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Abstract—Modern deep neural networks require energy- and 

area-efficient multi-bit multiply-accumulate (MAC) functions. In-

memory computing (IMC) with analog accumulation has shown 

the potential to outperform purely digital solutions but lacks 

efficient multi-bit computation. In this work, we explore the design 

of a mixed-signal, charge-sharing compute array that performs 4-

bit MAC operations within one clock cycle. Its key features include 

7×4 bit kernel memory in each MAC cell, as well as a per-kernel 

binary combiner that simplifies the unit cell design and enables 

efficient in-column ADC integration. In addition, it leverages a 

differential switching scheme that improves the signal swing by 4× 

relative to single-ended schemes, thereby reducing ADC energy. 

Post-layout simulations in 28 nm CMOS indicate an energy 

efficiency of 6.4 fJ/MAC and a compute density of 3.17 TOPS/mm2 

for an input activation vector size of 160. 

Keywords— Deep neural networks, hardware accelerators, in-

memory computing, mixed-signal integrated circuits, switched 

capacitor circuits. 

I. INTRODUCTION 

Machine learning inference using modern deep neural 
networks (DNNs) can be accelerated using domain-specific 
hardware and massively parallel matrix-vector multiplication. 
While state-of-the-art digital implementations leverage this 
opportunity to demonstrate impressive energy savings [1], even 
larger gains may be possible by invoking mixed-signal compute 
fabrics [2]. Specifically, dense analog accumulation of partial 
products can help eliminate and/or better amortize buffer 
memory accesses that amount to a significant fraction of the total 
processing energy. A variety of mixed-signal multiply-
accumulate (MAC) arrays [3-6] have been developed to explore 
this potential. Among them are designs based on in-memory 
computing (IMC), which typically aim to maximize area density 
at the expense of supporting only single-bit computations in 
each unit cell. As shown in [5], single-bit IMC cores can be used 
to perform multi-bit operations sequentially, but this leads to 
diminishing returns due to multiple A/D conversions and array 
access operations. 

This work aims to strike a middle ground between highly 
restricted IMC unit elements and the relatively large digital 
processing elements that lie at the other end of the spectrum. We 
study the efficacy of mixed-signal MAC elements that perform 
4-bit multiplications in a single cycle through capacitive charge 
sharing. The choice of 4 bits is linked to the finding that a pareto-

optimal tradeoff between inference accuracy and model size is 
typically achieved for bitwidths in the range of 2-4 [7]. Our 
design is based on the concepts described in [2] and features a 
swing-enhancement approach as well as local kernel memory 
that can be placed underneath the compute-capacitors in higher 
metal layers. Simulation results in 28 nm CMOS indicate 
competitive compute energy (6.4 fJ/MAC) and density (3.17 
TOPS/mm2) for an input vector dimension of 160. 

II. CIRCUIT IMPLEMENTATION

A. Architecture 

Fig. 1 shows a conceptual schematic of the M×N MAC 
array. Each of the M Kernels contain N-dimensional dot-product 
circuitry with input activations d and weights w. The input 
activations are broadcast across the array to amortize memory 
access and to yield a full matrix-vector product. Each of the N 
MAC elements within a kernel performs a 4-bit multiplication 
with subsequent capacitive accumulation. 

The multiplications are performed similar to a digital 
multiplier, which uses bitwise AND operations and a digital 
adder network to collect the partial products. Our mixed-signal 
design keeps the AND operations in the digital domain but sums 
the partial products through analog charge sharing on six analog 
wires (VMAC). Each VMAC wire has a different binary weight and 
the product bit cells are connected accordingly (e.g., d0×w0 to 
VMAC,0). The weight bit w3 is a sign bit that flips the accumulation 
polarity. The input activations are unsigned, corresponding to 
rectified linear unit (ReLU) outputs. 

The wire voltages are capacitively summed in the shown 
binary combiner block before digitization with an 8-bit SAR 
ADC (one per kernel). An alternative architecture would use a 
binary-weighted capacitor array to perform the weighted charge 
sharing locally (within each MAC element) and without using a 
per-kernel combiner. However, this approach requires 105 unit-
capacitors in each MAC element, which is prohibitively large 
and complex. The final dot product result for each kernel is 
formed by charge sharing between all N MAC elements using 
the same VMAC wires. Thus, the analog charge sharing eliminates 
all digital partial product additions that would normally occur 
within multipliers and in the accumulator hardware. 

The weight bits are stored in a custom-designed local 6T 
SRAM inside each MAC element (see Fig. 2). The memory size 
per MAC element can be chosen based on the application and 
the dimensions of the array. In this work, we use a configuration 
with seven 4-bit weights per MAC element. Having dense 
memory right next to the product cells allows us to load the 
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weights in a single clock cycle, reducing read energy and data 
movement. This increased read bandwidth avoids idling the 
compute when loading new weights in DNN layers that have 
small input dimensions but a large number of weights. 
Furthermore, given the small array size, the SRAM cells can 
directly drive the MAC logic, and energy-hungry sense 
amplifiers can be avoided. Each word line (WL) and load data 
(LD) signal is shared across all MAC elements, while the bit 
lines for data load (BLD) are shared across kernels. Thus, the 
number of control signals scales with the local memory and 
array dimensions (N+M), as opposed to the number of MAC 
elements (M×N). 

B. Binary Combiner 

The binary combiner consists of weighted capacitors, as 
shown in Fig. 3(a). The combined output can be determined 
through a nodal analysis at Vz: 
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Here, k is the wire index, Cu,c is the unit capacitance in the binary 
combiner, VMAC,k is the VDD-normalized dot product, nk are the 
ratios between the (nominally) binary combiner capacitors, and 
Pk is a ratio defined by the number of product cells connected to 
the analog wire within a MAC element. For a 4-bit MAC, Pk is 
[1, 2, 3, 3, 2, 1]. The second term in (1) is independent of VMAC 
and normalizes Vz to VDD. By inspecting the first quotient in (1), 
we see that the denominator term �	
	�
,�  introduces 
nonlinearity, caused by voltage division between the array and 
combiner capacitances. To overcome this issue, we consider 
series compensation and parallel compensation (see Fig. 3(b)). 

Series compensation alters the ratios nk to restore the binary 
weighting. This is achieved when adjacent terms inside the first 
summation of (1) (k = n and w = k-1) have a ratio of 2: 
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Solving (2), we find: 

�	 = 2��
�	��
��
 − �	���
,�

 (3) 

Note that the required nk depend on the array dimension N, 
which is a disadvantage of this approach. On the other hand, 

 
Fig. 1. Mixed-signal MAC array with binary combiner and local memory. 

(a)                                                (b) 
Fig. 3. Binary combiner with (a) series compensation, and (b) parallel 
compensation. 
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Fig. 2. 6T SRAM for local weight storage. 
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unlike parallel compensation, series compensation incurs no 
attenuation. Thus, a larger Cu,c can be chosen for better 
capacitance matching and reduced attenuation from the ADC’s 
input capacitance. 

For parallel compensation, grounded capacitors are added 
before the combiner to ensure that all wires have the same load 
capacitance. Applying a T to π transformation for the capacitors 
and performing a nodal analysis at Vz gives: 
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The second part of the denominator stems from this scheme’s 
capacitive attenuation. The attenuation ratio can be written as: 

�� = ��

��
 + ∑ �	��� − �	��
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 (5) 

The attenuation gets smaller as Cu and N get larger. Yet, smaller 
Cu,c leads to higher attenuation from the ADC’s input 
capacitance. Compared to series compensation, capacitance 
matching for parallel compensation is easier to achieve since all 
compensation capacitors are integer multiples of Cu,c, 
independent of N. 

Fig. 4 shows the simulated circuit linearity with and without 
compensation for N = 32, and a Cu-to-Cu,c ratio of 2. For series 
compensation, the nk values computed using (3) are [1 2.03 4.20 
8.98 20.90 62.06] instead of 2k. For parallel compensation, the 
simulated attenuation factor of 0.76 matches the analysis. 

C. Split-Capacitor Product Bit Cell 

Fig. 5(a) shows the implementation of the product bit cells. 
It employs a split unit capacitor configuration to enhance the 
MAC array's differential output swing while maintaining a fixed 
common-mode voltage for the ADC. The swing increment is 
beneficial since the variance of VZ scales inversely proportional 
with N [2], and is only a very small fraction of VDD for large 
arrays. This translates into a reduced ADC full-scale range and 
a higher conversion energy to overcome thermal noise. 
Assuming that the circuit is thermal noise limited, a 2× reduction 
in full-scale range quadruples the ADC energy. From 

simulation, the ADC energy is comparable to the array energy 
for 4-bit MAC cells and N = 64. 

The bit cell’s operation is summarized in Fig. 5(b). Before 

the MAC operation, d3-d0 are reset to 0 (all #$%%%%=1), and Vz is 
initialized to Vcm to define the common-mode for the ADC. 

During operation, when the bit product #$%%%% = 0, depending on 
the sign bit (w3), VMAC,p is either charged (w3=1) or discharged 
(w3=0). VMAC,m produces the opposite swing to maintain the same 
common-mode voltage. 

Compared to the single-ended two’s complement charge 
sharing, the split-capacitor product bit cell computes the one's 
complement product on the differential wires, boosting the 
voltage by 4×. This allows for a significant reduction in ADC 
energy. Moreover, unlike [3] and [4], which require differential 
d inputs, our scheme uses a single-ended d that aids to reduce 
the wire energy. Minimum sized logic gates and HVT devices 
are used to minimize the computation energy. The higher 
latency from HVT devices is acceptable since the array speed is 
limited by the ADC instead of the MAC core.  

D. Array-integrated SAR ADC 

As shown in Fig. 6, the SAR ADC’s DAC is integrated into 
the MAC array before the binary combiner to avoid extra binary-
weighted capacitors for the SAR DAC. Conceptually, this 
scheme is similar to the prior work of [8, 9] with column-
integrated DACs. Moreover, the parallel compensation 
capacitors can be absorbed into the DAC, utilizing the 
attenuation for SAR ADC binary searching. The capacitors of 
the two MSBs can be rerouted for maximum utilization of the 
attenuation range, and the remaining range can be used for DNN 
biases and comparator offset calibration. The SAR ADC 
features a programable negative stop control. If no post-kernel 

 
(a)                                     (b) 

Fig. 5. (a) Schematic and (b) logic table for the split-capacitor MAC-
bit cell. 

 
Fig. 6. MAC-integrated SAR ADC. 

 
Fig. 4. Simulated linearity with and without combiner compensation
(N = 32 and Cu/Cu,c = 2). 
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accumulation is needed and a ReLU output is assumed, the ADC 
can be stopped after the MSB decision to save energy.  

III. SIMULATION RESULTS AND CONCLUSIONS 

A prototype of a parallel-compensated MAC kernel is built 
in 28 nm CMOS with a 0.9 V supply. The layout of one MAC 
element is shown in Fig. 7 (a). Cu is built directly on top of the 
product bit cells using two of the higher metal layers to minimize 
the parasitics. The product bit cells are grouped on different 
rows according to their accumulation wire to reduce the parasitic 
capacitance. We performed post-layout simulation for a MAC 
array with N = 160, operating at 100 MHz with an input 
activation activity factor of 0.5 and static weights. The area and 
power breakdowns are depicted in Fig. 7 (b). The combined 
RMS noise is <350 µV assuring <1% top-1 accuracy 
degradation (i.e., ~39 dB SNR) for popular DNNs deployed on 
the ImageNet dataset [11]. We also carried out mismatch and 
nonlinearity simulations, which show that a Cu of 475 aF [10] is 
sufficient to maintain <1% top-1 accuracy degradation. 

Comparing with the prior art, this work offers 4-bit MAC 
operations with a single ADC conversion, resulting in a higher 
energy efficiency than single-bit IMC configured for 4-bit 
precision [5]. This work also introduces a 7×4-bit in-element 
memory that can help reduce DNN data movement. Compared 
to a recent digital implementation [1], 3.5x higher energy 
efficiency is achieved. 
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TABLE I. PERFORMANCE COMPARISON. 

 This Work (Simulated) Y. -D. Chih ISSCC’21 [1] H. Jia ISSCC’21 [5] 

Technology 28 nm CMOS 22 nm CMOS 16 nm CMOS 

4-bit MAC Throughput (MMAC/s) 100 100 50 

4-bit MAC Elements per Column 160 256 288 

Accumulation Domain Analog Digital Analog, In-memory 

In-Element Memory (bits) 7×4 4 4 

Precision (d, w) 4, 4 4, 4 4, 4 

Energy Efficiency (fJ/MAC) 6.4 22.5 16.5 

Area Efficiency (TOPS/mm2) 3.17 16.3 2.67 
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(a) (b) 

Fig. 7. (a) Layout of the MAC element in 28 nm CMOS and (b) power 
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