
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 1, JANUARY 2021 3

Mixed-Signal Computing for Deep
Neural Network Inference

Boris Murmann , Fellow, IEEE

(Invited Paper)

Abstract— Modern deep neural networks (DNNs) require
billions of multiply-accumulate operations per inference. Given
that these computations demand relatively low precision, it is fea-
sible to consider analog computing, which can be more efficient
than digital in the low-SNR regime. This overview article investi-
gates the potential of mixed analog/digital computing approaches
in the context of modern DNN processor architectures, which are
typically limited by memory access. We discuss how memory-like
and in-memory compute fabrics may help alleviate this bottleneck
and derive asymptotic efficiency limits at the processing array
level. It is shown that single-digit fJ/op energy efficiencies are
feasible for 4-bit mixed-signal arithmetic. In this analysis, special
consideration is given to the SNR and amortization requirements
of the analog–digital interfaces. In addition, we consider the pros
and cons for a variety of implementation styles and highlight the
challenge of retaining high compute efficiency for a complete
DNN accelerator design.

Index Terms— Deep learning, hardware accelerators,
in-memory computing, machine learning (ML), mixed
analog digital integrated circuits, neural networks, switched
capacitor (SC) circuits.

I. INTRODUCTION

DEEP neural networks (DNNs) have proven remarkably
effective in a variety of machine learning (ML) tasks

including image classification, speech recognition, and natural
language processing [1]. Over the past decade, this has fueled
an unprecedented level of interest in ML, with currently over
100 publications appearing per day [2]. While much of this
research is focused on algorithmic advancements, a parallel
and synergistic thread lies in designing efficient hardware
platforms for DNN training and inference.

Even moderate-size DNNs contain millions of parameters
and require billions of computations for a single infer-
ence, making it difficult to run them on resource-constrained
platforms. One solution to this problem lies in embracing
domain-specific hardware accelerators [3], [4], which are
customized toward the workloads of a certain application class.
For DNNs, these accelerators provide specialized operations
and parallel computing to improve speed and energy con-
sumption by orders of magnitude relative to general purpose
processors. Progress in this field heavily relies on hardware-
algorithm co-design [5] and has led to a variety of insightful
design principles for custom digital DNN chips [6]–[9].

Manuscript received July 12, 2020; accepted August 5, 2020. Date of
publication September 15, 2020; date of current version December 29, 2020.
This work was supported in part by Stanford’s SystemX Alliance and in part
by the National Science Foundation under Grant 1937294.

The author is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: murmann@stanford.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2020.3020286

Fig. 1. Qualitative plot of energy cost for digital and analog MAC operations
versus bit precision.

This article explores an additional customization vector by
embracing analog circuit fabrics for DNN inference. This
direction is motivated by two observations. First, DNN infer-
ence is inherently resilient to small computation errors, and
can be desensitized further by injecting noise during train-
ing [10], [11]. This property enables bitwidth reductions down
to four bits and below [5], [12] and can be exploited to absorb
analog processing errors. In this context, it is worth noting
that DNN training does not offer the same resilience [13]
(at least 8-bit floats tend to be required). Second, it is well
understood that analog computation can be more efficient
than digital for low bit precisions [14]–[16]. This is illus-
trated in Fig. 1, which provides a qualitative comparison for
multiply-accumulate (MAC) operations. The analog energy
cost rises steeply for high bitwidths, where thermal noise
is the dominant nonideality. Since the rms value of thermal
noise is proportional to

√
kT/C , achieving an extra bit of

precision in this regime requires quadrupling the capacitance
and hence quadrupling the energy. However, typically below
8-bit precision, analog realizations can be superior to digital
due to their structural simplicity.

While there exists an extensive body of the literature on
analog neural networks, the purpose of this article is to
revisit the subject with recent trends in DNN algorithms and
domain-specific hardware optimization in mind. We exclude
neuromorphic approaches [17], and consider mainstay kernels
used in traditional digital accelerators. In particular, we focus
on convolution layers, which tend to dominate the size and
workload of modern DNNs with millions of parameters [6].
Within this specific context, the potential merits of analog
computation are nonobvious and deserve further discussion.
Most significantly, it is well understood that the energy con-
sumption of digital DNNs is dominated by data movement and
memory access [6], seemingly obviating the need for innova-
tion in the arithmetic units. However, it is important to realize

1063-8210 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3417-8782

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 1, JANUARY 2021

Fig. 2. Bird’s eye view of (a) typical digital DNN accelerator and (b) explored
mixed-signal accelerator concept.

that the construction and density of the compute elements
plays a significant role in a DNN’s data flow. In other words,
the motivation for including analog fabrics is not limited to
improving arithmetic energy but extends to introducing new
degrees of freedom for reduced data movement and memory
access.

As shown in the cartoon illustration of Fig. 2(a), a con-
ventional digital DNN accelerator resembles the structure of a
multicore processor and contains an array of tens to hundreds
of processing elements (PEs). A PE typically measures a few
hundred micrometers on a side and includes a small amount of
buffer memory plus strictly separated MAC arithmetic. Each
MAC operation triggers several accesses to the local memory,
introducing unwanted energy overhead. In addition, once the
buffers have been filled or exhausted, data movement to a
larger global buffer (with higher access energy) is required.
A key objective for the circuits discussed in this article is to
reduce the overhead caused by these memory accesses.

Fig. 2(b) outlines the pursued approach from a birds-eye
perspective. Digital as well as analog memory and compute
elements are densely interspersed to aim for a “best of both
worlds” mixed-signal solution. Dense digital memory is kept
in the mix for fast data caching, and so is digital arithmetic for
operations that are difficult to emulate in the analog domain.
Analog compute is primarily added to enable low-energy
spatial accumulation [vertical red bars in Fig. 2(b)]. Instead
of writing a local compute result to memory, it can be accu-
mulated via current or charge summation on a wire. Finally,
if dense multilevel nonvolatile memory is available, it can find
dual use for weight storage and synaptic operations via Ohm’s
law (current = voltage × stored conductance). In all possible
combinations, close attention must be paid to the efficiency of
the required D/A and A/D interfaces.

Avariety of unit cell sizes are possible within this generic
framework. One extreme, known as in-memory computing
[18]–[20], prioritizes density and makes do with whatever
compute function can be integrated on the scale of a memory
cell. Another plausible idea is to employ larger mixed-signal
cells that are still substantially smaller than a digital PE
but offer enhanced capabilities relative to the in-memory
paradigm. We refer to this latter approach as “memory-like.”
The tradeoff space between these options has not yet been
studied with respect to accelerator architecture benchmarks
and flexibility. These aspects require further research that
lies beyond the scope of this article, which mainly provides
an overview of the various circuit options for mixed-signal
processing arrays.

Fig. 3. (a) MAC operation performed by a convolutional DNN layer.
(b) For-loop representation.

The remainder of this article is structured as follows.
Section II establishes important preliminaries by reviewing
the required computations for convolutional layers and the
basics of state-of-the-art digital accelerators. Section III rep-
resents the core of this article and discusses circuit design
options for the mixed-signal fabrics in question. We cover
capacitive and resistive solutions, ranging from memory-like
to in-memory design styles. Finally, Section IV discusses
system-level aspects and identifies opportunities for future
research, while Section V concludes this article.

II. PRELIMINARIES

A. Convolutional Neural Networks

Convolutional neural networks (CNNs) [21], [22] are among
the most popular DNN architectures and presently achieve
the highest classification accuracy for a variety of tasks.
They consist of a cascade of layers, each of which compute
convolutions (or more precisely, correlations), max pooling,
normalization, and nonlinear activation functions. In essence,
these layers extract increasingly abstract features that are
ultimately fed into fully connected layers for classification.
In modern CNNs, the convolutions are by far the most compute
intensive operations and are hence our focus.

Asshown in Fig. 3(a), each convolution layer takes a 3-
D input tensor that can be viewed as a stack of C images
with resolution X × Y . For example, if the first layer sees
an RGB video graphics array (VGA) input image, the tensor
dimensions are 640 × 480 × 3. K filter tensors slide through
the input tensor along the X and Y dimensions and each
determine one pixel in the output volume via a full dot product.
The required computations can be concisely summarized as a
nested for-loop, shown in Fig. 3(b). The filter size FX × FY

is typically 3 × 3, and larger “receptive fields” are nowadays
achieved by stacking more layers [23]. However, the layer
dimensions vary between different CNN designs and also
within a network, necessitating some hardware flexibility. For
example, in VGG16 [23] the core layer dimensions vary
between 112 × 112 × 128 and 14 × 14 × 512 (X × Y × C).

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

MURMANN: MIXED-SIGNAL COMPUTING FOR DNN INFERENCE 5

Fig. 4. Simplified block diagram of a typical digital DNN accelerator.

The most flexible option would be to employ a CPU-like
architecture with one MAC unit that executes the algorithm of
Fig. 3(b) sequentially, fetching the operands one by one from
memory. However, this fully temporal approach is extremely
slow and inefficient. The opposite extreme is to devise a fully
spatial architecture that allocates parallel hardware for all com-
putations. But this is usually impractical due to the extremely
large chip sizes that would result in standard CMOS [24]–[26].
Dense in-memory computing in emerging technologies may
one day change this situation (see Section III-C). Until then,
we must opt for architectures that combine some amount
of hardware parallelism with time multiplexing of these
resources.

B. Digital Accelerators
As illustrated in Fig. 4, modern DNN accelerators contain

a PE array that performs a large number of MAC operations
in parallel. For example, the state-of-the-art design in [27]
contains 16 PEs, and computes a total of 1024 8-bit MACs per
cycle. Feeding the arithmetic with new operands in each cycle
is accomplished using a carefully crafted memory hierarchy
that exploits data-reuse opportunities. For example, as the
filters slide across the input feature maps, they do not need
to be reloaded from external DRAM memory each time but
can be temporarily “cached” within the global buffer or within
the PE. Similarly, partial sums from a previous filter position
may be reused for the computation of the next output pixel.
Embracing such data reuse strategies is extremely critical for
high efficiency, since accessing memory tends to cost signif-
icantly more energy than arithmetic operations. Considering
typical activity factors, even a 16-bit MAC operation costs
only 75 fJ [28] in 28-nm CMOS, and numbers below 10 fJ
are possible for lower bitwidths and more advanced technology
nodes [29]–[31]. On the other hand, accessing a 1-kB SRAM
costs about 1 pJ/byte and should therefore be amortized across
many computations.

Useful taxonomy has been defined to distinguish where and
how the data reuse occurs [7], [9]. Accordingly, one can differ-
entiate between weight stationary, output stationary and row-
stationary dataflows, as well as spatial and temporal reuse. In
essence, these choices correspond to the various ways that the
for-loops in Fig. 3(b) are unrolled, blocked, and/or reordered.

Fig. 5. Template for mixed-signal processing arrays.

The combination of these options, along with the sizing of the
memory hierarchy, leads to an extremely large optimization
space that is difficult to navigate. However, the systematic
study of Yang et al. [28] noted that most dataflow options
can be near-optimal as long as a high degree of data reuse
and resource utilization is ensured. More significantly, it was
shown that the accelerator’s energy efficiency is most closely
tied to the design of the hierarchical memory system and the
sizing of each level in this hierarchy. As shown in Fig. 4, a
typical design has three levels: external DRAM, global SRAM
buffer (or double buffer), and local buffers within each PE.

It was found that the size of the PE buffers should be
minimized to balance the energy across the system [28],
which can be reconciled by the fact that they are typically
accessed in every compute cycle (two reads and one write per
MAC). However, even with small PE buffers and some limited
amount of spatial reuse, each MAC operation will come
with significant memory access overhead, typically making it
difficult to improve digital PEs beyond ∼150–200 fJ/MAC
for 8-bit operands (see the state-of-the-art design of
Zimmer et al. [27]).

III. MIXED-SIGNAL PROCESSING ARRAYS

In light of the PE buffer overhead discussed in Section II, we
conjecture that mixed-signal processing arrays offer a degree
of freedom that is worth exploring for efficient DNN accelera-
tor design. Fig. 5 shows a generic template for the approaches
discussed in this article. The concept is to build a large
weight-stationary array of small unit elements (UEs), exploit-
ing the density advantage of minimalistic memory-cell-like
circuits [32]. Each UE can be viewed as a “synapse” and
holds one (or a few) weights that can remain stationary for
a large number of compute cycles (or indefinitely). As a
result, weight movement and weight access energy are small.
For low-energy accumulation, an analog charge or current
bus collects column-wise partial products without involving
digital logic or memory. This is similar to a reduction tree in
digital architectures but can be more area and energy efficient.

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 1, JANUARY 2021

The cost for the analog summation is that an A/D conversion
is required for each column. However, each conversion is
amortized across many rows. Lastly, the input activations are
broadcast across many columns (spatial reuse) to amortize the
access energy from the global buffer. Various options exist
for implementing the required multiplications in each UE,
as discussed below.

Potentially, the array can be sized such that an entire filter is
held in a single column. This unrolls the FX , FY , and C loops
in Fig. 3(b) and turns each column into a complete “neuron.”
If this is not possible (or desirable), the accumulations can be
completed in the digital domain, as shown. It is noted that
the schematic in Fig. 5 also shows the usual bias that must
be added to the convolution output before going through the
layer’s nonlinear activation function (often a rectifying linear
unit, ReLU). In addition, linear scaling is needed for batch
normalization. We omit such details in this article for brevity
and because they have limited impact on the array’s efficiency
(as long as its size is sufficiently large).

The number of columns (M) can potentially be chosen
to process all K filters of a DNN layer in parallel to attain
maximum spatial reuse of global input activation buffer access
[this fully unrolls the K loop in Fig. 3(b)]. Alternatively,
the weights can be reloaded after several array computations,
which still offers substantial amortization of global activa-
tion and weight buffer access energy for a reasonably large
array.

The array concept of Fig. 5 can be implemented in many
different styles. In this article, we focus on a subset of options
that have proven attractive. For example, we omit approaches
that rely on current summing from SRAM cells, which are
relatively difficult to deploy due to high variability (see [19]
for an in-depth discussion).

A. Binary Switched Capacitor Arrays

We begin with schemes using switched capacitor (SC)
accumulation. The appeal of this approach mainly stems from
the small mismatch of metal–oxide–metal (MOM) capaci-
tors in modern CMOS. Even for subfemtofarad capacitors,
standard deviations of around 1% or better are achievable
[33], [34]. This enables compact, low-energy accumulation
at DNN-compatible precision. In addition, this approach is
relatively robust to global variations in process parameters,
supply voltage and temperature (PVT).

Fig. 6(a) shows the conceptual schematic of a capacitive
MAC array for binary neural networks. Binarization reduces
multiplications to XNOR operations [35], yielding compact UE
layouts. Our implementation in [32] uses a latch for weight
storage and integrates an array with N × M = 1024 × 64
and fully analog accumulation. More recent designs employ
SRAM cells for weight storage and employ only 8–10 tran-
sistors per UE for significant density improvements [36]–[38].
Since the cell density is close to that of standard SRAM, these
latter approaches are categorized as in-memory computing.

An important design detail in this scheme is how the charge
sharing is implemented. An advantage of the circuit depicted
in Fig. 6(a) is that dynamic energy dissipation occurs only if
the input activations switch, similar to standard CMOS logic.

Fig. 6. (a) Mixed-signal array with binary weights and activations (actual
implementation may be differential). (b) Column voltage distribution assuming
independent random inputs, zero bias, and N = 256.

However, a charge reset (RES) must be performed periodically
to overcome leakage. This necessitates additional transistors
inside the UE to override the XNOR output. In [32], dedicated
NOR gates are added for this [not shown in Fig. 6(a)], while
[36] uses array’s wordlines for RES. For alternative schemes
with grounded unit capacitors [37], [38], the RES and extra
gates are not needed, but dynamic energy is dissipated even
if the input activations do not switch. The energy overhead
can be significant, since the activity factors of DNN input
activations tend to be below 10% [32].

Another important design aspect relates to the dynamic
range of the charge accumulation and the tolerable ana-
log circuit errors. Unfortunately, the requirements depend
on the DNN algorithm, inference accuracy, signal statistics,
and the employed training methods, which can help desensitize
the network [39]–[42]. Still, we attempt to articulate some
approximate guidelines. First, it is important to note that the
signal swing on the accumulation wire is usually relatively
small compared to the supply voltage. If we assume random
and uncorrelated binary inputs and weights (with Pr(0) = Pr(1)
= 0.5), the accumulation result has a Binomial distribution
with mean N/2 and standard deviation

√
N/2. This is illus-

trated for N = 256 in Fig. 6(b), where VLSB = VDD/N denotes
a unit increment in the accumulation voltage. Although the
input data is not purely random and uncorrelated in an actual
DNN, this first-order statistical approximation is not too far
off from the values observed in [36] and [40].

In terms of random errors, the DNN-level simulations of
[32] and [40] suggest tolerable standard deviations on the
order of VLSB for binarized networks, which does not conflict

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

MURMANN: MIXED-SIGNAL COMPUTING FOR DNN INFERENCE 7

Fig. 7. Conceptual schematic of a 3-bit SC UE.

with intuition. If VDD = 1 V and N = 256, this translates
into an easily achievable noise specification of ∼4 mVrms for
the comparators that slice the accumulation result, as well
as the kT/C noise at the charge summation node. Similar
considerations apply to capacitor mismatch. For 1% matching,
the cumulative error is 1%

√
N and N would have to exceed

10 000 before the standard deviation rises to the level of one
input increment.

Owing to these relatively mild circuit requirements, chip
demonstrators of the discussed approach tend to achieve
compute efficiencies near or below 4 fJ/MAC, even with all
peripheral memory accesses considered. However, fully digital
implementations that follow a similar architecture (employing
adder trees) and dataflow can get close to these numbers
as well [30]–[32] (see Section IV). This suggests that that
mixed-signal processing is not necessarily a game changer
for binarized DNN accelerators. It therefore makes sense to
investigate multibit implementations, which can also cover a
wider application space.

B. Multibit SC Arrays
Fig. 7 shows one way to extend the concept of Fig. 6 to

multibit operation. For simplicity, the circuit assumes unsigned
operands, but it can be modified to achieve signed operation.
The topology resembles a digital multiplier, but the local
partial products are collected in the charge domain (instead
of using digital full adders). The shown charge collection
bus hence serves the dual purpose of local accumulation and
accumulation within the array. The voltages on this bus must
be combined in a binary-weighted manner before or during
A/D conversion. It may be possible to integrate the combiner

Fig. 8. MAC energy estimate for the multibit array in Fig. 7 assuming 28-nm
CMOS. (a) Energy versus operand bitwidth (B) for N = 3×3×128 = 1152.
(b) Energy versus array dimension (N) for B = 4.

within the ADC’s input network to minimize overhead
(e.g., using binary splitting of the sampling capacitance).

Instead of allocating nine AND gates for parallel 3-bit
operations, one can also process the input activations serially,
as proposed in the SRAM in-memory compute processor of
[37]. This implementation distributes the weight bits into
separate SRAM columns and serializes the input activation
bits into the array, with one A/D conversion per time step and
column. The final weighted result is then assembled in the
digital domain. The advantage of this scheme is that it achieves
higher density (one AND gate per UE) and programmability,
but it trades this for lower throughput and extra A/D conver-
sions. This serial approach is preferred when achieving high
density and variable bitwidth is the primary objective, while
a more parallel configuration may bring some improvements
in throughput and energy efficiency.

To establish a feel for the achievable energy efficiency of
the fully parallel configuration, we performed a quantitative
analysis that sweeps the bitwidths of the operands (B , assumed
equal for weights and activations) and the vertical array
dimension N . The energy per MAC operation is expressed as

EMAC = EADC

N
+ ECAP + ELogic (1)

where EADC is the ADC’s conversion energy, which is
amortized over the number of rows in the array (N). ECAP

and ELogic capture the energy consumption due to the unit
capacitances (Cu) and logic gates in each UE.

The obtained results are shown in Fig. 8 and the underlying
assumptions are detailed in the Appendix. Fig. 8(a) is a
plot against operand bitwidth (B) assuming a large array

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 1, JANUARY 2021

with N = 1152. This corresponds to a desired scenario with
a highly amortized ADC, keeping its energy contribution
roughly on-par with the UE’s logic gates for B = 2–6.
However, for higher bitwidths, the ADC ultimately domi-
nates due to the steep tradeoff between energy and thermal
noise requirements. Beyond B = 8, the estimate exceeds
200 fJ/MAC, which is also reachable with purely digital
implementations [27]. It should be kept in mind that this result
is sensitive to the underlying assumptions, but regardless, com-
peting with digital above 6–7 bits is challenging and will likely
yield diminishing returns. However, for B = 4, the predicted
MAC energy is 3.8 fJ, which would be attractive if realizable in
practice.

Fig. 8(b) is a plot against the number of rows (N) with
B = 4. It shows that the A/D conversion should be amor-
tized over at least over a few hundred rows to achieve
high efficiency. Also, it is noted that the ADC energy (per
MAC) eventually saturates due to the signal shrinkage effect
mentioned in Section III-D. Our analysis assumes that the
fractional signal amplitude (relative to VDD) is proportional
to 1/

√
N , so that a quadrupling of N reduces the swing by

2×. Once the signal is small enough to make the ADC purely
noise-limited, a 2× swing reduction leads to a quadrupling in
energy. Hence, the amortization benefit stops, and the ADC
energy flattens for large N .

C. Resistive Arrays

None of the processing arrays discussed so far are dense
enough to hold all the weights of a large DNN (say >10 MB)
on a single die under reasonable chip area constraints.
However, this could become possible using in-memory
computing with emerging memory technologies. For instance,
resistive RAM (RRAM) offers cell sizes of 53 F2 [43], where
F is the half pitch the process technology. For comparison,
the memory-like, single-bit UE of [32] measures 24 000
F2, while the SRAM-based cell of [38] occupies 290 F2.
Additionally, these emerging memories are typically non-
volatile, which enables power cycling without reloading the
weights from external flash memory. The reader is referred to
[44] and [45] for a comprehensive review on the large variety
of competing technologies (RRAM, MRAM, ferroelectric
RAM (FRAM), phase change RAM (PCRAM), etc.).

Most emerging memory technologies are based on storing
the information on programmable resistors. The resistors can
be programed between two states and read out row-by-row
like standard digital memory. Alternatively, the array can be
used for analog in-memory computing in accordance with the
template of Fig. 5. This is illustrated in Fig. 9(a), which
shows an array of “1T1R” cells, where the transistor is
mainly needed for programming. The input activations are
applied to the programmable resistors in each unit cell, which
represent the filter weights. Accumulation occurs by sum-
ming the currents along each column (current = voltage ×
stored conductance). The natural solution is to process the
sum in the current domain (via a transimpedance amplifier,
integrator [46], or current-mode comparator [47]), but presum-
ably more efficient voltage-domain readouts are also possible
[48]–[50]. As discussed previously, the column readout circuit

Fig. 9. (a) Resistive array. (b) Layer pipelining.

must be well amortized to achieve high-energy efficiency.
An additional challenge in these dense arrays is fitting the
interface circuits to the extremely fine pitch.

For some technologies (e.g., RRAM) it is conceivable to
store multibit weights in each unit cell [51]. Alternatively,
the weight bits can be split among multiple cells as in
SRAM-based designs (see [47]). For multibit activations,
the inputs can be analog voltages generated by a DAC [52].
However, for low bitwidths, the DAC overhead can be avoided
by serializing [47] or pulsewidth modulating the input acti-
vations [49]. Another important consideration is the energy
dissipation caused by the resistors alone. Applying 0.5 V
across 10 k� for 10 ns (typical readout time) corresponds
to 250 fJ/MAC. It is therefore desirable to work with much
larger resistance values [53], but this often stands at odds with
maintaining low variability [51].

As an alternative, we have explored a fully dynamic scheme
where the bitlines are precharged and discharge occurs accord-
ing to the dot product of pulsed input activations and RRAM
weight conductances [49]. In this design, the bitline transients
are digitized using 2-bit ramp ADCs. The DAC block within
these converters are integrated and shared within the cell array,
to provide a replica with similar behavior as the cells used
for the dot product (similar to [54]). This idea exploits the
“signal shrinkage” effect mentioned in Section III-A. Only a
relatively small number of reference cells are needed to cover
the output range (e.g., 100 replica rows for an array with
several thousand rows total). For this implementation with
2-bit inputs, 2-bit outputs and five-level weights, postlayout
SPICE simulations in 40-nm CMOS predict single-digit fJ/op
for arrays with ∼3000–13000 rows. These results include
benefits from sparsity-aware processing. Specifically, if the
ramp ADCs trip in early conversion cycles, further bitline

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

MURMANN: MIXED-SIGNAL COMPUTING FOR DNN INFERENCE 9

Fig. 10. (a) MobileNetV2 Bottleneck layer. (b) Pipelined implementation
with mixed-signal processing.

precharges are skipped, leading to an energy benefit of
about 2.5×.

While there are many possible ways to incorporate emerging
nonvolatile memory into a DNN accelerator, one attrac-
tive option is a streaming (pipelined) topology as shown
in Fig. 9(b). Here, large in-memory compute tiles are pipelined
between small SRAM line buffers that hold only the current
input working set [55]. To form a complete accelerator, many
such tiles can potentially be integrated on a single chip,
as described in [56]. In such an architecture, all weights remain
stationary and the data slides through the fabric with massively
parallel computation.

At present, the art of designing complete DNN processors
using emerging memory is still in its infancy. Key issues
include access to process technology as well as challenges with
variability, retention and endurance (see [57]). Programing
the resistance values accurately and reading consistent val-
ues across operating conditions and lifetime is a significant
issue, despite the error tolerance of neural networks (see [44]
and [45] for a comprehensive overview). As a result, most
demonstrators are only subsystems and use relatively small
arrays (see [47] and [48]). Furthermore, some implementations
activate only a small number of rows simultaneously to
simplify the design (e.g., 3×3 = 9 rows in [47]), which leads
to diminishing performance gains. However, the vast amount
of ongoing research will undoubtedly change this, and may
one day lead to arrays operating at levels near 0.1 fJ/op [53].

D. Arrays for Bottleneck Layers

So far, we have assumed that the processing arrays handles
only “vanilla” convolution layers as shown in Fig. 3(a).
However, modern DNNs leverage fine-tuned layer structures
to reduce the number of required weights and MACs. Consider
for example the so-called “bottleneck layers” of MobileNetV2
[58] [see Fig. 10(a)]. Each layer’s input has a relatively

small number of channels (C) that gets internally expanded
using 1 × 1 filters. The so-created intermediate feature map
is processed using depthwise separable convolutions, which
require significantly less MAC operations than standard con-
volutions. Finally, the filtered feature map is projected back
into a lower dimensional tensor that is passed to the next layer.

Mixed-signal arrays could be used to pipeline this cascade
of operations and avoid storing the large intermediate feature
map in memory. As shown in Fig. 10(b), a first MAC array
can be allocated for the expansion operation, with its columns
holding the expansion filters. The array outputs are digitized
for depthwise convolutions in the digital domain. Mixed-signal
computing would be relatively ineffective here due to the small
kernel size (3 × 3 filters lead to nine-row accumulation with
poor ADC amortization). However, mixed-signal processing is
useful again for the projection operation, which has its filter
weights reside along the rows of the bottom array. In principle,
this customized array structure can be realized with any of the
circuit styles discussed in Sections III-A–III-C.

IV. SYSTEM ASPECTS

Assessing the system-level benefits of the above-described
processing arrays is a challenging task and requires further
research in the style of [28] and [59]. Nonetheless, we want
to give the reader a feel for the basic aspects.

A. Efficiency Benchmarking
For a given application, the most objective way to compare

the efficiency of DNN inference accelerators is to measure
their total energy per inference for the same task and inference
accuracy. However, this is difficult for the mixed-signal design
space, which is dominated by partial hardware realizations
that emulate the full network only in software. A compromise
is thus to quantify these subsystems by their number of
performed operations per watt. This is typically expressed in
tera-operations per second and watt, TOPS/W. One TOPS/W
corresponds to 1 pJ per operation and one MAC is defined as
two operations. In addition to pure energy efficiency, it is also
common to compute the area efficiency in TOPS/mm2 since
energy efficiency alone is not useful without high compute
density. The online survey of [60] is a useful resource for
tracking the latest advancements on these benchmarks.

Unfortunately, comparisons in terms of these metrics in
isolation can be flawed. For example, it is relatively easy to
achieve high efficiency in small arrays and for small bitwidths.
However, it is unclear whether this array-level efficiency will
translate to higher efficiency at the accelerator level. Limited
array size may lead to an increased number of memory access
across the hierarchy and low bit-resolution typically requires
a larger number of weights in the network. The example
in [9] shows that a 4-bit accelerator with 5.5 TOPS/S can
achieve nearly the same inference energy efficiency as a 1-bit,
230 TOPS/W design. The relationship between the chosen
bitwidth and total inference energy is generally unknown,
although Esser et al. [12] provide some insights on network
size dependencies.

Keeping these limitations in mind, we plot the performance
of a few recent designs in Fig. 11, merely to obtain a feel
for general trends. The dashed horizontal lines correspond

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 1, JANUARY 2021

Fig. 11. Energy and area efficiency comparison of a few recent designs.
Each connected data point pair corresponds to low/high supply voltage.

to data points from Fig. 8(a), with the 4-bit line located at
526 TOPS/W. So far, these efficiency levels have been mainly
reported for binarized architectures such as [30], [32], and
[37] in 1-bit mode. But, the 4-bit design of Dong et al. [61]
achieves 351 TOPS/W, and thus serves as an exitance proof
(albeit using 7-nm CMOS and for a very small array). Further
research is thus needed to study the real-world merits and area
efficiency of the topology in Fig. 7.

A second observation is that operand scaling from 1 to
8 bits for the SRAM in-memory compute design of Jia et al.
[37] comes at a significant cost, as energy and area efficiency
scale linearly with the number of bits in both MAC operands.
If this chip were to be redesigned in 16-nm CMOS or below,
its performance would undoubtedly improve by a significant
factor, but it is unclear if it would outperform the fully digital
design of Zimmer et al. [27] for 8-bit arithmetic. This reiterates
our previous argument that competing with digital above 6 bits
is difficult.

A third observation is that designs using emerging
memories, such as [48] and [62] do not yet stand out, primarily
due to the challenges outlined in Section III-C. It is in fact
difficult to find fully benchmarked designs that include the
absolute throughout in TOPS (there is a tendency to report
only the energy efficiency). However, we also see that most
other mixed-signal designs lack area efficiency, and this is
where emerging memory technology is expected to help. It is
worth noting that the area efficiency of [36] and [63] is likely
boosted by their small array sizes (which helps increase the
speed in TOPS). A similar argument could be made for [61],
but here the extreme density of the underlying 7-nm SRAM
array (with 8T push-rule cells) is another significant factor.

B. Flexibility
While the described mixed-signal processing arrays can

help with memory access amortization, we are forced to pick
the array sizes at design time. This stands at odds with the
flexibility that is desired to support the latest developments in
DNN architectures. At the most basic level, there are potential

Fig. 12. Array utilization problem.

issues with arrays utilization, as seen in Fig. 12. If a kernel is
not tall enough for the array (case A), this leads to reduced
ADC amortization. If a kernel is not wide enough for the
array (case B), this leads to reduced input buffer amortization.
On the other hand, if the kernel is much larger than the
array (case C), less loop unrolling is possible, leading to
extra A/D conversions, a requirement of post-ADC digital
accumulation, as well as data movement penalties (weight
reloads, insufficient buffer amortization). The latter issue is
seen in the small 64×64 array of [63], which reports a ∼4.5×
efficiency degradation when the external buffer accesses are
added to the energy budget. Another challenge with mixed-
signal arrays is to leverage data-dependent energy savings.
For instance, one can skip computations for zero-valued
operands, or employ some form of dynamic precision scaling
[9], [64]. The mixed-signal community has begun to explore
such opportunities [49], [63], but their implementation is not
as straightforward and fruitful as in purely digital circuits.

The above-mentioned issues are most difficult to manage for
dense in-memory compute fabrics, where the tight pitch and
push-rule constraints may not allow the inclusion of any static
or dynamic reconfiguration circuitry. An interesting research
question is whether there exists a middle-ground architecture
in the style of Fig. 7, which does not push density to the
limit, but in return offers better reconfigurability for flexible
DNN mapping and execution. The designs of [37] and [38]
take steps in this direction via array tiling. However, pursuing
this path further requires a solid-framework for performance
prediction, which is still evolving even for digital architectures
[65], [66]. Even more desirable would be a framework for
hardware-algorithm co-design, but such tool developments are
still at their infancy [67].

V. CONCLUSION

The design of domain-specific hardware for DNNs is an
exciting and fast-paced research area. As new algorithms, net-
work topologies, and accelerators advance in unison, offering
hardware flexibility is of primary interest and is likely best
addressed by fully digital architectures. However, as the field
matures, it is reasonable to expect that in some application
scenarios the need for the highest possible efficiency will

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

MURMANN: MIXED-SIGNAL COMPUTING FOR DNN INFERENCE 11

asymptotically outrank the craving for ample flexibility. With
this expectation in mind, it is interesting to consider the merits
of mixed-signal compute fabrics for DNN acceleration.

While there is no shortage of analog/mixed-signal
demonstrators that boast low-energy computation, the present
challenge lies in incorporating these macros without losing this
efficiency within a complete accelerator design. Future work
on mixed-signal solutions should consider data movement and
required layer reconfigurability as a key aspect, and not leave
it as an afterthought for software emulation. This requirement
is particularly important due to the relatively narrow perfor-
mance advantage that can apparently be gained from going
mixed-signal in standard CMOS. Custom digital hardware is
difficult to beat and demonstrating a 5–10× advantage in
a realistic setting will only be possible if all aspects are
considered.

Future DNN accelerators will likely leverage emerging
memory technology to store all DNN weights on
moderate-size chips and eliminate the overhead of external
DRAMs and nonvolatile memory. In this scenario with full
weight stationarity, using in-memory computing becomes
a more natural choice and mixed-signal processing may
evolve from a curiosity to an enabler. However, a significant
amount of work remains to be done on understanding
the effect and proper mitigation of analog nonidealities in
DNN computation. In particular, more work is needed on
understanding and mitigating the impact of ADC thermal
noise and network weight variability. As with all aspects of
this exciting area, developing such understanding must fuse
insights from algorithms, network architectures, and circuit
design.

APPENDIX

Here, we summarize the equations and parameters that were
used to generate the MAC energy plots in Fig. 8.

A. ADC Energy Model

EADC is estimated using the experimental data from [68]
and the following fitting function:

EADC = k1ENOB + k24ENOB. (2)

We conservatively set k1 = 100 fJ and k2 = 1 aJ to avoid
overfitting to outliers that may not be usable in the intended
application. Effective number of bit (ENOB) is linked as usual
to the converter’s signal-to-noise-and-distortion ratio (SNDR),
which we employ as a conservative proxy for the required
SNR

SNDRADC = 3

2
22ENOB ≈ SNRADC. (3)

Determining the ADC’s SNR requirement is a nontrivial
task and prior work has mainly resorted to DNN-specific
numerical simulations [32], [39], [40], [49], while a more ana-
lytical approach is found in [69]. The main hypothesis for our
numerical analysis is that the ADC’s tolerable input-referred
noise must be limited to a fraction of the accumulated input
activation quantization noise. Weight quantization errors are
not included since they can be absorbed during DNN train-
ing. Also, for generality and simplicity, we assume that the

Fig. 13. Model for SNR analysis.

nonlinear activation function (e.g., ReLU) is not embedded
in the ADC’s transfer function, which allows for post-ADC
accumulation of partial sums.

If the input activations and weights are uncorrelated and
uniformly distributed between 0 and 1 (normalized to the
supply voltage, VDD), the sum of N passively combined
multiply-adds has a variance of approximately N/12N2 =
1/12N (see Fig. 13). The accumulated error variance due
to B-bit quantization of the activations follows similarly
but is smaller by a factor of 22B (also assuming a uni-
form distribution). The SNR of the signal entering the ADC
is thus

SNRsig = σ 2
o

σ 2
iq

=
1

12N
1

12N ·22B

= 22B (4)

and we want the ADC’s SNR to be k2 times larger to
avoid a significant signal degradation. This requirement aligns
reasonably well with the findings of [49], where B = 2,
the signal standard deviation is several tens of LSB and the
tolerable noise standard deviation is 9 LSB. More research
is needed to account for effects and options that are not
considered here (correlations, activation sparsity, ADC with
ReLU transfer function, etc.).

Unfortunately, for large N , the signal term in (4) is much
smaller than the full-scale range of a typical ADC. One way to
deal with this is to amplify the signal. However, amplifiers tend
to consume nearly the same power as ADCs for a given input-
referred noise. To obtain a conservative estimate, we assume
that the ADC is designed to meet the noise specification
without the aid of a preamplifier. Thus, we express the ADC’s
SNR as

SNRADC =
1
2

(
FS
2

)2

σ 2
iq

k2

= 1

2

(
FS

2

)2

k2 · 12N · 22B (5)

where FS is the ADC’s normalized full-scale range
(see Fig. 13), and a full-scale sinusoidal input is assumed
to mimic the test condition that underlies (3) and the data
of [68]. Equating (5) with (3) and solving for ENOB
gives

ENOB = B + log2(k · FS · √
N). (6)

We used k = 2 and FS = 0.5 for Fig. 8. With N = 1152,
this leads to an excess resolution requirement [log term in (6)]
of about 5 bits.

B. Logic Energy Model

ELogic = B2αEgate(1 + β) (7)

where α is the input activity factor, Egate is the energy of a
two-input logic gate, and β captures wires and other overhead
not shown in the simplified circuit model. We used α = 0.1,
Egate = 0.3 fJ (∼28-nm CMOS) and β = 3 for Fig. 8.

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 1, JANUARY 2021

C. Capacitive DAC Energy Model

ECAP = B2αCuV 2
DD + Enoise (8)

where Cu is the unit capacitance. Enoise is an overhead term
that models the upsizing of Cu to meet kT/C noise require-
ments for large B . We do not expand this term here since it is
not a significant contributor to the total MAC energy. We used
Cu = 0.5 fF and VDD = 1 V for Fig. 8.

ACKNOWLEDGMENT

The author would like to acknowledge the many
contributions made by colleagues, collaborators, as well as
present and former students that have helped shape this article.
Special thanks go to Daniel Bankman, Massimo Giordano, and
Wei-Han (Hank) Yu for their assistance.

REFERENCES

[1] T. J. Sejnowski, “The unreasonable effectiveness of deep learning in
artificial intelligence,” Proc. Nat. Acad. Sci. USA, Jan. 2020, doi:
10.1073/pnas.1907373117.

[2] J. Dean, “The deep learning revolution and its implications for computer
architecture and chip design,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 8–14.

[3] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019.

[4] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020.

[5] B. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[7] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient Processing
of Deep Neural Networks. San Rafael, CA, USA: Morgan & Claypool
Publishers, 2020.

[8] F. Conti, M. Rusci, and L. Benini, “The memory challenge in ultra-
low power deep learning,” in Proc. NANO-CHIPS, B. Murmann and
B. Hoefflinger, Eds. Cham, Switzerland: Springer, 2020, pp. 323–349.

[9] M. Verhelst and B. Murmann, “Machine learning at the edge,” in
Proc. NANO-CHIPS, B. Murmann and B. Hoefflinger, Eds. Cham,
Switzerland: Springer, 2020, pp. 293–322.

[10] A. F. Murray and P. J. Edwards, “Enhanced MLP performance and fault
tolerance resulting from synaptic weight noise during training,” IEEE
Trans. Neural Netw., vol. 5, no. 5, pp. 792–802, 1994.

[11] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in
neural networks: A review,” IEEE Access, vol. 5, pp. 17322–17341,
2017.

[12] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” 2019, arXiv:1902.08153.
[Online]. Available: http://arxiv.org/abs/1902.08153

[13] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrish-
nan, “Training deep neural networks with 8-bit floating point num-
bers,” 2018, arXiv:1812.08011. [Online]. Available: http://arxiv.org/abs/
1812.08011

[14] E. A. Vittoz, “Future of analog in the VLSI environment,” in Proc. IEEE
Int. Symp. Circuits Syst., 1990, pp. 1372–1375.

[15] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics
to neurobiology,” Neural Comput., vol. 10, no. 7, pp. 1601–1638,
Oct. 1998.

[16] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang, “Mixed-
signal circuits for embedded machine-learning applications,” in Proc.
49th Asilomar Conf. Signals, Syst. Comput., Nov. 2015, pp. 1341–1345.

[17] S. K. Bose, J. Acharya, and A. Basu, “Is my neural network neuromor-
phic? Taxonomy, recent trends and future directions in neuromorphic
engineering,” in Proc. 53rd Asilomar Conf. Signals, Syst., Comput.,
Nov. 2019, pp. 1522–1527.

[18] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2014, pp. 8326–8330.

[19] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE J.
Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[20] N. Verma et al., “In-memory computing: Advances and prospects,” IEEE
Solid State Circuits Mag., vol. 11, no. 3, pp. 43–55, Aug. 2019.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[24] Z. Du et al., “ShiDianNao,” in Proc. 42nd Annu. Int. Symp. Comput.
Archit. (ISCA), 2015, pp. 92–104.

[25] O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in Proc. 39th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2012, pp. 356–367.

[26] D. Bankman, “Mixed-signal processing for machine learning,” Ph.D. dis-
sertation, Stanford Univ., Stanford, CA, USA, 2019. [Online]. Available:
https://purl.stanford.edu/tt451tg9318

[27] B. Zimmer et al., “A 0.32–128 TOPS, scalable multi-chip-module-
based deep neural network inference accelerator with ground-referenced
signaling in 16 nm,” IEEE J. Solid-State Circuits, vol. 55, no. 4,
pp. 920–932, Apr. 2020.

[28] X. Yang et al., “Interstellar: Using Halide’s scheduling language to
analyze DNN accelerators,” in Proc. 25th Int. Conf. Architectural
Support Program. Lang. Operating Syst., Mar. 2020, pp. 369–383.

[29] W. J. Dally, C. T. Gray, J. Poulton, B. Khailany, J. Wilson, and
L. Dennison, “Hardware-enabled artificial intelligence,” in Proc. IEEE
Symp. VLSI Circuits, Jun. 2018, pp. 3–6.

[30] P. C. Knag et al., “A 617 TOPS/W all digital binary neural network
accelerator in 10nm FinFET CMOS,” in Proc. IEEE Symp. VLSI
Circuits, Jun. 2020, pp. 1–2.

[31] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Verhelst, “Binar-
Eye: An always-on energy-accuracy-scalable binary CNN processor with
all memory on chip in 28nm CMOS,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Apr. 2018, pp. 1–4.

[32] D. Bankman et al., “An always-on 3.8 μJ/86% CIFAR-10 mixed-
signal binary CNN processor with all memory on chip in 28-nm
CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 158–172,
Jan. 2019.

[33] V. Tripathi and B. Murmann, “Mismatch characterization of small metal
fringe capacitors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61,
no. 8, pp. 2236–2242, Aug. 2014.

[34] H. Omran, H. Alahmadi, and K. N. Salama, “Matching properties of
femtofarad and sub-femtofarad MOM capacitors,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 63, no. 6, pp. 763–772, Jun. 2016.

[35] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or –1,” 2016, arXiv:1602.02830.
[Online]. Available: http://arxiv.org/abs/1602.02830

[36] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: An in-memory-
computing SRAM macro based on robust capacitive coupling computing
mechanism,” IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1888–1897,
Jul. 2020.

[37] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
heterogeneous microprocessor based on bit-scalable in-memory com-
puting,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621,
Sep. 2020.

[38] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile
2.4-mb in-memory-computing CNN accelerator employing charge-
domain compute,” IEEE J. Solid-State Circuits, vol. 54, no. 6,
pp. 1789–1799, Jun. 2019.

[39] A. S. Rekhi et al., “Analog/mixed-signal hardware error modeling for
deep learning inference,” in Proc. 56th Annu. Design Autom. Conf.,
Jun. 2019, pp. 1–6.

[40] S. Ma, D. Brooks, and G.-Y. Wei, “A binary-activation, multi-
level weight RNN and training algorithm for processing-in-memory
inference with eNVM,” 2019, arXiv:1912.00106. [Online]. Available:
http://arxiv.org/abs/1912.00106

[41] B. Zhang, L.-Y. Chen, and N. Verma, “Stochastic data-driven hardware
resilience to efficiently train inference models for stochastic hardware
implementations,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2019, pp. 1388–1392.

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1073/pnas.1907373117

MURMANN: MIXED-SIGNAL COMPUTING FOR DNN INFERENCE 13

[42] M. Klachko, M. R. Mahmoodi, and D. Strukov, “Improving noise
tolerance of mixed-signal neural networks,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[43] C.-C. Chou et al., “An N40 256K×44 embedded RRAM macro with
SL-precharge SA and low-voltage current limiter to improve read and
write performance,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2018, pp. 478–480.

[44] S. Yu, X. Sun, X. Peng, and S. Huang, “Compute-in-memory with
emerging nonvolatile-memories: Challenges and prospects,” in Proc.
IEEE Custom Integr. Circuits Conf. (CICC), Mar. 2020, pp. 1–4.

[45] H. Tsai, S. Ambrogio, P. Narayanan, R. M. Shelby, and G. W. Burr,
“Recent progress in analog memory-based accelerators for deep learn-
ing,” J. Phys. D, Appl. Phys., vol. 51, no. 28, Jul. 2018, Art. no. 283001.

[46] Q. Liu et al., “A fully integrated analog ReRAM based 78.4TOPS/W
compute-in-memory chip with fully parallel MAC computing,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020,
pp. 500–502.

[47] C.-X. Xue et al., “A 1Mb multibit ReRAM computing-in-memory macro
with 14.6ns parallel MAC computing time for CNN based AI edge
processors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2019, pp. 388–390.

[48] S. Yin, X. Sun, S. Yu, and J.-S. Seo, “High-throughput in-memory
computing for binary deep neural networks with monolithically inte-
grated RRAM and 90nm CMOS,” 2019, arXiv:1909.07514. [Online].
Available: http://arxiv.org/abs/1909.07514

[49] D. Bankman, J. Messner, A. Gural, and B. Murmann, “RRAM-based in-
memory computing for embedded deep neural networks,” in Proc. 53rd
Asilomar Conf. Signals, Syst., Comput., Nov. 2019, pp. 1511–1515.

[50] W. Wan et al., “A voltage-mode sensing scheme with differential-row
weight mapping for energy-efficient RRAM-based in-memory comput-
ing,” in Symp. VLSI Tech. Dig., 2020, pp. 1–2.

[51] B. Q. Le et al., “Resistive RAM with multiple bits per cell: Array-level
demonstration of 3 bits per cell,” IEEE Trans. Electron Devices, vol. 66,
no. 1, pp. 641–646, Jan. 2019.

[52] F. Cai et al., “A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations,” Nature Electron.,
vol. 2, no. 7, pp. 290–299, Jul. 2019.

[53] S. Cosemans et al., “Towards 10000TOPS/W DNN inference with
analog in-memory computing—A circuit blueprint, device options and
requirements,” in IEDM Tech. Dig., Dec. 2019, pp. 22.2.1–22.2.4.

[54] C. Yu, T. Yoo, T. T.-H. Kim, K. C. Tshun Chuan, and B. Kim, “A 16K
current-based 8T SRAM compute-in-memory macro with decoupled
read/write and 1-5bit column ADC,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Mar. 2020, pp. 1–4.

[55] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp. 14–26.

[56] M. Dazzi, A. Sebastian, P. Andrea Francese, T. Parnell, L. Benini, and
E. Eleftheriou, “5 parallel prism: A topology for pipelined
implementations of convolutional neural networks using compu-
tational memory,” 2019, arXiv:1906.03474. [Online]. Available:
http://arxiv.org/abs/1906.03474

[57] Y.-H. Lin et al., “Performance impacts of analog ReRAM non-ideality
on neuromorphic computing,” IEEE Trans. Electron Devices, vol. 66,
no. 3, pp. 1289–1295, Mar. 2019.

[58] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” 2018,
arXiv:1801.04381. [Online]. Available: http://arxiv.org/abs/1801.04381

[59] Y. Wu, V. Sze, and J. S. Emer, “An architecture-level energy and area
estimator for processing-in-memory accelerator designs,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), 2020, pp. 1–3.

[60] K. Guo et al. Neural Network Accelerator Comparison. Accessed:
Jul. 12, 2020. [Online]. Available: https://nicsefc.ee.tsinghua.edu.cn/
projects/neural-network-accelerator/

[61] Q. Dong et al., “A 351TOPS/W and 372.4GOPS compute-in-memory
SRAM macro in 7nm FinFET CMOS for machine-learning applica-
tions,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2020, pp. 242–244.

[62] R. Mochida et al., “A 4M synapses integrated analog ReRAM based 66.5
TOPS/W neural-network processor with cell current controlled writing
and flexible network architecture,” in Proc. IEEE Symp. VLSI Technol.,
Jun. 2018, pp. 175–176.

[63] J. Yue et al., “A 65nm computing-in-memory-based CNN processor with
2.9-to-35.8TOPS/W system energy efficiency using dynamic-sparsity
performance-scaling architecture and energy-efficient inter/intra-macro
data reuse,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2020, pp. 234–236.

[64] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and benchmarking
of precision-scalable multiply-accumulate unit architectures for embed-
ded neural-network processing,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 9, no. 4, pp. 697–711, Dec. 2019.

[65] Y. Zhao, C. Li, Y. Wang, P. Xu, Y. Zhang, and Y. Lin, “DNN-chip pre-
dictor: An analytical performance predictor for DNN accelerators with
various dataflows and hardware architectures,” 2020, arXiv:2002.11270.
[Online]. Available: http://arxiv.org/abs/2002.11270

[66] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst,
“ZigZag: A memory-centric rapid DNN accelerator design space explo-
ration framework,” Jul. 2020, arXiv:2007.11360. [Online]. Available:
https://arxiv.org/abs/2007.11360

[67] L. Yang et al., “Co-exploration of neural architectures and hetero-
geneous ASIC accelerator designs targeting multiple tasks,” 2020,
arXiv:2002.04116. [Online]. Available: http://arxiv.org/abs/2002.04116

[68] B. Murmann. ADC Performance Survey 1997–2020. Accessed:
Jul. 12, 2020. [Online]. Available: http://web.stanford.edu/~murmann/
adcsurvey.html

[69] S. K. Gonugondla, C. Sakr, H. Dbouk, and N. R. Shanbhag, “Fundamen-
tal limits on the precision of in-memory architectures,” in Proc. ICCAD,
2020, pp. 1–10.

Boris Murmann (Fellow, IEEE) received the
Dipl.-Ing. (FH) degree in communications
engineering from Fachhochschule Dieburg,
Dieburg, Germany, in 1994, the M.S. degree in
electrical engineering from Santa Clara University,
Santa Clara, CA, USA, in 1999, and the Ph.D.
degree in electrical engineering from the University
of California at Berkeley, Berkeley, CA, in 2003.

From 1994 to 1997, he was with Neutron
Mikrolektronik GmbH, Hanau, Germany, where he
was involved in the development of low-power and

smart-power application-specified integrated circuits (ASICs) in automotive
CMOS technology. Since 2004, he has been with the Department of Electrical
Engineering, Stanford University, Stanford, CA, where he is currently a Full
Professor. His current research interests include the area of mixed-signal
integrated circuit design, with a special emphasis on data converters, sensor
interfaces, and circuits for embedded machine learning.

Dr. Murmann was a co-recipient of the Best Student Paper Award at the
Very Large-Scale Integration (VLSI) Circuits Symposium in 2008 and a
recipient of the Best Invited Paper Award at the IEEE Custom Integrated
Circuits Conference (CICC) in 2008, the Agilent Early Career Professor
Award in 2009, and the Friedrich Wilhelm Bessel Research Award in 2012.
He served as an Associate Editor for the IEEE JOURNAL OF SOLID-STATE

CIRCUITS. He served as the Data Converter Subcommittee Chair and
the 2017 Program Chair for the IEEE International Solid-State Circuits
Conference (ISSCC).

Authorized licensed use limited to: Stanford University. Downloaded on September 20,2021 at 20:19:55 UTC from IEEE Xplore. Restrictions apply.

