

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. © 2021 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. 1248–1267

PROXY-GMRES: PRECONDITIONING VIA GMRES IN
POLYNOMIAL SPACE⇤

XIN YE† , YUANZHE XI‡ , AND YOUSEF SAAD§

Abstract. This paper proposes a class of polynomial preconditioners for solving non-Hermitian
linear systems of equations. The polynomial is obtained from a least-squares approximation in poly-
nomial space instead of a standard Krylov subspace. The process for building the polynomial relies
on an Arnoldi-like procedure in a small dimensional polynomial space and is equivalent to performing
GMRES in polynomial space. It is inexpensive and produces the desired polynomial in a numerically
stable way. A few improvements to the basic scheme are discussed including the development of a
short-term recurrence and the use of compound preconditioners. Numerical experiments, including a
test with challenging nonnormal three-dimensional Helmholtz equations and a few publicly available
sparse matrices, are provided to illustrate the performance of the proposed preconditioners.

Key words. polynomial preconditioning, polynomial iteration, orthogonal polynomial, short-
term recurrence, Helmholtz equation

AMS subject classifications. 15A06, 49M25, 65F08, 65F10, 65F50

DOI. 10.1137/20M1342562

1. Introduction. We consider solving a large non-Hermitian linear system of
equations

Ax = b,(1.1)

where A 2 CN⇥N is non-Hermitian and x, b 2 CN . A Krylov subspace method accel-
erated by a certain type of preconditioner is often preferred for this type of problems,
e.g., GMRES with a form of the incomplete LU (ILU) factorization. However, when
the coe�cient matrix A is highly indefinite (eigenvalues of A appear on both sides of
the imaginary axis) or extremely ill-conditioned, this method may su↵er from slow
convergence or even stagnation due to stability issues [42]. Furthermore, since both
the construction and application phases of the classical ILU preconditioners are intrin-
sically sequential and di�cult to parallelize, they cannot easily take full advantage of
modern high-performance computing architectures such as distributed memory ma-
chines or graphics processing units (GPUs). Recent e↵orts to develop fine-grained
parallel ILU factorization can be found in [9]. At the same time recent e↵orts have
been devoted to develop preconditioners based on low-rank approximations that are
highly parallel [28, 31, 53, 14]. These preconditioners explore the recursive or hi-
erarchical low-rank approximation of the Schur complement or its inverse and only
apply ILU to the diagonal blocks in the reordered matrix. These preconditioners are
far more elaborate than their ILU counterparts, but they tend to be more robust for
indefinite and nonsymmetric linear systems.

⇤Received by the editors June 2, 2020; accepted for publication (in revised form) by L. Giraud
May 27, 2021; published electronically August 5, 2021.

https://doi.org/10.1137/20M1342562
Funding: The work of the authors was supported by the National Science Foundation grants

DMS-1521573, DMS-1912048, and OAC-2003720.
†Hewlett Packard Enterprise, Bloomington, MN 55425 USA (xin.ye@hpe.com).
‡Department of Mathematics, Emory University, Atlanta, GA 30322 USA (yxi26@emory.edu).
§Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

55455 USA (saad@umn.edu).

1248

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1249

This paper discusses a new class of polynomial preconditioning techniques for
solving (1.1). These preconditioners can be either used in a standalone way, or they
can be combined with other types of preconditioners to improve their e�ciency. We
begin by observing that most classical acceleration schemes, such as the conjugate
gradient or GMRES algorithms [42], which are a form of polynomial iteration. Given
an initial guess x0 and residual r0 = b � Ax0, the approximate solution x̃ in a given
iteration is of the form:

x̃ = x0 + p(A)r0,

where p is a polynomial, and its related residual is equal to

r̃ = b�Ax̃ = (I �Ap(A))r0 ⌘ ⇢(A)r0.(1.2)

Note that the approximate solution is a member of the a�ne Krylov subspace x0 +
Km(A, r0), where Km(A, r0) ⌘ span{r0, Ar0, A2

r0, . . . , A
m�1

r0}. The acceleration
procedures based on Krylov subspace methods that have been developed in the liter-
ature are all based on polynomial iterations where the iterates are of the form given
above, and the polynomials are obtained using various criteria. For example, the crite-
rion employed in GMRES [43] is to select the polynomial p to make the residual norm
kr̃k2 as small as possible. The Chebyshev “semi-iterative” method [22, 33, 34, 24] con-
structs p so that the residual polynomial ⇢(t) is an appropriately shifted and scaled
Chebyshev polynomial of the first kind. The residual polynomial is built so that it
is small in an ellipse that encloses the spectrum of the matrix A. In these methods,
the polynomial p can be either used directly to solve linear systems approximately
in an iterative scheme as in [22, 24] and other works, or it can be exploited as a
preconditioner in combination with an acceleration such as GMRES, for example.

Polynomial preconditioners are quite appealing because they are simple to use and
because they can be highly e↵ective for some problems. The construction of the poly-
nomial preconditioner does not involve matrix factorizations and does not rely on any
reordering scheme. Perhaps the most attractive feature of polynomial precondioners
is that their application relies on one single operation, namely, the matrix-vector mul-
tiplication associated with the original coe�cient matrix A. This operation has been
studied and optimized for decades (see, e.g., [6, 51, 7, 29]) and can be made extremely
e�cient for sparse matrices on most architectures. In addition, the applications of
such preconditioners are completely free of inner product which is communication in-
tensive and limits the performance in a distributed memory environment. The paper
brings three main contributions which are summarized below.

Improved numerical stability. In the past, several polynomial preconditioners have
been proposed in the literature [41, 36, 35, 18]. However, these methods often su↵er
from numerical stability issues as they express the polynomial in some canonical basis
(e.g., as a Chebyshev series). In contrast, the proposed methods build a polynomial
basis via an Arnoldi-like procedure. This procedure represents the polynomial im-
plicitly, and its numerical stability is monitored in order to compute the polynomial
preconditioners with good accuracy for arbitrarily high degrees.

Spectrum-based preconditioning. The proposed polynomial preconditioner is con-
structed by solving a discrete least-squares problem based on minimizing the residual
polynomial inside a certain calculated contour that excludes the origin and includes
all of the eigenvalues of the coe�cient matrix. We note here that polynomial precon-
ditioners based directly on GMRES polynomials are not guaranteed to yield a good
preconditioner even when the matrix is not highly nonnormal [50, 18]. Using the

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1250 XIN YE, YUANZHE XI, AND YOUSEF SAAD

spectrum as a criterion can be quite e↵ective in the common practical situation where
the matrix is not highly nonnormal.

E�cient construction and application. The proposed polynomial preconditioners
are built in a carefully designed polynomial space which has much smaller dimen-
sion compared to the matrix size. As a result, the cost of building the polynomial
is essentially negligible. In the application phase, a technique based on short-term
recurrence is proposed in section 3.4 which can significantly accelerate the application
of the preconditioner on a vector and reduce the storage requirement.

A few comments are in order. First, it is clear that any method based on trying
to minimize the residual polynomial on the spectrum of A is bound to be limited
in scope to the case where the matrix is not highly nonnormal. However, it is also
important to realize that these are the important cases. Highly nonnormal cases
are rare when solving linear systems that arise from partial di↵erential equations or
from most engineering problems. In fact, one can argue that if a matrix is highly
nonnormal, no iterative method will perform well. The simplest example of a case
that will fail is an upper triangular matrix with ones on the diagonal and large values
above it. No polynomial preconditioner can help for a case like this, and GMRES
will typically take the full n steps to produce a solution. Thus, alternatives based,
for example, on pseudospectra or field of values are not likely to work and are not
explored in this paper.

Second, it may be thought that relying on a contour that encloses eigenvalues may
be unreliable because the contour can miss eigenvalues. In fact, this has not been an
issue in our experiments. The contour does not need to be very accurate since the
polynomial is used for preconditioning and the outer acceleration loop, e.g., GMRES,
will eliminate components associated with the missed eigenvalues. A su�cient number
of Arnoldi steps are used to produce fairly accurate eigenvalues from which a polygonal
region is built. It is important to ensure that the origin is not enclosed in the contour,
even at the cost of leaving some eigenvalues outside as these will be captured by the
accelerator. Such techniques are discussed in the numerical experiments section.

Finally, it is important to stress that this work is motivated in a big part by
the advantage that polynomial preconditioners present for some types of computing
platforms. Polynomial preconditioning was a popular topic in the 1980s and early
1990s; see, e.g., [25, 3, 4, 38, 5, 1, 19, 16, 39], among many references. Research on
polynomial preconditioners later faded for a number of reasons. Using a low-degree
polynomial, as was often suggested, usually leads to modest gains if any, when com-
pared to just using a larger Krylov subspace. In fact, in terms of the total number of
matvecs required to solve a given system, polynomial preconditioning is ‘suboptimal’
relative to an accelerator like the conjugate-gradient method or (full) GMRES. How-
ever, in the specific context of high-performance computing, a known attraction of
polynomial precondioners is that they reduce the total number of inner products re-
quired, which cause time-consuming sychronization points. Recent work on eigenvalue
problems [30] showed that it is important to be able to use high-degree polynomials
when possible. In the eigenvalue context, the analogue of polynomial preconditioning
is known as polynomial filtering, and the work [30] as well as [45] demonstrated the
e↵ectiveness of resorting to polynomial filters of very high degree, in the thousands,
when necessary. In the Hermitian case this is relatively easy to achieve thanks to
the stability of Chebyshev bases when used to represent the filters. Indeed, on the
interval [�1, 1], Chebyshev polynomials of degrees in the thousands cause no numer-
ical issues and can be safely used. Unfortunately, we do not have a similar tool in
the non-Hermitian case. Chebyshev polynomials are associated with confocal ellipses

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1251

that have focii at �1, 1 (or �i, i) in the complex plane, but general complex spectra
are rarely well fitted by ellipses. Even when they are, Chebyshev polynomials still
face di�culties as they tend to grow fast in the ellipse outside the interval [�1, 1] and
become linear dependent when their degrees increase, as can be understood from the
condition numbers of their related Gram matrices; see [40]. This limits the possible
degree with which polynomial precondioners developed in this way can be applied.
One of the main goals of this paper is to answer the following question: can polyno-
mial preconditioners with high degrees be developed for the non-Hermitian case, and
can they lead to e↵ective iterative techniques for solving challenging problems?

The rest of this paper is organized as follows. Section 2 introduces a few ways
to derive polynomial preconditioners based on solving minimax problems. Section 3
presents an Arnoldi-like procedure to generate a stable polynomial basis based on
the boundary of the spectrum of the coe�cient matrix. Several improvements are
discussed in section 4, and numerical examples are provided in section 5. Finally,
concluding remarks are stated in section 6.

2. Polynomial construction via an explicit basis. In this section, we will
discuss a few ways to derive a polynomial preconditioner when an explicit basis for
the polynomial space is given.

2.1. Classical minimax problem. In many applications, the boundary of the
spectrum of A is not hard to estimate. For example, this can be done either by
analyzing the physical problem [32] from where (1.1) is derived or approximated by
methods such as the Arnoldi iteration [2, 17]. Assume that all eigenvalues of A are
contained in a simply connected domain ⌦ ⇢ C and denote by � = @⌦ the boundary
of ⌦. Here, we further assume that ⌦ does not contain the origin and that � is
piecewise smooth; see Figure 2.1 for an illustration. The methods we will consider
can be generalized to cases where the region ⌦ is the union of several disconnected
regions ⌦1,⌦2, . . ., but we will not consider this situation in this paper.

From (1.2) we have that

kr̃k  kI �Ap(A)kkr0k.

+
+

+

+

+

++

+

+

+
++

+

+

+

+ +

+

+

+

+

+ +

+

+

Fig. 2.1. Eigenvalues of the matrix enclosed by a closed curve.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1252 XIN YE, YUANZHE XI, AND YOUSEF SAAD

In order to make kr̃k small, we could choose p so that kI � Ap(A)k is small. A
straightforward criterion to ensure this is simply to require that |1� zp(z)| be small
for all z = �, where � is an eigenvalue of A. Unfortunately, this approach involves
all the eigenvalues of A, which is not practically feasible, so an alternative is to seek
p so that the maximum of |1 � zp(z)| in the region ⌦ is small. Since we assume the
eigenvalues of A are enclosed by �, and since 1� zp(z) is holomorphic, the maximum
modulus principle [46] tells us that the maximum value of |1� zp(z)| on ⌦ is achieved
on the boundary �. Thus for a fixed m > 0, the sought-after polynomial p can be
characterized by the following minimax problem:

min
p2Pm�1

max
z2�

|1� zp(z)|,(2.1)

where Pm�1 denotes the set of all complex polynomials of degree less than m.
It is important to note that an approach based on this framework can be viewed as

a heuristic only because in the highly nonnormal case the norm of kI �Ap(A)k is not
always tightly related to the maximum of |1� zp(z)| on the contour � that contains
the spectrum; see, for example, the articles on the Crouzeix conjecture [11, 12, 13] and
the convergence of GMRES on nonnormal matrices [23]. However, for most practical
problems minimizing some norm of |1�zp(z)| on the contour � will yield good results.

Defining the Chebyshev norm on any set D ⇢ C of a function f by kfkD =
maxz2D |f(z)|, the minimax problem (2.1) can be rewritten as

min
p2Pm�1

k1� zp(z)k�.(2.2)

This is a Chebyshev approximation problem in functional form with a domain that is
a continuous subset of the complex plane. The problem can be solved by a Remez-like
algorithm [8, 49, 37] or the Lanczos ⌧ -method [26, 10]. However, when the geometry
of � becomes irregular or the degree of the polynomial increases, these methods might
fail. As a result, we will not attempt to solve the minimax problem (2.1) directly.

We can instead solve a discrete version of the problem; i.e., we can simplify (2.1)
by replacing the continuous contour � by a discrete one. Let �n = {z1, z2, . . . , zn}

be an n-point discretization of the boundary �. This discretization should capture
the geometric characteristics of �; a uniform discretization of � usually su�ces in
practice. In certain cases when � contains a high curvature or discontinuous part,
we can either add additional points to refine the discretization in this area or simply
replace this part by a smoother curve before the discretization. We then consider
the Chebyshev norm on the discrete set �n and define the following discrete minimax
problem:

min
p2Pm�1

k1� zp(z)k�n .(2.3)

With a given basis {�i}
m

i=1 for Pm�1, let p(z) =
P

m

i=1 ↵i�i(z), and denote by
↵ = [↵1, ↵2, . . . , ↵k]T 2 Cm the column vector of all the coe�cients; (2.3) becomes

min
↵2Cm

max
1in

������
1� zi

mX

j=1

↵j�j(zi)

������
.

Define an n⇥m matrix F with entries given by

fij = zi�j(zi), 1  i  n, 1  j  m,

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1253

and e 2 Cn the column vector of all ones; (2.3) can be reformulated in the matrix
form as

min
↵2Cm

ke� F↵k1.

We refer the readers to [48, 47, 52, 27] for some discussions on algorithms for
solving the above complex linear programming problem. This problem uses the in-
finity norm in Cn. We will not consider this approach in the remainder of the paper.
Instead we will replace the infinity norm by the 2-norm in Cn. The least-squares
polynomial will be computed by a GMRES-like procedure in polynomial space which
is described next.

3. Polynomial construction via an Arnoldi process. Define an inner prod-
uct for the polynomial space as

hp1, p2i =
nX

i=1

p1(zi)p2(zi).(3.1)

This sesqui-linear form is a valid inner product of the space of polynomials Pm as
long as m is smaller than the number of points n . We will denote by k ·k! the related
norm. Then we would like to solve the following discrete least-squares problem instead
of (2.2):

min
p2Pm�1

k1� zp(z)k2
!
.(3.2)

Instead of specifying a basis {�i(z)}mi=1 in advance as in section 2, we will actually
build the polynomial basis dynamically in an Arnoldi-like a process.

3.1. GMRES in polynomial space. The construction procedure for the opti-
mal polynomial is similar to GMRES in vector space and is described in Algorithm 3.1.
For the sake of conformity with the notation used in the standard Arnoldi process,
the polynomial basis vector of degree ` is represented by q`+1 instead of q`.

It is easy to see that the Arnoldi-like process described in Algorithm 3.1 will
indeed generate a set of orthonormal polynomial basis {qi}

m

i=1 with respect to the
inner product (3.1); there will be no stability issue even for high degrees due to
the full orthogonalization by a modified Gram–Schmidt algorithm as presented in
steps 4 to 7. The question now is how to represent the polynomials and how to
carry out the actual computations that are involved in Algorithm 3.1. In fact we
have a number of choices of which we will only retain one. The simplest choice, a
poor one for obvious reasons of stability, is to use the power series representation.
In this case, a polynomial p(z) = ↵0 + ↵1z + · · ·↵m�1z

m�1 will be represented by
the vector [↵0, ↵1, . . . , ↵m�1]T 2 Cm. For example, the polynomial multiplication
q := zqj in step 3 amounts to shifting all components of the representing vector down
by one position and putting a zero in the first position; addition, subtraction, and
scalar multiplication all translate to the corresponding operation on the vector; inner
products are also easy to compute e�ciently once the Gram matrix of the power series
basis is computed.

However, we will not use any explicit representations because, as we will show
later, we are more interested in the coe�cients hij than the polynomials themselves.
Therefore, we will represent the polynomials implicitly by the evaluations on the points
{zi}

n

i=1; i.e., a polynomial p is represented by a vector [p(z1), p(z2), . . . , p(zn)]T 2 Cn.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1254 XIN YE, YUANZHE XI, AND YOUSEF SAAD

Algorithm 3.1 The Arnoldi-like process in polynomial space

Input: Discretization points {zi}ni=1 on � and degree m

Output: Orthogonal polynomial basis {qi}
m+1
i=1

1: Set q1 = /k k! . q1 is of degree 0 and norm 1
2: for j = 1, 2, . . . ,m do
3: Compute q := zqj . Increase degree
4: for i = 1, 2, . . . , j do
5: Compute hij = hq, qii

6: Compute q = q � hijqi

7: end for . Full orthogonalization
8: Compute hj+1,j = kqk!

9: Compute qj+1 = q/hj+1,j . Normalize the new basis
10: end for

Under this representation, the polynomial multiplication q := zqj in step 3 will be
translated simply into the entrywise multiplication of two vectors of length n, and the
inner products in steps 5 and 8 become standard inner products in vector space Cn.

We now address the solution of the discrete least-squares problem (3.2). Define
the (m + 1) ⇥ m matrix Hm, where (Hm)ij = hij , for i  j + 1 and (Hm)ij = 0,
for i > j + 1, so that Hm is an upper-Hessenberg matrix. If we abuse the notation
and replace all polynomials by their vector representations in Algorithm 3.1, then the
constant 1 in (3.2) becomes �q1, where � = k k! =

p
n. Define Q` = [q1, q2, . . . , q`]

to be the column concatenation of the first ` basis vectors; then each Q` for all
1  `  m + 1 has orthonormal columns. If p is expressed linearly in the basis
{q1, q2, . . . , qm} as

p =
mX

i=1

↵iqi = Qm↵,

where ↵ = [↵1, ↵2, . . . , ↵m]T , then the polynomial zp in (3.2) becomes

zp =
mX

j=1

↵j (zqj) =
mX

j=1

↵j

j+1X

i=1

hijqi =
mX

j=1

↵j

m+1X

i=1

hijqi (hij = 0 when i� j > 1)

=
m+1X

i=1

mX

j=1

qihij↵j = Qm+1Hm↵.

In the end we observe that solving (3.2) amounts to minimizing with respect to ↵ 2 Cn

the objective function

J(↵) = k�q1 �Qm+1Hm↵k
2
2.

Since Qm+1 has orthonormal columns, and q1 = Qm+1e1, where e1 = [1, 0, . . . , 0]T is
a vector of length m+ 1, this can be further reduced to

J(↵) = k�e1 �Hm↵k
2
2.(3.3)

Note that this is a standard least-squares problem, which is the same as the one in
GMRES in complex spaces because the approach shares many core ingredients of
GMRES.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1255

Once ↵ is found from (3.3), we obtain a polynomial p of degree m � 1, and the
matrix M defined by M

�1 = p(A) can be used as a preconditioner for solving the
linear system Ax = b.

To apply M
�1 to a vector v, note that

M
�1

v = p(A)v =
mX

i=1

↵iqi(A)v :=
mX

i=1

↵ivi,(3.4)

where we define vi ⌘ qi(A)v for 1  i  m. Since q1 = /
p
n so

v1 = q1(A)v = Iv/
p
n = v/

p
n.(3.5)

From the Arnoldi-like process Algorithm 3.1 we have that zqi =
P

i+1
j=1 hjiqj ; thus

Avi = Aqi(A)v =

2

4
i+1X

j=1

hjiqj(A)

3

5 v = hi+1,ivi+1 +
iX

j=1

hjivj , 1  i  m� 1,

and hence

vi+1 =
1

hi+1,i

0

@Avi �

iX

j=1

hjivj

1

A , 1  i  m� 1.(3.6)

The vi’s can be computed recursively from (3.5) and (3.6); and the final result is just a
linear combination of vi’s with the coe�cient ↵. Note that the only information needed
is the precalculated entries available in Hm; the basis Qm+1 is not involved directly
in the least-squares problem (3.3) for finding ↵ or in applying the preconditioner
(3.4)–(3.6).

We note that the idea of using an Arnoldi-like procedure to generate orthogonal
polynomials is not entirely new. In fact, the framework is similar to what was dis-
cussed in [41] where the Chebyshev polynomial basis is used to construct a polynomial
p that minimizes the residual polynomial 1�zp(z) under some specially defined norm.
But, as mentioned in [41], this algorithm su↵ers from numerical stability issues, and
the polynomial degree has to be kept low. The main reason is that, in the complex
plane, Chebyshev polynomials on ellipses tend to become linear dependent as their
degrees increase, as can be seen from the condition numbers of their related Gram
matrices; see [40].

The same argument holds true for other methods that try to construct a polyno-
mial from the span of other bases. Since the algorithm proposed in this manuscript
uses only the inner product (3.1) and implicitly constructs the polynomial p, p will be
accurately computed for high degrees (as long as m < n). Another class of methods
constructs the polynomial by finding all of its roots and represents the polynomial
by the product of a series of degree-one polynomials, e.g., in [35, 18]. These methods
also su↵er from stability issues when the degree is high.

3.2. Connection to GMRES. In comparing the proposed approach to the
standard GMRES approach, one can observe that (3.3) is exactly the same least-
squares problem that we solve in standard GMRES except that the coe�cients of Hm

are generated in a vector space of dimension n, the number of points on the contour.
Looking more carefully at the algorithm, it is also possible to show that in fact it
is equivalent to the standard GMRES algorithm applied to the diagonal matrix whose

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1256 XIN YE, YUANZHE XI, AND YOUSEF SAAD

entries are the discretization points z1, z2, . . . , zn. They are equivalent in the sense
that they would generate the same Hessenberg matrix Hm and in the end also the
same polynomial. For this reason we may refer to this approach as a proxy-GMRES
algorithm since the original matrix is replaced by a small (“proxy”) diagonal matrix
whose spectrum captures the original spectrum well.

3.3. Approximating the contour �. Sometimes it is possible to have a con-
tour � that is available from information obtained from the original physical problem
under consideration. When this is not the case, an approximate contour must be ob-
tained from approximate eigenvalues of the coe�cient matrix A. First we run several
steps of the Arnoldi algorithm which produces Ritz values that are approximations
of the eigenvalues of A. These Ritz values tend to approximate those eigenvalues on
the boundary of the spectrum. We found that running 60–100 steps of the Arnoldi
algorithm is usually good enough for capturing the required information to build the
contour in all the numerical examples in this paper. The next step is to find an ap-
proximate boundary � where a subset of points from the Ritz values forms the vertices
of a polygon. Note that � is not necessarily convex and that its boundary can shrink
towards the interior. Finally, the contour � is discretized on each of its continuous
parts. Our experience indicates that a uniform discretization with a fixed step size h

su�ces; this means the number of discretization points is only a↵ected by the length
of the approximated boundary � and irrelevant of the order of the coe�cient matrix.
We use h = 0.005 in all our tests.

3.4. Short-term recurrence. Because the matrix Hm in Algorithm 3.1 is an
upper Hessenberg matrix, computing p(A)v for a degree m � 1 polynomial p costs
O(m2

N) operations and requires O(mN) storage. This implies that despite the good
numerical stability of the algorithm, its computation cost and storage quickly become
unacceptably high as m increases. Motivated by the three-term recurrence for Cheby-
shev polynomials, we will show in this section that a short-term recurrence can be
exploited to significantly reduce these costs.

The basic idea is to replace the full orthogonalization in Steps 4 to 7 in Algo-
rithm 3.1 by a partial orthogonalization. That is, the newly generated polynomial q
in Step 3 is only orthogonalized against the most recent k basis, which leads to the
following short-term recurrence relation

tj+1,j q̂j+1 = zq̂j �

jX

i=j�k+1

tij q̂i, 1  j  m,

where tij (1  i  j), tj+1,j and q̂j+1 are generated in the same way as in steps 5, 8,
and 9 in Algorithm 3.1, respectively. The computed basis {q̂i}

m+1
i=1 form the columns

of Q̂m+1, and tij ’s form an (m+ 1)⇥m matrix Tm. Notice that Q̂m+1 doesn’t have
orthonormal columns anymore, and Tm is a banded matrix with one subdiagonal and
k�1 superdiagonals. For example, when k = 2, we have the three-term recurrence for
the computed basis q̂i, and Tm is a tridiagonal matrix. This is similar to the Chebyshev
polynomial case. In the extreme case when k = m, the partial reorthogonalization
becomes equivalent to the full orthogonalization, and all results in section 3.1 are
recovered.

Similar to section 3.1, with the new basis {q̂j}
m+1
j=1 from the short-term recurrence

we can rewrite (3.2) into minimizing with respect to ↵̂ 2 Cn a new objective function

Ĵ(↵̂) = k�q̂1 � Q̂m+1Tm↵̂k
2
2.(3.7)

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1257

Solving for ↵̂ in this problem typically needs to compute an orthogonal factorization
of the matrix Q̂m+1Tm, which requires some additional computation cost and storage
(since both Q̂m+1 and Tm need to be stored), compared to computing ↵ in (3.3).
However, recall that all these computations are still within a vector space of dimension
n which is typically much smaller than N . Note that this bears some similarity to the
minimization of the quasi residual in QMR [20, 21] and in the direct quasi GMRES
(DQGMRES) method [44].

On the other hand, applying the preconditioner M
�1 = p̂(A), where p̂ is repre-

sented in the new basis Q̂m is slightly di↵erent. More specifically, (3.6) is replaced by
the corresponding short-term version

vi+1 =
1

ti+1,i

0

@Avi �

iX

j=i�k+1

tjivj

1

A .(3.8)

Due to the above short-term recurrence, the application of the preconditioner M�1 =
p̂(A) on a vector only requires O(mkN) operations and O(kN) storage.

Now we discuss the stability issue associated with this approach. In exact arith-
metic, it is easy to see that (3.3) and (3.7) are equivalent and the polynomials p = Qm↵

and p̂ = Q̂m↵̂ obtained from both orthogonalization schemes are exactly the same.
This is because enforcing a short-term recurrence is equivalent to a change of basis
and an update to the corresponding coe�cients. However, in floating-point arithmetic,
Q̂m becomes increasingly ill-conditioned when m increases, and thus the coe�cient ↵̂
becomes increasingly hard to compute accurately.

Next we study the relation between the conditioning of the basis matrix Q̂m and
the number of recurrence terms k. Figure 3.1 shows how the 2-norm condition number
2(Q̂m) grows for multiple values of k where � and �n are drawn from the numerical
examples in section 5.1 and section 5.2. For the toy problem in section 5.1, we can see
in Figure 3.1a that the conditioning of the basis from short-term recurrence behaves
exactly as expected: larger recurrence length k leads to more stable polynomial basis
for the same size of dimension. The same e↵ect is more significant as shown in
Figure 3.1b for the Helmholtz problem in section 5.2 as the matrix becomes more
ill-conditioned and indefinite. The condition numbers for k = 2 and 3 are almost the
same so we only plotted the curve of k = 2; this was done similarly for k = 4, 5 and

0 20 40 60 80 100 120

m

10
0

10
2

10
4

10
6

10
8

k=2

k=3

k=4

(a) for problem in Section 5.1

0 20 40 60 80 100 120

m

10
0

10
2

10
4

10
6

10
8

k=2

k=4

k=6

(b) for problem in Section 5.2

Fig. 3.1. Conditioning of Q̂m generated with k-term recurrence from two examples.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1258 XIN YE, YUANZHE XI, AND YOUSEF SAAD

k = 6, 7. When the recurrence is too short, i.e., k = 2 or 3, the condition number
rapidly grows beyond 108 when m passes 50. In that case, the polynomial p̂ extracted
with this basis becomes inaccurate, and the resulting preconditioner may become
useless. By increasing k to 4 or 5, 2(Q̂m) quickly drops from 108 to about 103 at
m = 50. By further increasing k to 6, the same framework can admit an even larger
degree for the polynomial preconditioner to still remain well conditioned.

The numerical stability of Q̂m can be monitored inexpensively by its associated
Gram matrix. Denote by Ĝm the m⇥m Gram matrix of the basis Q̂m whose entries
are defined by

ĝij = hq̂i, q̂ji, 1  i, j  m,

where the inner product is as defined in (3.1). The matrix Ĝm is Hermitian positive
definite. Let Ĝm = L̂mL̂

H

m
be the Cholesky factorization where L̂m is lower-triangular,

and note that 2(Q̂m) =
q
2(Ĝm) = 2(L̂m). As the Arnoldi-like process proceeds,

both the Gram matrix Ĝm+1 and the Cholesky factor L̂m+1 can be quickly updated
with Ĝm and L̂m from the previous step. When a high-degree polynomial must
be used, the ill-conditioning of Q̂m can be quickly detected by keeping track of the
condition number of the Cholesky factor L̂m. The condition number can either be
computed by performing an SVD on L̂m when m is small or estimated cheaply by,
for example, a randomized algorithm [15]. Whenever 2(L̂m) goes beyond a certain
threshold, we can stop the process and accept the resulting polynomial obtained
at that point or restart the same process with a longer recurrence relation. As is
indicated in Figure 3.1, we can start from k = 2 and increment k every time the
process is restarted. This process is repeated until the desired degree can be reached,
while 2(L̂m) still remains below the given threshold. In our numerical experiments,
we find that setting the threshold of the basis condition number at 106 usually yields
good quality results.

4. Improvements based on compounding preconditioners. In the previ-
ous sections, we assumed that � excluded the origin. This is important because other-
wise, the maximum modulus of the residual polynomial 1� zp(z) would be � 1 on �,
and the resulting polynomial preconditioner would be ine↵ective. For ill-conditioned
problems, a few eigenvalues of A will be in a small neighborhood of the origin, and
the origin will be very close to �. In this case, a high-degree polynomial becomes
mandatory if we wish to keep the maximum value of |1 � zp(z)| on � strictly less
than 1. On the other hand, the increased degree will require a longer recurrence, and
this will negatively impact the e�ciency of the proposed preconditioner. Similarly, we
may have a situation where a few eigenvalues are far from all others, and � must be
quite large to contain all eigenvalues, with big gaps inside that contain no eigenvalues.
In this situation the resulting polynomial will also be required to be large. In this
section, we will discuss two compounding techniques to overcome this di�culty.

4.1. Compounding two polynomials. Our first polynomial-compounding ap-
proach is based on compounding two low-degree polynomials to mimic the e↵ect of
a high-degree polynomial. Doing this may result in a slightly higher total number of
matrix-vector multiplications associated with A, but the costs associated with vector
operations and storage can be significantly reduced. Also as pointed out in [18], this
strategy can also reduce the number of inner products performed.

This can be understood from a simple example. Suppose one high-degree polyno-
mial has degree m� 1 and the other two low-degree polynomials have degree m1 � 1

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1259

and m2 � 1, respectively, with m = m1 ⇥m2. For these three polynomials, a ki-term
recurrence is deployed for a polynomial of degree mi � 1 (for i = 1, 2), while a k-term
recurrence is needed for degreem�1. Sincem1 andm2 are both much smaller thanm,
the recurrence terms ki required for stable basis for their corresponding degree mi�1
polynomial is also much smaller than that for a degree m polynomial; i.e., k1, k2 ⌧ k.
Thus, applying the preconditioner resulting from compounding the polynomials will
entail fewer vector operations and storage.

We now provide some details on how to construct these two low-degree polynomi-
als. First find a contour � that encloses all the eigenvalues of A and discretize it as �n1 .
Based on �n1 , construct the first polynomial p1 of degree m1�1, and select the recur-
rence length k1 with the procedure discussed in section 3.4. It can be expected that
most of the eigenvalues of the preconditioned matrix A1 := AM

�1
1 = Ap1(A) would

be clustered around z = 1. Therefore, a second contour is then selected as a circle C

centered at z = 1 with radius ✓ 2 (0, 1). Let Cn2 be an n2-point discretization of C,
and apply Cn2 to compute the second polynomial p2 with degree m2�1 and recurrence
length k2. In the end, the compound polynomial has the form p(z) := p1(z)p2(zp1(z)),
and the resulting preconditioner is M�1 := p(A) = p1(A)p2(Ap1(A)).

It is clear that the preconditioner M�1 is a polynomial in A of degree m1m2 � 1.
Applying M

�1 on a vector involves two main operations:
1. Apply p1(A) to a vector, which follows the formula (3.4), (3.5), and (3.8).

This computation costs m1 � 1 matvecs associated with A and O(m1k1N)
operations from vector operations and O(k1N) storage.

2. Apply p2(Ap1(A)) to a vector. This operation consists of m2 � 1 matvecs
of Ap1(A), O(m2k2N) extra costs from vector operations and O(k2N) extra
storage.

Table 4.1 compares the costs of applying one high-degree polynomial preconditioner
versus a compound polynomial preconditioner. It is easy to see that when m =
m1 ⇥ m2, even though both preconditioners perform the same number of matvecs
associated with A, the operations and peak storage associated with the compound
polynomial preconditioner can be much less due to the fact that k1, k2 ⌧ k.

4.2. Compounding with other preconditioners. The second approach we
discuss will compound the polynomial preconditioner with other types of precon-
ditioners. For ill-conditioned problems, it is suggested to perform an approximate
factorization on A+�I for some complex shift � [54] instead of the original coe�cient
matrix A. To simplify the discussion, assume that an ILU factorization is utilized:

A+ �I ⇡ M1 = LU.

Consider the following new right-preconditioned linear system:

AM
�1
1 y = b,

Table 4.1
The cost and storage of applying the single and compound polynomial preconditioners, the single

polynomial is of degree m� 1; the compound polynomial is built with two low-degree polynomials of
degree m1 � 1 and m2 � 1.

Single polynomial Compound polynomial
Matvec of A m� 1 m1m2 � 1

Vector operations O(mkN) O(m1m2k1N)
Peak storage O(kN) O((k1 + k2)N)

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1260 XIN YE, YUANZHE XI, AND YOUSEF SAAD

where the original solution x = M
�1
1 y, and apply the same procedures discussed in

section 3.1 to the new coe�cient matrix A1 := AM
�1
1 . Note here that the contour

� for A1 can be estimated by running a few steps of the Arnoldi process. After the
polynomial p is constructed, the compound preconditioner takes the form of M�1 =
p(AM�1

1). Suppose the polynomial p is of degree m� 1; then one application of M�1

on a vector consists of m � 1 matvecs associated with A and m � 1 applications of
the preconditioner M�1

1 . As mentioned in section 1, ILU preconditioners may cause
performance bottlenecks in a parallel environment due to di�culties in parallelizing
the triangular solves. The proposed framework allows to naturally replacing the ILU
factorization with more scalable preconditioners such as for Schur complement low
rank (SLR), multilevel SLR or generalized MSLR preconditioners [31, 53, 14].

5. Numerical experiments. All numerical tests were run in Matlab R2020b on
a desktop PC with AMD Ryzen 7 5800X CPU running at 3.8 GHz and 32 GB memory.
We used GMRES with a restart dimension of 50 as the accelerator, the initial guess
was set to be the zero vector, and the process was terminated when either the residual
was reduced by a prescribed factor ⌧ or the total number of iterations reached 1000.
The right-hand side vector was chosen as a random vector.

In the experiments, we use the Matlab built-in function boundary to find an
approximated boundary � where a subset of points from the Ritz values are taken as
the vertices of a polygon, and we discretize each edge with a fixed step size h = 0.005
in all our tests. In some cases when an analytical approximation of the spectrum
boundary is available, the boundary � may go through or stay very close to the
origin, e.g., in section 5.2. We replace the part of � that is within a small radius r to
the origin by the arc on the circle of the same radius r; see Figure 5.3b for an example.
Then the modified � will be used as the new approximated spectrum boundary on
which the same discretization step described above will be performed.

The following notation is used in this section:
• p-t: the preprocessing time, or time in seconds to build the preconditioner,
including the time to approximate/discretize the contour � and build the
polynomial or/and other preconditioners depending on the specific tests. The
symbol “F” indicates the preconditioner could not be constructed;

• i-t: the iteration time in seconds for GMRES(50) to converge;
• its: the total number of iterations required for GMRES(50) to converge, F
indicates GMRES(50) does not converge within 1000 iterations;

• mv: the total number of performed matvecs with the matrix A.

5.1. A diagonal matrix. In the first example, we generated a 2000 ⇥ 2000
diagonal matrix where all the diagonal entries (eigenvalues) were randomly chosen
from the semiannular region ⌦ = {z 2 C | 0.8  |z|  2, 0  Arg(z)  ⇡}. The
boundary of this region is shown in Figure 5.1 where the squares are the approximate
eigenvalues (Ritz values) computed by running 60 steps of the Arnoldi algorithm.
An approximate boundary was obtained by running the Matlab built-in function
boundary on the approximate eigenvalues. Figure 5.1 shows that the Ritz values
from the Arnoldi algorithm can characterize the boundary of the spectrum.

We first constructed polynomials of degree 29 (m = 30) with a recurrence length
k = 2. Figure 5.2 shows the contour maps for the function |1 � zp(z)| in log scale
based on both exact (left) and approximate (right) boundaries. Since the estimated
boundary approximates the exact one very well, the two maps look almost identical.
Table 5.1 tabulates the numerical results for solving the linear system with these
constructed polynomial preconditioners; the tolerance was set at ⌧ = 10�12. It took

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1261

-2 -1 0 1 2

0

0.5

1

1.5

2

2.5

3
exact boundary

approx boundary

approx eigenvalues

Fig. 5.1. The exact and approximate boundaries of the spectrum and the approximate ei-
genvalues obtained from 60 steps of the Arnoldi algorithm for the 2000 ⇥ 2000 diagonal matrix in
section 5.1.

-2

-2

-2
-2

-2

-2
-2

-2

-1

-1

-1

-1

-1-1-1

0

0

0

0

0

0

0

-2 -1 0 1 2
-0.5

0

0.5

1

1.5

2

2.5

(a) using the true boundary

-3

-2

-2
-2

-2

-2

-2

-2-1

-1

-1

-1

-1

-1

-1
0

0

0

0

0

0
0

-2 -1 0 1 2
-0.5

0

0.5

1

1.5

2

2.5

(b) using the approximate boundary

Fig. 5.2. Contour maps of |1� zp(z)| in log scale with di↵erent choice of � for the 2000⇥ 2000
diagonal matrix in section 5.1. The asterisk marks the origin.

Table 5.1
Convergence results of GMRES(50) for the 2000⇥2000 diagonal matrix test in section 5.1 with

tolerance ⌧ = 10�12.

p-t i-t its mv
No precond. \ 0.6525 237 237

With precond.
Exact boundary 0.0045 0.5366 8 240

Approx. boundary 0.0040 0.5238 8 240

237 iterations for GMRES(50) to converge without any preconditioner. On the other
hand, GMRES(50) with the polynomial preconditioners converged in 8 iterations in
both cases. Although the preconditioned methods performed 3 more matvecs, they
actually took less time to converge. Similar observations can also be made in other

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1262 XIN YE, YUANZHE XI, AND YOUSEF SAAD

examples in this section. This is due to the fact that a reduced iteration number
leads to a much smaller subspace for GMRES and far fewer inner products during
the computation. This performance gap can be expected to become more pronounced
when running the experiments on high-performance computing architectures.

We also want to emphasize that the preconditioner construction time was only a
tiny fraction of the iteration time. This is because the number of discretization points
for both the exact and approximate boundaries and the corresponding polynomial
space has much smaller dimension compared to the matrix size N = 2000.

5.2. Helmholtz problem. The second example is the three-dimensional
Helmholtz equation

��u�
!
2

c2(x)
u = s,

where ! is the angular frequency and c(x) is the wavespeed. Here we chose the
wavesped function c(x) with eight high-wavespeed anomolies as considered in Fig-
ure 7.1 of [32]. The computational domain was the unit cube, and the equation
was discretized with 7-point stencil finite di↵erence method. Perfectly matched layer
(PML) boundary conditions were imposed to reduce the artificial reflections near the
boundaries of the computational domain. We chose the minimum sampling rate as
9 outside the anomolies and 18 inside the anomolies similar to [32]. The resulting
linear system is sparse complex symmetric with dimension N = Nx⇥Ny⇥Nz. More-
over, the spectrum of the matrix is contained in a rectangle area {z 2 C | real(z) 2

[�1, ⇢1�1], imag(z) 2 [�⇢2, 0]}, where the two parameters ⇢1 and ⇢2 are given in [32,
Lemma 3.1]. Figure 5.3a shows all the eigenvalues and the rectangular boundary from
[32, Lemma 3.1] for a discretized Helmholtz operator of size N = 203. A zoom-in view
of � near the origin is shown in Figure 5.3b. We fixed the tolerance at ⌧ = 10�3 for
the Helmholtz equation tests in this section. Note that this test matrix is nonnormal.

5.2.1. Compounding polynomial preconditioners. Compared with the toy
example of the first test example, this problem is much harder to solve. First, there
are many eigenvalues near the origin. Second, the theoretical spectrum boundary
(the rectangular area) overlaps with the origin. In order to construct an e↵ective
polynomial preconditioner, we have to

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

(a) Eigenvalues and the rectangle boundary

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

-0.08

-0.06

-0.04

-0.02

0

(b) Modified � near the origin

Fig. 5.3. The theoretical rectangular spectrum boundary from [32, Lemma 3.1] and the zoomedin
view of the modified � near the origin for a discretized Helmholtz operator of size N = 203.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1263

Table 5.2
Convergence results of various preconditioned GMRES(50) on the Helmholtz equation test with

size N = 1003, the tolerance is fixed at ⌧ = 10�3.

Preconditioner type p-t i-t its mv

No preconditioner \ \ F \

ILUT F \ \ \

ILUT with diagonal shift � = �0.4i 220.96 \ F \

Single polynomial of degree 600� 1 3.49 1484.87 16 9600
Compound polynomial of degree 60⇥ 10� 1 0.05 906.41 18 10, 800

1. modify the theoretical rectangular contour [32, Lemma 3.1] to exclude the
origin;

2. use a high-degree polynomial.
For this test, the problem size was N = 1003 = 1, 000, 000, and the boundary �

was the same as shown in Figure 5.3b. We compared the performance of two poly-
nomial preconditioners on this test matrix. The first one was a single polynomial of
degree 599 (m = 600). In order to ensure numerical stability, we used a recurrence
length of k = 10. The second one was a compound polynomial with m1 = 60 and
m2 = 10 so that m1 ⇥m2 = m. Since m1 and m2 are relatively small, the recurrence
lengths were set to be k1 = k2 = 2. The convergence results with these two pre-
conditioners are shown in Table 5.2. In addition, we also show threshold-based ILU
(ILUT) preconditioners on A and A+�I with a complex diagonal shift � = �0.4i for
comparisons.

Due to the ill-conditioning and indefiniteness of the test matrix, the first three
methods in Table 5.2 failed to converge. In particular, ILUT even failed to finish the
factorization. On the other hand, both polynomial preconditioned methods converged
within 18 iterations. The compound polynomial preconditioner took much less time to
construct than the single polynomial preconditioner, and it also reduced the iteration
time by more than a half, even though 1200 more matvecs with A were performed.

5.2.2. Compounding with SLR. We also compounded the polynomial pre-
conditioner with the nonsymmetric SLR preconditioner [31] and tested its precondi-
tioning e↵ect on the Helmholtz problem. The problem size was still kept at N = 1003,
and the tolerance was set at ⌧ = 10�3. We applied the SLR preconditioner to the
shifted system M1 ⇡ A+ �I with a complex shift � = �0.4i (pulling the eigenvalues
away from the origin) and then chose a polynomial preconditioner of degree 29 for
the matrix A1 = AM

�1
1 . The approximate spectrum boundary of A1 was obtained

by running 80 steps of the Arnoldi process; then it was uniformly discretized with
h = 0.005 which resulted in 727 discretization points. The convergence results as
well as the comparison with SLR preconditioner are shown in Table 5.3. Note that
the diagonal shift � = �0.4i is the same as one of the ILUT tests in Table 5.2. We
see that the SLR preconditioned GMRES(50) failed to converge in 1000 iterations
while the SLR compound polynomial preconditioner converged in only 29 iterations
and required the least iteration time among all seven methods tested in Table 5.2
and Table 5.3. Also notice that the construction time of this compound precondi-
tioner is higher than other methods because it includes both the SLR preconditioner
construction time and the time to perform 80 steps of the Arnoldi process.

In order to visualize the spectrum of the preconditioned matrix across di↵erent
stages with this compound preconditioner, we also ran the experiment on a smaller
Helmholtz problem of size N = 203 so that we were able to compute all eigenvalues

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1264 XIN YE, YUANZHE XI, AND YOUSEF SAAD

Table 5.3
Convergence results of the SLR and SLR compound polynomial preconditioned GMRES(50) on

the Helmholtz equation test with size N = 1003; the tolerance was fixed at ⌧ = 10�3.

Preconditioner type p-t i-t its mv

SLR preconditioner 86.94 \ F \

SLR with polynomial of degree 30� 1 145.85 308.03 29 870

0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

exact

approx

(a) Exact and approximate eigenvalues of AM�1
1

-3
-3

-3

-3

-3

-3
-2

-2

-2

-2

-2

-2-1
-1

-1

-1
-1

-1

0

0

0

0

0

0

0 0.5 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) Contour map of |1� zp(z)| in log scale

0.96 0.98 1 1.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

(c) Eigenvalues of the final preconditioned matrix A1p(A1)

Fig. 5.4. Illustration of the preconditioning e↵ect of both stages of the SLR compound precondi-
tioner p(AM�1

1) on a small discretized Helmholtz equation test of size N = 203, where M1 denotes
the SLR preconditioner and p has degree 29.

of the matrices. Let M1 denote the SLR preconditioner for the discretized Helmholtz
operator A. The spectrum of A1 = AM

�1
1 as well as the approximate eigenvalues

from running 80 steps of the Arnoldi algorithm are shown in Figure 5.4a. A polyno-
mial preconditioner p(A1) of degree 29 was constructed, and the contour map of the
corresponding residual polynomial |1�zp(z)| is drawn in Figure 5.4b. Compared with
Figure 5.3b, it is easy to see that the SLR preconditioner pushed the eigenvalues of A1

further away from the origin. Thus, a low-degree polynomial of p has already led to
an e�cient preconditioner, which is supported by both the contour map Figure 5.4b
as well as the spectrum of the preconditioned matrix A1p(A1) in Figure 5.4c.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1265

Table 5.4
Information on the general test matrices from the SuiteSparse collection: N is the size of the

matrix and nnz the number of nonzero elements.

Group/matrix name N nnz Origin

Rajat/rajat09 24, 482 105, 573 circuit simulation
Dehghani/light in tissue 29, 282 406, 084 electromagnetics
Goodwin/Goodwin 127 178, 437 5, 778, 545 CFD problem

Kim/kim2 456, 976 11, 330, 020 3D problem
Bourchtein/atmosmodd 1, 270, 432 8, 814, 880 CFD problem

Table 5.5
Convergence results of general sparse matrices with GMRES(50) and tolerance ⌧ = 10�10,

all polynomials were of degree 39; column n shows the number of discretization points used on the
spectrum boundary of A1.

Matrix
ILUT ILUT compound polynomial

p-t i-t its mv n p-t i-t its mv
Rajat09 F \ \ \ 771 0.21 1.57 46 1, 840

Light in tissue 0.055 1.23 213 213 572 0.31 0.33 6 240
Goodwin 127 F \ \ \ 462 1.27 171.97 261 10, 440

Kim2 3.50 6.98 38 38 1488 10.97 4.58 2 80
Atmosmodd 0.83 114.90 397 397 568 23.30 26.35 6 240

5.3. General sparse matrices. We also tested the ILUT compound polyno-
mial preconditioner on several general sparse matrices obtained from the SuiteSparse
Matrix Collection.1 All of the test problems are nonsymmetric real or non-Hermitian
complex. After the ILUT preconditioner M1 was constructed, we ran 60 steps of the
Arnoldi algorithm to obtain the approximate eigenvalues; then we built the approx-
imate spectrum boundary, a polygon uniformly discretized on each of its continuous
parts with step size h = 0.005. All polynomials were of degree 39 (m = 40) with a
recurrence of length k = 2. The tolerance for GMRES(50) was set at ⌧ = 10�10. Some
information about these matrices is provided in Table 5.4. Convergence results are
shown in Table 5.5 together with those from ILUT alone for comparison. Note that
the preconditioning set-up time for the ILUT compound polynomial preconditioner
includes time for ILUT preconditioner construction, 60 steps of Arnoldi algorithm on
A1 = AM

�1
1 , and time for building the polynomial. Despite a slightly more expensive

construction costs, ILUT compound polynomial preconditioner outperformed ILUT
on all of these 5 tests in the iteration phase.

6. Conclusions. The primary distinction between the polynomial precondition-
ing techniques introduced in this paper and existing techniques is the emphasis on
controlling the numerical stability of the polynomial construction and the resulting
iterative process. This is important because, contrary to a common misperception,
polynomial preconditioners are appealing when used with relatively high degrees. High-
degree polynomials result in good quality preconditioners that will yield convergence
in a smaller number of outer iterations. We showed how to significantly improve the
performance of a basic polynomial preconditioning method by a process that relies
on a short-term recurrence as well as by a strategy of compounding two consecutive
preconditioners. It is clear that a big appeal of the proposed methods is their po-
tential for producing big gains in speed when used in highly parallel and distributed
environments such as massive clusters of many computing nodes with multicore CPUs

1SuiteSparse Matrix Collection: https://sparse.tamu.edu.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1266 XIN YE, YUANZHE XI, AND YOUSEF SAAD

and GPUs/accelerators. The numerical experiments show that even in a scalar en-
vironment, these methods can be e↵ective in solving di�cult problems in situations
where classical techniques fail.

REFERENCES

[1] L. M. Adams and E. G. Ong, Additive polynomial preconditioners for parallel computers,
Parallel Comput., 9 (1989), pp. 333–345.

[2] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[3] S. F. Ashby, Minimax polynomial preconditioning for Hermitian linear systems, SIAM J.
Matrix Anal. Appl., 12 (1991), pp. 766–789.

[4] S. F. Ashby, T. A. Manteuffel, and J. S. Otto, A comparison of adaptive Chebyshev and
least-squares polynomial preconditioning for Hermitian positive definite linear systems,
SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1–29.

[5] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, Adaptive polynomial preconditioning for
Hermitian indefinite linear systems, BIT, 29 (1989), pp. 583–609.

[6] M. M. Baskaran and R. Bordawekar, Optimizing Sparse Matrix-Vector Multiplication on
GPUs Using Compile-Time and Run-Time Strategies. Technical report, 2008.

[7] N. Bell and M. Garland, Implementing sparse matrix-vector multiplication on throughput-
oriented processors, in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 1–11.

[8] E. W. Cheney, Introduction to Approximation Theory, AMS, Providence, Rhode Island, 1982.
[9] E. Chow and A. Patel, Fine-grained parallel incomplete lu factorization, SIAM J. Sci. Com-

put., 37 (2015), pp. C169–C193.
[10] J. P. Coleman, Polynomial approximations in the complex plane, J. Comput. Appl. Math., 18

(1987), pp. 193–211.
[11] M. Crouzeix, Bounds for analytic functions of matrices, Integral Equations Operator Theory,

48 (2004), pp. 461–477, https://doi.org/10.1007/s00020-002-1188-6.
[12] M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 244

(2007), pp. 668–690.
[13] M. Crouzeix and C. Palencia, The numerical range is a (1 +

p
2)-spectral set, SIAM J.

Matrix Anal. Appl., 38 (2017), pp. 649–655.
[14] G. Dillon, V. Kalantzis, Y. Xi, and Y. Saad, A hierarchical low rank Schur complement

preconditioner for indefinite linear systems, SIAM J. Sci. Comput., 40 (2018), pp. A2234–
A2252.

[15] J. D. Dixon, Estimating extremal eiganvalues and condition numbers of matrices, SIAM J.
Numer. Anal., 20 (1983), pp. 812–814.

[16] S. C. Eisenstat, J. M. Ortega, and C. T. Vaughan, E�cient polynomial preconditioning
for the conjugate gradient method, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 859–872.

[17] H. C. Elman, Y. Saad, and P. E. Saylor, A hybrid Chebyshev Krylov subspace algorithm
for solving nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput., 7
(1986), pp. 840–855.

[18] M. Embree, J. A. Loe, and R. B. Morgan, Polynomial Preconditioned Arnoldi, preprint,
arxn:1806.08020, 2018, https://arxiv.org/abs/1806.08020.

[19] R. Freund, On conjugate gradient type methods and polynomial preconditioners for a class of
complex non-Hermitian matrices, Numer. Math., 57 (1990), pp. 285–312.

[20] R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

[21] R. W. Freund and N. M. Nachtigal, An implementation of the QMR method based on
coupled two-term recurrences, SIAM J. Sci. Comput., 15 (1994), pp. 313–337.

[22] G. H. Golub and R. S. Varga, Chebyshev semi-iterative methods, successive overrelaxation
iterative methods, and second order Richardson iterative methods, Numer. Math., 3 (1961),
pp. 147–156.

[23] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible
for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465–469.

[24] M. H. Gutknecht and S. Röllin, The Chebyshev iteration revisited, Parallel Comput., 28
(2002), pp. 263–283.

[25] O. G. Johnson, C. A. Micheli, and G. Paul, Polynomial preconditioners for conjugate gra-
dient calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362–376.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROXY-GMRES 1267

[26] C. Lanczos, Trigonometric interpolation of empirical and analytical functions, J. Math. Phys.,
17 (1938), pp. 123–199.

[27] D. P. Laurie and L. M. Venter, A two-phase algorithm for the Chebyshev solution of complex
linear equations, SIAM J. Sci. Comput., 15 (1994), pp. 1440–1451.

[28] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices,
SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.

[29] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, J. Supercomput.,
63 (2013), pp. 443–466.

[30] R. Li, Y. Xi, L. Erlandson, and Y. Saad, The eigenvalues slicing library (EVSL): Algorithms,
implementation, and software, SIAM J. Sci. Comput., 41 (2019), pp. C393–C415, https:
//doi.org/10.1137/18M1170935.

[31] R. Li, Y. Xi, and Y. Saad, Schur complement-based domain decomposition preconditioners
with low-rank corrections, Numer. Linear Algebra Appl., 23 (2016), pp. 706–729.

[32] X. Liu, Y. Xi, Y. Saad, and M. V. de Hoop, Solving the 3D high-frequency Helmholtz equa-
tion using contour integration and polynomial preconditioning, preprint, arxiv:1811.12378,
2018, https://arxiv.org/abs/1811.12378.

[33] T. A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math.,
28 (1977), pp. 307–327.

[34] T. A. Manteuffel, Adaptive procedure for estimating parameters for the nonsymmetric
Tchebychev iteration, Numer. Math., 31 (1978), pp. 183–208.

[35] T. A. Manteuffel and G. Starke, On hybrid iterative methods for nonsymmetric systems
of linear equations, Numer. Math., 73 (1996), pp. 489–506.

[36] N. M. Nachtigal, L. Reichel, and L. N. Trefethen, A hybrid GMRES algorithm for non-
symmetric linear systems, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 796–825.

[37] R. Pachón and L. N. Trefethen, Barycentric-Remez algorithms for best polynomial approx-
imation in the chebfun system, BIT, 49 (2009), pp. 721–741.

[38] L. Reichel, The application of Leja points to Richardson iteration and polynomial precondi-
tioning, Linear Algebra Appl., 154–156 (1991), pp. 389–414.

[39] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM
J. Sci. Statist. Comput., 6 (1985), pp. 865–881.

[40] Y. Saad, On the condition numbers of modified moment matrices arising in least squares
approximation in the complex plane, Numer. Math., 48 (1986), pp. 337–347.

[41] Y. Saad, Least squares polynomials in the complex plane and their use for solving nonsym-
metric linear systems, SIAM J. Numer. Anal., 24 (1987), pp. 155–169.

[42] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., SIAM, Philadelphia, 2003.
[43] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.
[44] Y. Saad and K. Wu, DQGMRES: A direct quasi-minimal residual algorithm based on incom-

plete orthogonalization, Numer. Linear Algebra Appl., 3 (1996), pp. 329–343.
[45] J. Shi, R. Li, Y. Xi, Y. Saad, and M. V. de Hoop, Computing planetary interior normal

modes with a highly parallel polynomial filtering eigensolver, in SC18: Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, Dallas, IEEE, 2018, pp. 894–906.

[46] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton Lectures in Analysis, II, Prince-
ton University Press, Princeton, NJ, 2003.

[47] R. L. Streit, Solution of systems of complex linear equations in the l1 norm with constraints
on the unknowns, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 132–149.

[48] R. L. Streit and A. H. Nuttall, A note on the semi-infinite programming approach to
complex approximation, Math. Comp., 40 (1983), pp. 599–605.

[49] P. T. P. Tang, A fast algorithm for linear complex Chebyshev approximations, Math. Comp.,
51 (1988), pp. 721–739.

[50] H. K. Thornquist, Fixed-polynomial approximate spectral transformations for preconditioning
the eigenvalue problem, Ph.D. thesis, Rice University, Houston, TX, 2006.

[51] F. Vázquez, E. M. Garzón, J. A. Mart́ınez, and J. J. Fernández, The sparse matrix vector
product on GPUs, technical report, 2009.

[52] G. A. Watson, A method for the Chebyshev solution of an overdetermined system of complex
linear equations, IMA J. Numer. Anal., 8 (1988), pp. 461–471.

[53] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections
for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.

[54] Y. Xi and Y. Saad, A rational function preconditioner for indefinite sparse linear systems,
SIAM J. Sci. Comput., 39 (2017), pp. A1145–A1167.

D
ow

nl
oa

de
d

09
/2

0/
21

 to
 1

70
.1

40
.1

42
.2

52
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

