.1, are constructed by solving a sequence
of increasingly general truncations of (44). The corresponding family of exact solutions for
the lower fluid, in Section 3.2, are also obtained by solving increasingly general truncations
of (73). This procedure, based on solving sequential truncations of (44) and/or (73), applies
equally well to constructing solutions of (29a) and (29b).

2.5. Linearized Equations at the Interface

The next steps enforce the compatibility of the two vertical velocity fields and of the
two pressure fields where they meet, at the interface between the two fluids. The compati-
bility conditions at the interface are a set of physically plausible rules that constrain the flow.
For example, (29a), (29b) are integro-differential equations for the evolution of W, (k, z, t)
in each fluid, with k as a fixed parameter. These equations need boundary conditions in z
before we can solve the initial-value problem in t. The boundary conditions as z — +o0
in the upper fluid, or as z — —oo in the lower fluid, are clear: @.(k,z,t) — 0 in each
limit. The conditions at the interface are more complicated. The location of the (movable)
interface is defined by

z = en(x,t) + O(e?) (31a)

where 7(x, t) is differentiable with respect to both (x, t) and we require that
/ I (x, )| dx < oo (31b)

For t > 0, (x, t) evolves according to

o + U(0) - 9y = w(x,0,t) (31¢)

where U(0) is the background, horizontal velocity, and w(x, 0, t) is the vertical velocity,
both at the interface (where z = 0). As discussed in [Comment 1] in Section 2.2, w(k, t) is
the limit as z — 0 of both @, (k, z, t) and @, (k, z, t), the solutions of (29a) in the upper fluid
and of (29b) in the lower fluid. The evolution of 7 (k, t), the Fourier transform of #(x, t), is
obtained by taking the Fourier transform of (31c):

oifj (k, t) + ik - U(0) - f(k, t) = w(k,t). (32)

(k, t) is complex-valued, so it has a phase and an amplitude. Setting the left hand side of
(32) equal to 0 provides an evolution equation for the phase, with the solution,

A(k,t) = 7(k,0) o=k Jo Uu(@(z))dT

Please note that this equation is the same as in (30), i.e., the vertical velocity, w(k,z,t),
and the height of the movable interface, 7 (k, t), propagate at the same speed and in the



Fluids 2021, 6, 122

13 of 31

same direction. Keeping only the first and last terms in (32) yields an evolution equation
for the amplitude of 7 (k, t):

t
Ak t) =17(k,0) +/0 w(k, T)dt

The evolution equation for w(k, t) follows from evaluating each of (29a) and (29b) at z = 0,
and then adding the two equations. The result is that the first integral in (29a) and the first
integral in (29b) are both eliminated:

2{0;w(k,t) + ik - U(0) - w(k,t)}
—{v, 02y (k,0,t) + v,02d; (k,0,£) } + {vy, + v, }K*W
+2ik - /O T OsU(2(5,8)) - Dulk, 5, £) - e K] ds (33)

0
_2ik- / Uy (21 (s, 8)) - oy (k, 5, 1) - €9 ds
5, (k0.8)  p(k0,t
Pu 01

(33) is obtained by adding (29b) and (29b). Subtracting (29b) from (29a) provides a necessary
condition for W, (k, z, t) to be continuous across the interface (at z = 0) for all t > 0 is

021y (k, 0, t) — v,02ty (k, 0, ) + {vy, — v }k*W(k, t)
42ik - / DU (Z(5, 1)) - Dulk,s,t) - e 5 ds
0

0
12k /7 U (315, 1)) - iy (k, s, 1) - el¥l5]ds (34)
Pu 01

When considering continuity and discontinuity across the interface, there are two issues:
What happens at O(1)? What happens at O(€)?

e Section 2.1 describes what happens at O(1). Equations (5a) and (5b) show that the
background, horizontal velocity is continuous across the interface at O(1). There is
no vertical velocity at O(1). (38b), below, shows that the tangential (or shear) stress
must be continuous across the interface. Then it follows that 9,U({(z)) must be
discontinuous at z = 0, unless p, vy, = p, = p;v; = ;. (12) shows that the pressure
is still continuous at O(1) at the fixed interface (where z = 0), and (25a), (25b) show
that the pressure can be discontinuous at O(e) at the fixed interface.

e Asnoted in [Comment 1] in Section 2.2, assuming that two fluids are incompressible
suggests that the vertical velocity is continuous at z = 0. Even so, incompressibility is
not enough to guarantee that . (k, z, t) is continuous across the interface. Equation
(34) is also needed for continuity of W, (k, z, t) at the interface (at z = 0).

e We show next that 9,W. (k, z, t) is also continuous at z = 0, so

0,W;(k,z,t) — o,y (k,z,t) -0 as z—0. (35a)

Proof.

—  The Fourier transform in x of (14c) on each side of the interface is

o2

Wy (k, z, t) + ikit, (k,z,t) =0, for z >0, (36)
9,y (k,z,t) + ikity(k,z,t) =0, for z <DO0.
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—  Inorder to have a finite shear stress at the interface, the horizontal velocity must be

continuous at the interface, not only at O(1), but also at O(e). Therefore

ik[d, (k,z,t) — d;(k,z,t)] -0 as z—0 (37)

- Combining (36) and (37) guarantees that d.@y(k,z,t) and 9.@;(k, z, t) approach a

common limit as z — 0, as asserted in (35a).
O

In addition to continuity of each component of velocity, it is also necessary that the
normal and tangential stresses be continuous across the interface. The full, nonlinear
formulae for these two conditions can be found on p. 150 of Batchelor’s Introduction to
Fluid Mechanics [5]. The full (i.e., not linearized) condition for continuity of tangential
stress across the interface (at z = e7) is

0uvi[4(9x77) (3-@u) + (1 — (0x77)?) (9211 + OxTDy)] (38a)
= p1vi[4(9x77) (9z;) + (1 — (0x77)") (9218 + 9x7Wy)]

where again the variables in (38a) are the full nonlinear variables, not merely the pertur-
bation variables. When one expands the variables in (38a) in powers of € (0 < € << 1),
the O(1) terms assert that

PulVuy [az u, (C(Z) )]z:O = P1v] [az U (gl (Z) )]z:O/ (38b)

which is a restatement of (9). At O(e), (38a) gives

PuVu[(azuu + axwu)]z:o = PlVl[(azul + axwl)}z:o- (38c)

Comment 8. Keep in mind that the velocity components in (38c) are the components of the
linearized velocity field, while those in (38a) represent the full nonlinear flow.

Comment 9.  (37) guarantees that the tangential stress at the interface is finite. (38c)
guarantees that the tangential stress is continuous at the interface. As we show next,

a consequence of (37) is that 92@(k, z,t) is usually not continuous across the interface.
Instead, continuity of the tangential stress across the interface leads to a well-defined jump
condition for 822 (k, z, t). A feature of the linearized problem is that u(x, z, t), the horizontal
component of the perturbation velocity field, plays no significant role in the linearized
dynamics—after finding w(x, z, t) in each fluid, one finds u(x, z,t) a posteriori by using
(14c). Even so, there is useful information in (37). From (36):

i

iki(k,z,t) + 0, w(k,z,t) =0 = d(kzt) kazz@(k, z,t) (39a)
Inserting this into the Fourier transform of (38c) leads to
0uVu [0y + Ky )20 = pvi[03d; + K>ty (39b)

From [Comment 1] in Section 2.2, we assume
wu|z:0 = Wy|z=0 = ﬁ(krt)-
Inserting this into (39b) yields

puvu - 03Wu(k,0, 1) — pyvy - 93y (k, 0, £) = {orvi — puvu }k*W(k, t). (39¢)
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(39c) is a jump condition for 922, (k, z, t) across the interface (at z = 0). One can show from
(39c) that 02d, (k, z, t) can be continuous across the interface only if

PuVu = PV (39d)

Return to Batchelor’s book. For normal stress, the full (i.e., not linearized) condition is that
onz = en(x,t),

2 2PuVu . ~ } i ) -
P, — W[(l - (axrl)z)(azwu> - (axﬂ)(azuu + 8xwu)] = (40)
pl - Uf?)g;:lﬁ)z][(l - (axﬁ)z)(azﬁ)l) — (axﬁ)(azﬁl + axwl)]

where we revert to the full, nonlinear variables, given in (12), and pv = y in each fluid.
When we expand the variables in (39a) in powers of a small € (0 < € << 1), the leading-
order terms assert that the background pressure is continuous across z = 0, as guaranteed
by (12). At O(e), there are three contributions on each side of (40): the background
pressure (P) is evaluated at z = €1; the perturbation pressures (py(x,z,t), p;(x,z,t)) are
each evaluated in their respective limits as z — 0; and {9, wy(x, z,t),d,w;(x,z,t)} are each
evaluated at z = 0. The result at O(e) can be written formally as

(o1 —ou)g - 1(x,t) + {pu(x,0,t) = pi(x,0,t) } — 2{pudzwu(x,0,t) — wo;w;(x,0,t)} = 0. (41)

The Fourier transform (in x) of this relation is

(o1 = pu)g -k, t) + {pu(k,0,t) — pi(k, 0,8) } — 2{pu0=u (k,0,t) — 19y (k,0,¢)} = 0. (42)

Comment 10. (42) is correct if there is no surface tension at the interface. In the presence of
surface tension, (42) generalizes to

(o1 = pu) (g + k) (K, t) = (43)
{P1(k,0,t) — pu(k,0,£)} — 2(01v1 — puvu) - 9@« (k, 0, 1),

where p,v, = ., the dynamic viscosity in each fluid, ¢ represents the surface tension, and
we have used (35a).

3. Solve the Equations for Flow in Each Fluid

Objectives of Sections 3.1 and 3.2: In Section 2.4, Equations (29a) and (29b) define
the vertical velocity in the upper and lower fluids, respectively. These equations each
contain two known forcing functions, {U,({(z,t)), pu(k,z = 0,t)} in the upper fluid
(z > 0),and {U;({;(z,1)), pi(k,z = 0,t) } in the lower fluid (z < 0). In Sections 3.1 and 3.2,
Equations (44) and (73) are rewrites of (29a) and (29b), respectively. The objective of
Section 3.1 is to find general solutions of (44); these solutions describe the vertical ve-
locity in the upper fluid. The objective of Section 3.2 is to find general solutions of (73);
these solutions describe the vertical velocity in the lower fluid.

Comment 11. The analysis in Section 3.1 shows that (44) admits two distinct families of
solutions, so seeking “the general solution of (44)” is too restricted. Instead, in Section 3.1
we seek the most general solution within each of the two families of solutions. In Section 3.1,
the method of Variation of Parameters is used repeatedly to find a general solution of (44)
within each of the two families. The mathematical structures of (44) and (73) are very
similar, so we describe the analysis in Section 3.1 in detail, and carry it to the intermediate
conclusions of that part of the analysis. In Section 3.2, it is sufficient simply to identify the



Fluids 2021, 6, 122

16 of 31

important parts of the analysis and follow with the corresponding intermediate conclusions.
To simplify the logic of the analysis of the vertical motion in the upper fluid, in Section 3.1,
and the corresponding logic of the analysis of the vertical motion in the lower fluid, we
combine the two sections into one, Sections 3.1 and 3.2. Consistently in these sections, we
analyze the vertical motion in the upper fluid, followed by nearly identical analysis of the
motion in the lower fluid.

Comment 12. The procedure to generate an ordered sequence of intermediate results in
each fluid is straight-forward, but rather involved. The starting point in Section 3.1 is
equation (44), which is a rewrite of (29a). For Section 3.2, the starting point is (73), which
is a rewrite of (29b). Each of (44) and (73) can be written as the sum of four terms. In
either case, step 1 in the analysis is to create and then solve a truncated version of the
equation in (44) or (73). In step 1, the truncated equation for each fluid contains only the
two leftmost terms in (44) or (73). The solution of this truncated equation can be considered
a first approximation of a solution of (44) or (73). Like the solution of (44) or (73), the
solution of the truncated equation is complex-valued, so it can be written in terms of its real
and imaginary parts. Step 2 involves splitting the solution of the truncated problem into
real and imaginary parts. Doing so doubles the numbers of equations to be solved, but it
simplifies the structure of each equation. Step 3 generalizes the truncated equation in each
fluid by re-inserting the (known) pressure term at the interface in each fluid. These pressure
terms are also complex-valued, so they can be written in terms of their real and imaginary
parts. One can solve these generalized but approximate equations by using Variation of
Parameters again, based on the solutions in steps 1, 2. Step 4 brings the integral term in (44)
or in (73) back into the approximate equations obtained in step 3, and thereby reproduces
the equations in (44) and (73). In this round-about way, we are able to solve the equations
given in (44) and (73) exactly, by starting with the approximate solutions obtained from
steps 1, 2, 3, then using Variation of Parameters one more time to obtain the exact solutions
for (44) and (73), with no approximations.

3.1. Solve (29a), Also Known as (44)
For the upper fluid with z > 0, one may write (29a) in the following form:

3¢ty + Dy, + L,y = Py(k,z,t), (44)
where
Dy, = —v,[02y, — k2], (45a)
Pulk 2, 1) = ':' pulk,0,1) - e, (45b)
u
and

iLutu(k 2, t) = ik - Ua(Z(2,1)) - u(k, 2, £)
2ik[k| - e~ ¥z /0 (2Kl /q T Lo (Z(5, 1)) - u ks, 1) - e K Yds)dg (450)

+2ik - elklz / " OsUu(L(5,1)) - Dulk, s, £) - e K5)ds.

Both of the differential operators on the left side of (44) are real-valued, while @, (k, z,t)
and p,(k,0,t) are typically complex-valued functions. The integral operator, iL,(-), is
purely imaginary, so it maps a real-valued function into a purely imaginary function,
and vice-versa. The real and imaginary parts of @, (k, z, t) interact with each other only
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through the integral term in (44), given explicitly in (45c). Step 1 in solving (44) is to create
and then solve a truncated version of (44), which contains only the first two terms of (44):

040y, + Dy, = 040y, — vy, (02, — K*Wy,) = 0 (46)

where @, (k, z,t) denotes a (complex-valued) solution of (46), but it need not solve (44).
W, (k,z,t) is the simplest non-trivial approximation of @, (k,z,t). Subsequent analysis
provides a sequence of increasingly accurate approximations of @y (k, z, t), ending with an
explicit formula for @, (k, z, t). @, (k, z, t) is complex-valued, so we can write @y (k, z, t) in
terms of its real and imaginary parts:

Wy (k,z,t) = &y (k,z,t) +iBu(k,z,t) (47)

where &, (k,z,t) and B, (k,z,t) are each real-valued functions of real-valued parameters
{k,z,t}. This is step 2.

Comment 13. Step 2 is brought into the analysis after step 1, but it can be deferred until
after step 3.

The differential operator in (46) is purely real, so &, (k, z,t) and iB, (k, z,t) are the real and
imaginary parts of Wy (k, z,t), each satisfying (46) on their own:

at&u + Du&u = at&u —Vy (ag&u - kzﬁéu) = O/ (48a)
at,[‘;u + Duﬁu = at‘,gu —Vy (agﬁu - kzﬁu) =0. (48b)

Note from (45a) that D, @, = 0 is proportional to the Fourier transform (in x) of the two-
dimensional Laplace equation, so (46) can be viewed as the Fourier transform (in x) of the
heat equation in two spatial dimensions.

Comment 14. The Fourier cosine transform and the Fourier sine transform both play roles
in the analysis that follows, and we treat them separately.

One can verify by direct substitution that (46) admits solutions in the form of a Fourier
cosine transform,
00

Dye(k,z,t) = / (@ c(k, 1) - cos(mz) - e 01 g, (49a)

J —00

where @, (k, m) is an arbitrary, complex-valued function of (k,m), and (k, m) are each real-
valued. Because &, (k,z,t) and if,(k, z,t), the real and imaginary parts of @, (k,z,t),
each satisfy (46), it follows that &, . (k, z,t) and iB,, ¢ (k, z,t) each have representations in the
form of (49a):

Ayc(k,z,t) = /oo [Aulc(k,m) - cos(mz) -e*”"(k%mz)t]dm, (49b)
iﬁu,c(k, z,t) = /Oo [iBy,c(k, m) - cos(mz) -e_"“(k2+mz)t]dm, (49¢)

where A, . (k,m) and B, «(k, m) are both real-valued functions, to be determined. It follows
from (47) that

@yc(k,m) = A, c(k,m) +iB, c(k,m). (49d)

Evaluating (49b) at t = 0 shows that A, (k,m) is proportional to the Fourier cosine
transform (in z) of the real part of @, (k, z,0), which relates back to initial data for the 2-D
heat equation on a half-space: {—c0 < x < 00,0 < z < co}. A similar statement holds for
By c(k,m), in (49¢).
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Note: (47) also admits solutions of the form

Wus(k,z,t) = / " (@us(k,m) - sin(mz) - e~ g (50a)

J —00

Therefore, the real and imaginary parts of @, (k, z, t) each have solutions for (48a), (48b) of
the same form:

Ays(k,z,t) = /_o:o[/lu,s(k,m) - sin(mz) -e‘”“<k2+m2)t]dm, (50b)
iBus(k 2, t) = /f °:o [iBus(k, m) - sin(mz) - e~ 4 g (500)

Asin (49d),
@us(k,m) = Ays(k,m) +iBys(k,m). (50d)

where A, (k,m), A, s(k,m), Byc(k,m), Bys(k,m) are all real-valued functions, to be deter-
mined.

We can now see that Equation (29a) determines the time-evolution of @, «(k, z,t),
a Fourier transform (in x) of the vertical velocity in the upper fluid, where z > 0. The verti-
cal velocity field itself is necessarily real-valued, but its Fourier transform (in x) is usually
complex-valued; it is purely real-valued only in special cases.

Comment 15. From here on, &, . (k, m) and other functions with similar subscripts (such as
Wy« (k, z,t)) are used to represent either &, .(k, m) or &, s(k, m), in situations where either
variable will serve.

Equations (48a) and (48b) accept solutions of either form, so (48a) and (48b) provide no a
priori reason to choose one family of solutions over the other. The two families of solutions
differ in terms of their boundary data at z = 0:

- A function &, (k, z,t) with a representation of the form in (49b) can have nonzero
values at z = 0, but its first z-derivative must vanish there;

- A function &,,s(k, z, t) with a representation of the form in (50b) must vanish at z = 0,
but its first z-derivative can have nonzero values there.

- A function &« (k, z, t) with nonzero values at z = 0 and also with nonzero values for
its first derivative at z = 0 necessarily has a representation that is a sum of the form in
(49Db), plus the form in (50b).

—  Similar statements hold for Bu,* (k,z,t), forz > 0.

In addition to the two families of solutions of (46), found in (49a,49b,49¢,49d) and (50a,50b,
50c,50d), there are also limiting cases of (46), which also have physical significance. Recall
from Section 2.2 that w(k, t) is defined to be the common limit of @, (k, z, t) and @;(k, z, t)
as z — 0, and recall from Section 2.5 that both @, (k, z, ) and 9,0, (k, z, t) are continuous
in z at z = 0, so apparently the functions in (49a) and (50a) represent two different parts
of @, (k, z, t) in the upper fluid, and each must match up with the corresponding function
in the lower fluid, in order for each of @, (k, z, ) and 9,@.(k, z, ) to be continuous in z at
z=0.

For either (49a) or (50a), if @, ¢(k, m) and @, s(k, m) are both absolutely integrable in
mon —oo < m < oo, then the Riemann-Lebesgue Lemma guarantees that @y, (k,z,t) — 0
and py(k,z,t) — 0 as z — oo, as required by (16a). Then (48a) and (48b) both show that the
initial data in the upper fluid simply diffuse away in 2-D, with one important exception.
The exceptional case is

Wy (k,z,t) = Cyu(k) e~ IKlz, (51a)



Fluids 2021, 6, 122

19 of 31

In this case,

Dywy(k,z,t) =0, orwy (k,z,t) =0, (51b)

so the function in (51a) solves (46) trivially because each term in (46) vanishes; there is no
diffusion. Please note that C, (k) is typically complex-valued.

Comment 16. The result in (51a) can be interpreted as follows. For every fixed, real-valued
k # 0, the energy in any localized fluid motion imposed at t = 0 necessarily diffuses away
for t > 0, and the solution of (46) tends to zero as t — co. (51a) is the limiting case of a
solution of (46) as t — oo, for any Cy, (k).

As we show next, in Step 3, the imposed pressure term in (44) or equivalently in (52a) and
(52b) below, provides a generalization of the function in (51a). The solution of (52a) and
(52b) tends to the form given in (51a) as t — oo , with the imposed pressure in (52a) and
(52b) determining C, (k). Denote the generalized forms of {w@, (k,z,t), &y (k,z,t), Bu(k,z,t)}
respectively by {@, (k, z,t), &y (k,z,t), Bu(k,z,t)}.

Step 3a in solving (44) proceeds by including the (known) right-hand side of (44):

01y + Dy Wy = Py (k/ z, t)/ (52a)
or equivalently,

. 8 k
0shy, — vy (02T, — K*W,,) = ]
u

- pu(k,0,t) - e Kz, (52b)

where @, (k,z,t) denotes a solution to (52b). Please note that (52b) is a linear partial
differential equation, with constant coefficients on the left side, and a known forcing
function, which depends on (k, z, t), on the right. An equation of this form necessarily has
a family of homogeneous solutions, each of which ignores the forcing on the right-hand
side, plus a family of particular solutions, each of which depends on the right-hand side.

Comment 17. Solving (46) and then (52b) is another application of the method of Variation
of Parameters, which was used in Section 2.3 to solve (18a, 18b) and then (19a, 19b).

Homogeneous solutions of (52b) are given in (49a) and (50a); particular solutions of (52b)
can be found by the method of Variation of Parameters, as follows. In (49a) or (50a), the free
“parameters” to be varied are embedded in @, . (k, m) or @, s(k, m), respectively. In these
cases, Variation of Parameters works because additional time dependence is admitted
into the problem, so @y, c(k,m) — wyc(k,m,t) and @y s(k,m) — @y s(k, m,t). Therefore,
the two families of homogeneous solutions of (52b) acquire slightly different forms:

Wy c(k,z,t) = / [wi,c(k,m,t) - cos(mz) -e*V“(szrmz)t]dm (53a)
and
Wy s(k,z,t) = / [wy s(k,m, t) - sin(mz) -e*V“(k%mz)t]dm, (53b)

where @, (k, z,t) and @,,s(k, z, t) represent members of two families of solutions of (52b),
with wy, ¢ (k,m, t) and w,,s(k, m, t) being arbitrary complex-valued functions, to be deter-
mined. After substituting either version of (53a) or (53b) into (52b) and then simplifying,
one obtains a reduced equation in one of two forms:

/oo [0rwy c(k,m,t) - cos(mz) -e*"“(k%mZ)tdm] = iy Pu(k,0,t) - e~ 1Kz (54a)

oo Ou
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or

/ [atwu,s(k,m,t)-sin(mz).e*w(k”mz)fdm]:‘ﬂ-ﬁu(k,o,t)-e*‘k‘? (54b)

—o0 u

Either version of (54a), (54b) simplifies if one writes e~ k1% in terms of the appropriate
Fourier transform:

/0 [e™ K2 . cos(mz))dz = kZ‘—i—L'mZ' (55a)
/(; [e= K2 . sin(mz)]dz = kz—l—Lmz (55b)
Substituting these back into (54a), (54b) yields
2

atwu,c(k/ m, t) = p(kzk—i—mz) . ﬁu(k, O,t) ,el/u(kz-&-mz)t, (56a)

u
atwu,s(kr m, t) = p(]lzkl—zin/lz) . ﬁu (k, O’ t) . evll(k2+m2)t. (56b)

u

Each equation in (56) can be integrated in :

k2 t R

el mt) = el m 0) = oy /O [Pu(k,0,7) - @+ g, (57a)
klm t 2,2

Wy,s (k/ m, t) — Wuys (k/ m, 0) = pu(k|2|—}-mz) . /O [pu (k, 0, T) . evll(k +m )T]dT. (57b)

Please note that each equation in (57a) and (57b) also contains a term that represents the
starting values at t = 0: wy, «(k,m,0). This information is already encoded in (49a) and
(50a); it must be added to the respective terms in (57a) and (57b). Substitute all of this into
(49a) and (50a) to obtain

Wy c(k,z,t) = /oo [©4,c(k,m,0) - cos(mz) 'e*"“(kZerz)t]dm
+ /Oo [L . Cos(mz) . /t{ﬁ (k 0 T) . e*Vll(k2+m2)(t7T)}dT]dm (583)
—co Py (K2 +m?) o T '

and
Bus(k 2, t) = / (s (k,m,0) - sin(mz) - e~ u O+ gy

o t
+/ [p(k|2k|—z1mz) -sin(mz) - /0 {pu(k,0,7) - e+ =Dy 4], (58b)
o 0

One can verify that the functions in (58a) and (58b) each solve (52b), by substituting each
into (52b). In addition, one can verify that the first integral in either function also satisfies
(46), by substituting that integral into (46). At this point in the analysis, we have found
formulae for two complex-valued functions, @, (k,z,t) and @, (k, z,t), each of which
solves (52b), in part because a third complex-valued function, p,(k,0,t), is embedded
in each. Keep in mind that @y (k, z,t) and @,(k, z, t) have different boundary data at
z = 0, so both functions are required to represent Wy, «(k,z,t), the complete solution of
(52b). The significance of (58a) and (58b) is that two physical processes are working
simultaneously. The first integral in either equation represents diffusion of initial data,
while the second integral in either equation represents external forcing due to pressure
applied at the fixed interface (at z = 0).
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Step 3b involves one more generalization, of @y« (k, z,t) in order to find exact solu-
tions of (44), instead of only (52b). For this final generalization, we need to separate the
real and imaginary parts of @y« (k, z,t), so at this point we split each of (58a) and (58b)
into their real and imaginary parts. Some of this splitting is already done, in (47), (49d)
and (50d). Separately, the complex-valued pressure in the upper fluid, p, (k, z, t), was first
defined in Section 2.3. Here in Section 3.1, only the boundary data, p, (k,0,1), are needed.
pu(k,0,t) can be split into its real and imaginary parts: define §,(k,0,t) and Sy (k,0,t) to be
real-valued functions such that

pu(k,0,t) = 4u(k,0,t) + i, (k,0,1). (59a)
Similarly, in (58a), set

Guelk,m,0) = Ayc(k,m,0) + iByc(k,m,0), (59b)

where fil,,c(k, m,0) and §W;(k, m,0) are real-valued functions of real-valued parameters
{k, m}, defined by the initial data of the problem. In addition, in (58b), set

wys(k,m,0) = Ays(k,m,0) +iBys(k,m,0). (59¢)

The method of Variation of Parameters requires generalizations of (59b) and (59c¢), in order

to provide more flexibility in the representation of @, c(k, m, ). The desired generaliza-
tion is

CDM,C (k/ m, t) = Au,C(k/ m, t) + iéu,c (kr m, t)/ (59d)

where Au,c(k, m, t) and Ig’u,c are real-valued functions, defined so that the generalization of
@,,,c leads to the exact solutions of (44). Define 0, . (k, z, t) so that

Duc(k 2, b) = / (@ (k,m, £) - cos(mz) - e F+m) g
+ /oo [L - cos(mz) - /t{f) (k,0,7) ~e*V“(k2+m2)(t*T)}dT]dm (60a)
- pu(k2+m2) 0 e ‘

Using (59a), the real part of @, c(k,z,t) = &y (k,z,t) + iBu,C(k, z,t)is

by c(k,z,t) = / [Ayc(k,m,t)-cos(mz) -e*”"(k%mz)t]dm

—00

00 2 t
+/_oo[p(k2k+mz) ~(:os(mz)/0 {§u(k,0,7) ~e*V“(k2+mz)(t*T)}dT]dm, (60b)

while its imaginary part is

iBu,c(kr z,t) = /Oo [iBu,C(k, m, t) - cos(mz) .e*uu(k%mz)t]dm
+ /oo [L - cos(mz) /t{i5 (k,0,7) -e*V“(ku’”z)(t*T)}dT]dm (60c)
- pll(k2+m2> 0 R ‘
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Meanwhile, the real part of the generalization of (58b) is
Ays(k,z,t) = /jo [Ays(k,m,t) -sin(mz) -e*””(kumz)t]dm
+ / P k'f'f 5 - sin(mz) /O t{%(k, 0,7) - e ) (=0 ] dm, (60d)
while the imaginary part of (58b) is
iBus(k,z,t) = /_o:o (iBys(k, m, t) - sin(mz) - e E ) gy
+ / ok |k| 7 - sin(mz) /O t{ic?u(k, 0,7) - eVl Hm) (=0 gr) gy (60e)

Step 4 brings the complex operator iL,(-), defined in (45c), back into the problem. This
operator distinguishes between the real and imaginary parts of @, . (k,z,t) so now it
becomes essential to represent W, «(k,z,t), a solution of (44), in terms of its real and
imaginary parts. This was done in (47) for @, (k, z,t), which is the simplest nontrivial
approximation of @, «(k, z, t). We assume that a similar formula applies to @, . (k, z, t):

z’,(\Jll,* (k/ Z/ t) = &u,* (k/ Z/ t) + i,Bu,* (k/ Z/ t)/ (61)

where &y . (k,z,t) and B, «(k, z,t) are real-valued functions, chosen so that @, «(k, z, t) in
(61) is an exact solution of (44), according to the definitions given in (45a, 45b, 45c). [Note:
All of the versions of (60a)—(60e) are consistent with (61).] With those definitions, (45a)
guarantees that

Dyt (k, z,t) = =y (285 — K2dy i) — iV (02Bu s — K2Bus). (62)

The complex-valued function py (k, z, t), which first appears in (45b), is split into real and
imaginary parts in (59a). Define the real-valued functions, ¥,(k,z, t) and Su(k, z,t), so that
(59a) holds. Then P, (k, z, t) in (45b) can be written as

Pu(k,z,t) = |pk| N5k, 0,8) + 16, (k,0,1)] - e~ 1Kz, (63)
u

Finally, inserting (61) into (45c) splits the integral term in (44) into its real and imaginary
parts. The imaginary part of iL, @, (k, z, t) appears when the operator acts on &, « (k, z, t),
the real part of @y« (k, z, 1), and it generates a purely imaginary result:

Im{iL, @y« (k,z,t)} = ik- U, (J(z,1)) - &y (k, 2, t)
_ik|k| - e~ Kz [*[2lklg [T y e lKs
2ik|k| - e /O[e q/q {0sUy (L (s, 1)) - by u(k,s, t) - e M }ds]dg (64a)

21k e [T, 1) B o 1) e Vs

zZ

Meanwhile, the real part of iL, @, «(k, z,t) appears when the operator acts on iB,, «(k, z, t),
the imaginary part of @, «(k, z, ), and in generates a purely real result:

Re{iL, Wy« (k,z,t)} = —k- Uy (Z(z,t)) - Buyx(k,z,t)
<2k e [ [T Busls ) Yl (o

2k elkiz / U (2(5,1)) - Pus ks, 1) - e ¥o]ds
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An explicit demonstration of the procedure in the upper fluid follows.

Recall from the discussion below (50d) that the vertical velocity in the upper fluid
might have a Fourier cosine representation, or a Fourier sine representation, or a linear
combination of the two. The boundary conditions at z = 0 determine which representation
is appropriate. For definiteness, we now assume that the boundary conditions require a
Fourier cosine representation, but the analysis for either of the other options is quite similar.

Start with the formula in (60b), for the real part of the velocity field. Differentiate both
sides of (60b) twice with respect to z, and observe that v, (02 — k) c(k, z,t) changes both
integral terms by adding a multiplicative term of —v, (k* 4+ m?) to the integrand of each
integral. Then differentiate (60b) with respect to time, d:&,,¢(k, z, t), and observe that the
t-derivative provides the same factor, —v; (k2 + mz), within each integral. It follows that
the difference between the two differentiations of (60b) is:

o0
{0y — v (32 — K*)Yay 0 (k, 2, t) = / [0t Ay c(k,m, t) - cos(mz) -e*””(k2+m2)t]dm

[ kZ - A
—l—/_m[m -cos(mz) - §u(k,0,t)]dm. (65a)

Please note that the left-hand side of (65a) is the differential operator that appears in (44),
(46) and (52a).

Separately, note that the second integral on the right-hand side of (65a) can be written as

o

LS , / k|
o Fu(k,0,1) 7oo[k2+m2 cos(mz)|dm. (65b)

Finally, comparing the integral in (65b) with the integral in (55) indicates that the integral in
(65b) is simply {e~ [klz}, written in terms of its inverse Fourier cosine transform. Assuming
that the assertion below (65b) is correct, then (65a) can be written as

{at - Vu(ag - kz)}&u,c (kr Z, t) = / [atAu,C (k/ m, t) : cos(mz) e (k2+m2>t]dm

k
+u Ak, 0,t) - e~ Kz, (66)
u
Separately, Equation (44) can be split into its real and imaginary parts. The real part of (44)
is
{01 — v (92 — %) Yty o (K, 2, t) + Re{iLy by } = g" Au(k,0,t) - e~ K, (67)
u
This formula is correct for any of the three possible representations of the vertical velocity
in the upper fluid, but if the boundary conditions at z = 0 require a Fourier cosine
representation, then (67) becomes
{01 = vu (92 — %) Y e (k, 2, t) + Re{iLuiuc(k,z,£)} = lj‘ Aulk,0,8) e Kz (68)

u

An important point here is that &y, - (k, z, t) is the real part of @, . (k, z, t), so the two functions
necessarily have the same representation. Subtracting (68) from the cosine part of (66) leads
to

/ [0 Aue(k,m, t) - cos(mz) - e ®E+m gy — _Re{iLlydyc(k,z,t)}.  (69)

This result becomes more informative if we make use of the cosine part of (64b):
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/oo [BtAl,,c(k, m, t) - cos(mz) ~e*’/“(k2+mz)t]dm =k-Uy(l(z1)) 'Bu,C(k/ z,t)

—00

_2klk| - ek /O [l /,,7 T Ua(Z(58)) - Buc(k s, b) - e K} ds)dg (70)
+2k - el /Oz[asuu@(s,t)) Buclks,t) - ¥]ds.

Recall from (60b) that &, (k, z, t), the real part of @, . (k, z, t), consists of two integrals, one
of which is [%_[Ayc(k,m,t) - cos(mz) -e’l’“(szrmz)t}dm. It follows from (69) and (60b) that
the first integral in (60b) is driven by Re{iL, @y (k, z, )}, while the second integral in (60b)
is driven by the pressure term, l% “Au(k,0,£) e~ Kz Similar statements hold for i Bu,c (k,z,t)

in (60¢), &5 (k, z,t) in (60d), and iB,, s (k, z,t) in (60e).

However, this is only part of the story. The imaginary part of @y ¢(k, z, t) has its own
representation, given in (60c). Following the same logic, but for i Bu,c (k,z, t), one finds the
analogue of (69):

i / BiBuc(k, m, ) - cos(mz) - e E+ Mg = _Im{iLyns (k2 8)}.  (71)

Using (64a), one finds that the analogue of (70) is

/ " PiBuc(k,m, b) - cos(mz) - e EH DN — _k U (2(2,8)) - ue (K, 2, t)
O A A oIkl
4 2klK| - e / le (0:Uu(2(5,1)) - ek 5, 1) - e ¥V ds)dg (72)
0 q
2k - elklz /O O (T(5, 1)) - ek, 5, 8) - e FI2) ds.

3.2. Solve (29b), Also Known as (73)

Comment 18. The steps taken to perform analysis on the lower fluid is nearly identical to
those in the upper fluid. Thus, the details in this section are truncated, and refer commonly
to setps in Section 3.1.

Step 1 for the lower fluid, with z < 0, begins by writing (29b) in the following form:

aﬂ@l + Dy + iLyd; = Pl(k, z, f), (73)
where
Dy = —vy (9% — k) (74a)
Pl zt) =~ pilk,0,0) e, (74b)
1
and

il (k,z,t) = ik - U)(gi(z, 1)) -y (k, z, 1)
2ik|K| - etz / o2kl /7 T AUy (T(s, 1)) -y (K, 5, ) - o Vds]dg (740)

ik e k2 1 BsU (21 (5, 1)) - oy (K, 5, 1) - el¥5]ds.
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In the same way that (46) was obtained by truncating (44) in the upper fluid, (75) can be
obtained by truncating (73) in the lower fluid:

04 + Dy = 0y — (9% — k*)w; = 0, (75)
then by splitting @; into its real and imaginary parts:
wy(k,z,t) = & (k,z,t) +if;(k,z,t), (76)
and finally introducing the differential operator, D;:
0:t + D&y = 04 — v (92&; — K*&;) = 0, (77a)
tP1+ D1y = 3Py — vi(92p — K*p1) = 0. (77b)

This is step 2 in the lower fluid.
Next, we verify that (75) admits an exact solution in the form of a Fourier cosine
transform:
(e )

Wy (k,z,t) = / (@) ¢ (k, m) - cos(mz) -e*“’(k%mz)t]dm, (78a)

—00

It follows that & . (k, z, t) and i . (k, z, t) each have representations in the form of (78a):

i (k2 1) = /_ °; Ay (K, m) - cos(mz) - 1+ gy, (78b)
iBro(k 2, t) = l Z [iBy.c(k, m) - cos(mz) - e E+m) gy, (780)

From (76):
@y c(k,m) = Ay (k,m) +iB; . (k, m) (78d)

Note that (76) admits solutions in the form of a Fourier sine transform:

o

Dy (k2 t) = / (@5 (k, m) - sin(mz) - e+ ) gy, (79a)

—00

Therefore, the real and imaginary parts of @; ¢(k, z, t) each have solutions of (77a), (77b) of
the same form:

ok 2, 1) = /f i [Ays(k,m) - sin(mz) - e~ ), (79b)
iBs(k,z,t) = /j:o[igl,s(k/m) -sin(mz) -e*”’(kumz)t]dm. (79¢)

Asin (78d),
@y s(k,m) = A s(k,m) +iB; s(k, m) (79d)

where A, .(k,m), A;(k,m), B;.(k,m), B s(k,m) are all real-valued functions, to be deter-
mined. Applying the same argument to the case where z < 0, we see that if @, .(k, m) and
@ s(k, m) are both absolutely integrable in m on —co < m < oo, then W;(k,z,t) — 0 and
pi(k,z,t) — 0asz — —oo. (77a) and (77b) both show that the initial data in the lower fluid
simply diffuse away in 2-D, with one exception:

Wy (k,z,t)e = Cy(k) - ek, (80a)
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In this case,

Dyw(k,z,t) =0, oy (k,z,t) =0, (80b)

meaning that there is no diffusion. Please note that C;(k) is typically complex-valued.
Step 3a in the lower fluid follows the same logic as in the upper fluid. The imposed
pressure term in (73) provides a generalization of the function in (80a), and the solution of
(81Db) tends to the form given in (80a) as t — oo with the imposed pressure in (81b) deter-
mining C; (k). Denote the generalized forms of {@;(k, z,t), & (k, z,t), Bi(k,z,t)} respectively
by {f‘)l (kr z, t)r 5‘1 (kr z, t)r Bl (k, Z, t) }
Begin by including the known right-hand side of (73):

atu:)l + DZT’T]Z = Pl (k/Z/ t)/ (813)

or equivalently,
Ay — vy (92 — K*dy) = |:)<|ﬁl(k/ 0,1) - e, (81b)
l

where @ (k, z, ) denotes a solution to (81). Please note that an equation with the form of (81)
has a family of homogeneous solutions, each of which ignores the forcing on the right-hand
side, plus a family of particular solutions, each of which depends on the right-hand side.

Homogeneous solutions of (81b) are given in (78a) and (79a); particular solutions of
(81b) can be found by the method of Variation of Parameters, as follows.

Bk z,t) = / [wpe(k, m, 1) - cos(mz) - e+ gy (82a)
and
Brs(k 2 t) = / [wps(k, m, £) - sin(mz) - e+ gy (82b)

where @, . (k, z,t) and @ 5 (k, z, t) represent members of two families of solutions of (81b),
with w . (k, z,t) and w; 4 (k, z, t) being arbitrary, complex-valued functions, to be determined.
After substituting either version of (82) into (81b) and then simplifying, one obtains a
reduced equation in one of two forms:

| orconelim, 1) - cos(mz) - e i — L]f, pi(k,0,1) - eF (83a)
or
l _[Breors(k,m, 1) - sin(mz) e gy in - pi(k,0,8) - el (83b)

Either version of (83a), (83b) simplifies if one writes e/Kl* in terms of the appropriate Fourier
transform:

/0 [elk7 . cos(mz)]dz = K (84a)
—o0 cos k24 m?’
0
Kz | o __m
‘/700[6‘ ‘Z . Sln(mZ)]dZ = m (84b)
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Substituting these back into (83a), (83b) yields

k2 . 2., 2

atCUZ,C(k, m, t) — _W . pl (k, O, t) . evl(k +m )t, (85a)
k|lm N 2.2

orwy s (k,m, t) = _p;(l<|2|—i—7712) - pi(k,0,t) - ekt (85b)

As with (56), each equation above can be integrated in ¢:

k2 E 2 2

wy(k,m, t) —w o (k,m,0) = ) -/0 [p1(k,0,T) - et &+ T, (86a)
k|m b 2,2

Wis (kr m,t) - wl,s(kr m,O) = _Pl(k|2|+mz) /O [Pl(k, 0, T) ~€Vl(k +m )T]dT. (86b)

Substitute the information about the values at t = 0, encoded in (86), into (78a) and (79a)
to obtain

Zf]l'c(k’z’ t) = \/oo [(f)l,c(k/ m, 0) . COS(T}’ZZ) . eivl(k2+m2)t]d7’1’l
- /00 [L - cos(mz) - /t{ﬁ (k,0,7) - e E+H) =DV deldm,  (87a)
— 0 pl(kz + mZ) 0 I\ Y, ,
and
Wik z,t) = /Oo [@y5(k,m,0) - sin(mz) e (Rm) gy

00 t
- Lw pl(k|2k|—TrnZ) -sin(mz) - /0 {p1(k,0,T) - e (szrmz)(t*T)}dT]dm. (87b)
Just as with (58a) and (58b), one can verify that the functions above solve (81b), by substi-
tuting each into (81b). In addition, one can verify that the first integral in either function
also satisfies (75), by substituting that integral into (75).

Step 3b in the lower fluid follows the same steps as in the upper fluid. First, we need
to separate the real and imaginary parts of @; . (k, z, t), so at this point we split each of (87a)
and (87b) into their real and imaginary parts. Separately, the complex-valued pressure
in the lower fluid, p;(k, z, t), was first defined in Section 2.3. Here in Section 3.2, only the
boundary data, p;(k,0,t), are needed. p;(k,0,t) can be split into its real and imaginary
parts: define 4;(k, 0, t) and &;(k, 0, t) to be real-valued functions such that

pi(k,0,t) = 41(k,0,t) +ib;(k,0,1). (88a)
Similarly, in (87b), set
(f)l,c (kr m, O) = jl,c (k/ m, 0) + iél,c (k/ m, O)r (88b)

where fil,c(kr m,0) and ﬁl,c(k, m,0) are real-valued functions of real-valued parameters
{k, m}, defined by the initial data of the problem.

The method of Variation of Parameters requires a generalization of (88b), in order to provide
more flexibility to the representation of C(:JI,C (k,m, x). The desired generalization is

(Dl,c (k/ m, t) = Al,c (k/ m, t) + iBl,E (k/ m, t)r (88C)
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where A 1c(k,m, t) and B 1,c(k,m, t) are real-valued functions, defined so that the generaliza-
tion of @, . leads to exact solutions of (73).

Comment 19. p,(k,0,t) in (59a) and p;(k, 0, t) in (88a) represent the boundary pressures on
either side of the fixed interface, but these two pressures need not agree.

Define @ .(k, z, t) so that

()

(@ c(k,m, t) - cos(mz) - e—‘/l(k2+m2)f}dm

7/bl,c(k/ z, t) = /

J —00

00 k2 t 2, .2
_/ [m.cos(mz)./o {f,l(k,ol-r),efw(k +m )(t*T)}dT]dm. (89a)
— 00 1

Using (88a), the real part of W; .(k,z,t) = & .(k,z,t) + i,@l,c(k, z,t) is

by c(k,z,t) = /oo [A;(k,m,t) - cos(mz) e gy
* K* foa —uy (Rtm?) (t—7)
_/,W[W 'COS(mZ)/O {’)/l(k,o, T) -e ! }dT]dm, (89b)

while its imaginary part is

iBo(k,z,t) = /oo [iBy . (k,m,t) - cos(mz) e gy
e k? LA v (2 4m2
_ ) ; . g~ vi(ke+m?) (t=T)
/—oo[P[(kz ) (:os(mz)/O {i0;(k,0,7) - e tdt]dm. (89¢)

Meanwhile, the real part of the generalization of (87b) is

bk z,t) = /oQ [Al,s(k, m, t) - sin(mz) ~e*1”(k2+m2)t}dm
Y |k|m . /t . v () (=)
/_ oy ) [ (e0,7) e Ydt]dm, (89d)

while the imaginary part of (87b) is

(0]

[iB; s (k,m, t) - sin(mz) - e*VI(szrmz)f}dm

Btz = [

—00

_ ey km /t 5 - u(k+m2) (1)
/_ oy () [ 48 0,0,7) e Ydt]dm. (89%)

JustasiL,(-) was re-introduced in the equations for the upper fluid, iL;(-), which is defined
in (74c), can be brought back into the problem. This is Step 4. It now becomes essential to
represent W; . (k, z, t), a solution of (73), in terms of its real and imaginary parts. This was
done in (76) for @, (k, z, t). We assume that a similar formula applies to @ , (k, z, t):

W) . (k,z,t) = &y . (k, z,t) +iB . (k, 2, t), (90)

where & , (k, z, t) and fil,* (k,z,t) are real-valued functions, chosen so that @, , (k, z, t) in (90)
is an exact solution of (73), according to the definitions given in (74a)—(74c). [Note: All of
the versions of (89a)—(89) are consistent with (90).] With those definitions, (74a) guarantees
that

Dy (k, 2, t) = —vi (9280 — K2Ry ) — vy (92B1,0 — k7B ) (O1)
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Define the real-valued functions, 4, (k, z, t) and 5 (k,z,t), so that (88a) holds. Then P, (k, z, t)
in (74b) can be written as

Pi(k,z,t) = —':fl' [H1(k,0,8) + 8 (k,0,1)] - elklz, (92)

Following the same procedure as in (64), we show the results of applying the operator from
(740):

I {iLicbye (K2, )} = ik Uy(§1(2,1) -0k, 2,1
4 2ik|k]| - eIz / el /f T (G5, 1)) - dy (K5, 1) - oY ds)dg (93a)

ik e [T 1) s, ) - s,
zZ

Re{il‘lwl,* (k, z, t)} =—k- ul(gl(zf t)) ’ ,Bl,* (k/ z, t)
+2u[K| - e L2 [ Bt @) ot o) -eeyasiag  ©3b)

—2k - elklz /m[asul(g(sl t) - ,Bl,* (k,s,t) - e‘k‘s]ds.

Summary of Sections 3.1 and 3.2:

®  The two comparable analyses of the equations of motion in the upper (Section 3.1)
and lower (Section 3.2) fluids simplify the relevant formulae for motion in the upper
and lower fluids.

¢ One important difference between the dynamics in the upper fluid (Section 3.1) vs.
that in the lower fluid (Section 3.2) arises if one were to follow the same set of steps
outlined above for the equations describing the lower fluid. The second integral
on the right side of the lower fluid analogy of (70) and the second integral on the
right side of the lower fluid analogy of (72) are both much smaller (numerically)
than the corresponding integrals shown for the upper fluid, because the horizontal
background flow in the lower fluid is much smaller than that in the upper fluid,
as shown in (Figure 1) on page 4. This important difference occurs because the density
of air is smaller than that of water by a factor of about 800 (at room temperature).
If the densities of the two fluids are more comparable, then the horizontal velocities of
the two fluids are also more comparable, and the corresponding integrals in the upper
and lower fluids are also more comparable.

e An important part of the structure of these equations is that @, (k, z,t) has a real
and an imaginary part. Equations (69)—(72) are the only places in this entire analysis
where the real and imaginary parts of w, «(k, z, t) interact with each other. Similarly,
the lower fluid analogues of (69)—(72) are the only places where the real and imaginary
parts of w; . (k, z, t) interact with each other.

®  Sections 3.1 and 3.2 describe respectively the dynamics of the fluid above the interface,
in Section 3.1, and the dynamics of the fluid beneath the interface, in Section 3.2.
In addition to the dynamics in each fluid, the two fluids interact with each other
at or near the interface between the two fluids. These interactions are described in
Section 2.5, and in more detail in Section 4, which follows.

4. Discussion
4.1. Summary of Results

The analysis carried out in the previous sections provides a mechanism with which
to understand wind-driven waves. Beginning in Section 2.4, (29a) and (29b) describe the
linearized motion in the upper fluid and lower fluid, respectively. (29a) and (29b) are
the fundamental equations that show up in different variations throughout the analysis.
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Equation (44) is a direct consequence of (29a), with no extra or missing terms. The first two
terms in (44) define the diffusion and the term on the right-hand side of (44) is the external
pressure. The third term on the left-hand side of (44) describes the interaction between the
real and imaginary parts of @, (k, z, t). Please note that while it will be omitted for most of
the discussion, analogous processes apply to the lower fluid, defined by (73), a result of
(29b).

Turning to the fixed interface at z = 0, (32) and (33) govern the dynamics near the fixed
interface. (33) is obtained by evaluating (29a) and (29b) at z = 0, and then adding the two,
which results in some terms cancelling. In order to maintain continuity in z, the vertical
motion in the upper and lower fluids must match at the interface. The term w(k, t) is
introduced to represent the limit as z — 0 from either above or below. If the top line of
(33) is set to 0, the simplified equation can be solved to obtain w(k, t) = w(k,0) - e ikU(0)t,
The consequence is that the initial shape of the vertical velocity profile (i.e., w(k,0)) propa-
gates in the x-direction, at a speed approximately equal to U(0). The shape of the vertical
velocity profile does not change as it propagates in the x-direction, which is an important
result. Please note that because @, (k,0,t) = @;(k,0,t), the vertical velocity must be contin-
uous at the interface. Therefore the vertical velocities in the two fluids at z = 0 coincide,
and together they push the moveable interface either up or down, at the same rate.

The first line of (33), by itself, asserts that w(k, t) propagates horizontally, along the
fixed interface (where z = 0) with speed U(0). These vertical velocities can be viewed as
being measured at z = 0, the location of the fixed interface. Meanwhile, (32) determines
how 7(k, t) evolves in time. The solution of (32) is complex-valued, so it has two parts,
an amplitude and a phase. The time-derivative term on the left side of (32) is used twice,
once to determine how the phase changes as a function of time (based only on the left side
of (32)), and the other use of the time-derivative term is to determine how the amplitude of
71(k, t) evolves in time, by bringing in the right-hand side of (32). Consider each of those two
processes, which operate during the same time-interval. The phase-term, along with the
two integral terms in (33), suggest that 7j(k, t) propagates in approximately the same way
as w(k, t) propagates: horizontally, and approximately along the fixed interface with speed
U(0). Therefore, w(k, t), on the right side of (32) controls the amplitude of 7 (k, t), so w(k, t)
controls the height of the movable interface relative to the fixed interface. In addition,
if w(k, t) and 7 (k, t) both travel horizontally at the same speed, and if w(k,t) > 0, then
71 (k, t) continues to grow in amplitude as t increases.

4.2. White-Capping of Waves

Finally, this brings us to white-capping of waves in the presence of strong winds.
At some initial time (t = 0), the surface elevation, #(x,t = 0), has a Fourier transform,
(k,t = 0), which defines a fixed shape of the surface elevation, as a function of x in some
spatial region. At the same time (f = 0), the vertical motion in the upper and lower fluids,
with some shape in each fluid in the x-direction, has its own Fourier transform at z = 0,
w(k, t). These two kinds of shapes at t = 0 might have no relation to each other, so their
Fourier transforms might also have no particular connection to each other. If we neglect
the sum of the two integral terms in (33), then the vertical velocities near the fixed interface,
in each of the two fluids, can push the location of the moveable interface up or down.
As long as w(k, t) and 7 (k, t) both travel in the same horizontal direction, at approximately
the same speed, U(0), then the height of the moveable interface can increase or decrease
significantly over time.

Suppose the crest of a particular wave is pushed up significantly by the vertical
velocities near z = 0, in each fluid. As the crest of the wave is pushed higher in space, it is
also pushed into regions of stronger horizontal velocities. (See Figure 1, on p. 4). As the
crest of the wave is lifted into stronger winds, other parts of the free surface might not be
pushed into such strong winds, so the existing winds can rip the crest of the wave away
from the rest of the wave. This is white-capping of waves.
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