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Abstract

A central challenge in plant ecology is to define the major axes of plant functional variation
with direct consequences for fitness. Central to the three main components of plant fitness
(growth, survival, and reproduction) is the rate of metabolic conversion of CO2 into carbon
that can be allocated to various structures and functions. Here we (1) argue that a primary
constraint on the maximum rate of photosynthesis per unit leaf area is the size and packing
density of cells and (2) show that variation in genome size is a strong predictor of cell sizes,
packing densities, and the maximum rate of photosynthesis across terrestrial vascular
plants. Regardless of the genic content associated with variation in genome size, the simple
biophysical constraints of encapsulating the genome define the lower limit of cell size and
the upper limit of cell packing densities, as well as the range of possible cell sizes and
densities. Genome size, therefore, acts as a first-order constraint on carbon gain and is
predicted to define the upper limits of allocation to growth, reproduction, and defense. The
strong effects of genome size on metabolism, therefore, have broad implications for plant
biogeography and for other theories of plant ecology, and suggest that selection on

metabolism may have a role in genome size evolution.
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Introduction

Quantifying major axes of plant functional variation has given rise to an ever-growing list of
traits that impact growth, reproduction, and survival, the three components of individual
fitness (Violle et al. 2007). These traits have traditionally been viewed from a reductionist
perspective that scales form-function relationships of individual plant organs (e.g. leaves,
stems, and roots) to whole organism ecological strategies. As the ultimate source of energy
and matter for growth and reproduction, photosynthetic capacity represents a first-order
constraint on the emergent properties between whole plant form and function and
individual fitness. Here we provide evidence that genome-cellular allometry directly
influences interspecific variation in photosynthetic metabolism and provide a mechanistic
framework that links genome size and metabolism to other aspects of plant ecology and

evolution.

One of the three components of fitness is growth, which is ultimately limited by
photosynthetic metabolism. Relative growth rate (RGR) varies considerably across species
and is driven by photosynthetic rate and the resource investment to support

photosynthesis as:

RGR = A, .- LMR

where Anass is the photosynthetic rate per unit leaf biomass and LMR is the leaf mass ratio
(the proportion of leaf dry mass to total plant dry mass). Amass is, therefore, frequently
considered a major plant strategy axis (Poorter and Remkes 1990; Poorter et al. 1990;

Reich et al. 1992). However, Amass can be decomposed as:

Amas‘s‘ = SLA - Aare

where SLA is the specific leaf area (leaf area per leaf dry mass) and Aareq is the net carbon
assimilation rate per unit canopy leaf area. Because of its direct effect on Anass, SLA is often

considered a major predictor of interspecific variation in RGR. Agreq, on the other hand,
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varies orthogonally to SLA (Wright et al. 2004), and, therefore, determines the upper limit
of the relationship between Apmass, SLA, and RGR. Maximum potential Aqrea represents, then,
a fundamental limitation on the maximum amount of carbon available for allocation to

growth, reproduction, and survival relative to species ecological strategies.
The centrality of Aarea to plant ecological strategy suggests two questions:

. First, what are the fundamental features of plant structure that determine maximum
potential Agreq?
e Second, to what extent do these relationships scale up to affect plant ecological

strategies and evolutionary dynamics?

Here we present a mechanistic framework to address both of these questions, that is based
on the positive scaling between genome size and cell size. Although the relationship
between genome size (i.e. nuclear volume) and cell size has long been of interest (von
Sachs 1893), the mechanisms are still not fully understood (Doyle and Coate 2019), and its
implications for organismal metabolism have not been fully articulated. We show that the
allometry between genome size and cell size influences rates of photosynthetic metabolism
and argue that the scaling of genome size and metabolism affects ecological distributions
and evolutionary dynamics. In this way, any factor affecting rates of metabolism is a

potential agent of selection on genome size and, potentially, on genome structure as well.

It is now widely recognized that variation in genome size can have significant
consequences for organismal structure and function, independent of the genes that define
the genotype (Bennett 1971). Positive scaling between genome size and cell size across
terrestrial plants has given rise to numerous studies characterizing the many other
phenotypic correlates of genome size independent of variation in genome structure,
commonly referred to as “nucleotype” effects, although some of these correlations are
disputable after accounting for shared phylogenetic history (Bennett 1971; Cavalier-Smith
1978; 1982; Bennett and Leitch 2005). Correlates of genome size encompass an incredible
diversity of plant phenotypes, including, for example, the sizes of plant structures, rates of
cell division, rates of physiological processes, and tolerances and responses to abiotic

conditions (Table 1).
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Our goal is not to recapitulate the many reviews about the nucleotype-phenotype
relationship but, instead, to align these studies more systematically with the field of plant
functional biology. We believe that the diverse impacts of genome-cellular allometry on the
body plan of terrestrial vascular plants strongly influences the coordination between plant
functional traits and, ultimately, whole organism form-function relationships. Here we
summarize previous research, perform new analyses of existing data, and present new data
to show how genome size may, through its impacts on cell size and tissue structure,
determine the biophysical limits of plant metabolic rates, and, therefore, influence other
aspects of ecology and evolution. That genome size may be a key functional trait is not a
new idea (Grime 1998). Yet, despite numerous reports of the phenotypic and ecological
correlates of genome size (Table 1), it has not been fully integrated into the functional trait
literature. Our goal, therefore, is to more directly show how genome size influences plant
traits that impact maximum rates of photosynthetic metabolism. Metabolism is central to
all three aspects of plant fitness, providing the carbon necessary for allocation to growth,
reproduction, and survival. As such, genome size may not itself be a functional trait but

instead may define the limits of variation in numerous other functional traits.

Genome-cellular allometry limits rates of resource transport and

metabolism

Allometry of genome size and cell size

The role of the genome in limiting cell size has been postulated since at least the late 1800s
(von Sachs 1893) and was critical in shaping early modern views of the evolution of plant
vascular systems (Bailey and Tupper 1918). At a minimum, a cell must contain its genome,
and there is a strong relationship between the volumes of meristematic cells and genome
size (Simova and Herben 2012). Cellular expansion from this meristematic minimum size is
cell type-specific (Doyle and Coate 2019). Within a cell type, size can be influenced by
various environmental and developmental factors (Melaragno et al. 1993). Despite this
substantial growth in cell volume during development, there remains a significant effect of

genome size on cell size, particularly for stomatal guard cells (Beaulieu et al. 2008; Knight
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and Beaulieu 2008; Lomax et al. 2013; Simonin and Roddy 2018). For example, stomatal
guard cell size and density, which regulate the fluxes of water and CO; between the
biosphere and atmosphere, vary within species depending on light, water availability, and
atmospheric COz concentration (Hetherington and Woodward 2003; Franks and Beerling
2009). Furthermore, in the vascular transport network, the sizes of xylem conduits and
their density in the leaf are also affected by variation in genome size (Maherali et al. 2009;
Hao et al. 2013; De Baerdemaeker et al. 2018; Simonin and Roddy 2018). Yet why genome
size and final cell size are correlated within a cell type remains unclear (Doyle and Coate

2019).

We tested whether smaller genomes allow not only for smaller initial and final cell sizes
but also for a greater range in final cell size using published data for terrestrial C3 plants.
We used data for stomatal guard cells because they are the most commonly measured cell
sizes in plants and because their sizes and abundance determine the leaf surface
conductance to CO; and water vapor and, therefore, directly control rates of resource
transport for use in photosynthetic metabolism. Sizes of guard cells for angiosperms
(Beaulieu et al. 2008), gymnosperms, and ferns were compiled previously by Simonin and
Roddy (2018), and here we include data for mosses and hornworts from Field et al. (2015)
and Renzaglia et al. (2017). We assumed that stomatal guard cells are shaped as capsules,
which are composed of a central cylinder with hemispherical ends, such that cell volume

could be estimated from cell length as:

4
V=7t-r2-(§r+a)

where ris the radius of the cylinder and of the hemispherical ends and a is the height of the
cylinder. We assumed that a is equal to 2r, such that the guard cell length is equal to 4r.

Simplifying this equation allowed cell volume to be calculated from guard cell length as:

V= 95—611 - (guard cell length)3.

The dumbbell-shaped guard cells present among monocots would likely violate these

assumptions about cell shape and so we excluded from this analysis data for the Poaceae,
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which are known to have dumbbell-shaped guard cells. Data for meristematic cell volume
and genome size were taken from Simova and Herben (2012). We used linear regression (R
package stats) to fit the mean response and quantile regression (R package rg) to test
whether there was greater variation in cell volume among taxa with smaller genomes (i.e.
heteroskedasticity), based on differences between quantile regression slopes, using the

functions ‘rq’ and ‘anova.rq’.

Across over two orders of magnitude in genome size, meristematic cell volume defined the
lower limit of guard cell volume (Figure 1); the smallest guard cells were only slightly
larger than meristematic cells of the same genome size. Genome size was a strong and
significant predictor of meristematic cell volume (log(volume) = 0.69 - log(genome size) +
2.68; R2=0.98, P < 0.001; Simova and Herben 2012). Though it explained less of the
variation, genome size was a significant predictor of final guard cell volume among
terrestrial vascular plants (log(cell volume) = 0.55 - log(genome size) + 3.44; R?=0.48, P <
0.001). Including mosses and hornworts, however, substantially reduced the explanatory
power of genome size on cell volume to under 10%. Quantile regression revealed that for
vascular plants the slope through the 10th quantile was steeper (slope = 0.66 * 0.07,
intercept = 2.98 * 0.07) than the slope through the 90th quantile (0.47 + 0.09), although
this difference was not significant (P = 0.07). While there was no significant difference
between the 10% and 90% quantile slopes, lower quantiles had consistently steeper slopes
when considering all species and also angiosperms alone (Figure S1), suggesting that the
smaller minimum cell size allowed by smaller genomes enables greater variation in final
cell size. In fact, for a given genome size, interspecific variation in mature guard cell volume
could vary by as much as two orders of magnitude among vascular plants. Theoretically,
maximum cell size is not as tightly constrained by genome size, such that other cell types
can be much larger than guard cells. The greater variation among species with smaller
genomes implies that smaller genomes allow for greater plasticity in cell sizes and cell
packing densities which directly influence maximum rates of leaf surface conductance to
CO2 and water and ultimately photosynthetic metabolism per unit leaf surface area
(Simonin and Roddy 2018). Further, the greater diversity of cell sizes observed in plants

with small genomes suggests that the correlation between genome size and cell size is
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simply the result of occupying available space within the cell. A small genome can be
housed in either a small or a large cell, but a large genome cannot be housed in a cell

smaller than its nucleus.

The greater variation in cell volume allowed by smaller genomes (Figure 1) further
suggests that smaller genomes allow for greater variation in cell packing densities. For
guard cell lengths, stomatal densities, and vein densities, smaller genomes allowed for
greater variation in traits across ferns, ggmnosperms and angiosperms (Simonin and
Roddy 2018). Species with smaller genomes in these datasets are predominantly
angiosperms, and these analyses compared distantly related species. We further tested for
greater variation in cell sizes and packing densities with smaller genomes among closely
related species using taxa in Rhododendron (Ericaceae) sect. Schistanthe Schltr. (= sect.
Vireya Blume) and a collection of deciduous Rhododendron cultivars that vary in ploidy
from diploids to hexaploids. The monophyletic Schistanthe clade has a stepwise
phylogeographic history, having radiated eastward from the Malay Peninsula and reached
New Guinea within the last 15 Ma (Goetsch et al. 2011). We sampled leaves from 19 taxa
growing under common garden conditions at the Rhododendron Species Foundation
Botanical Garden in Federal Way, WA, USA. Genome sizes were measured following
standard protocols (Dolezel et al. 2007) at the Benaroya Research Institute in Seattle, WA,
USA. For measurements of stomatal size and density, epidermal impressions were made on
fresh leaves using dental putty (Coltene Whaledent President Light Body), transferred
using clear nail polish, mounted in water, and imaged using a light microscope.
Measurements of leaf vein density were made on leaf sections cleared by soaking in 4%
NaOH, 3% sodium hypochlorite, stained with 1% Safranin O, counterstained with 1% Fast
Green, mounted in ethanol, and imaged with a light microscope. Stomatal traits were
averaged across ten images per taxon, and leaf vein density was averaged across five
images per taxon. Genome sizes for the Rhododendron cultivars were measured at the
University of Coimbra, Portugal, and all anatomical measurements were made on leaf
sections cleared in 4% NaOH, stained in 1% Safranin and mounted in ethanol and Cytoseal
(Fisher Scientific). The two datasets of congeners were pooled in statistical analyses.

Quantile regression through the 10th and 90th percentile of the species means were used



218
219
220
221
222
223
224
225
226
227
228
229
230

231

232
233
234
235
236
237
238
239

240
241
242
243
244
245
246

to quantify the variation in traits associated with variation in genome size. Consistent with
previous results across terrestrial vascular plants (Simonin and Roddy 2018), among
Rhododendron taxa, there was greater variation in the sizes and packing densities of veins
and stomata among species with smaller genomes (Figure 2). This was apparent due to
significant differences between the 10t and 90t quantiles for guard cell length (10t 2.40 +
1.14,90t%: -0.72 + 1.06; F = 7.11, P < 0.01) and for stomatal density (10t%: 2.99 + 10.63, 90t:
-24.51+12.41; F =5.90, P = 0.02), but not for vein density (10t: 0.14 + 0.20, 90t: -0.36 *
0.19; F = 3.22, P = 0.07). Further corroborating the significant differences between the 10t
and 90t quantile slopes were the more negative slopes among higher quantiles of the data
for all traits (Supplementary Figure S2), consistent with the results for guard cell volume
among both angiosperms and vascular plants (Figures 1, S1). Thus, across phylogenetic
scales, smaller genomes allow for greater variation in the sizes and packing densities of

cells.
Genome size limits maximum photosynthetic metabolism

A major limitation on photosynthetic capacity is the ability to deliver resources to, and
export products from, the sites of metabolic processing (Enquist et al. 1998; West et al.
1999a; Brown et al. 2004). At the level of an individual cell-the fundamental unit of living
organisms-rates of resource transport are strongly influenced by cell size because the ratio
of cell surface area to cell volume increases exponentially with decreasing cell size. Because
genome size constrains minimum cell size and the maximum packing densities of cells
(Figures 1-2), genome size is predicted to limit the maximum rate of photosynthetic

metabolism across vascular plants.

Previous work has hypothesized that genome size would be linked to maximum
photosynthetic rate but found little support (Knight et al. 2005; Beaulieu et al. 2007). One
major reason for not finding support is that these previous studies attempted to predict
variation in Amass, which accounts for the construction costs of leaves, rather than Aareq,
which is the maximum metabolic rate regardless of the construction costs. As described
above, Agrea would define the maximum amount of carbon assimilated, but how the plant

allocates the total assimilated carbon-to growth, reproduction, defense, more durable
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leaves, etc.-would reflect the numerous factors that influence plant form and other aspects
of plant function (Bazzaz et al. 1987). Thus, Aareq, which is orthogonal to SLA and Amass
(Wright et al. 2004), is predicted to be constrained by cell and genome sizes. Consistent
with this prediction, genome size is a strong predictor of the sizes and densities of stomatal
guard cells and leaf veins across vascular plants (Simonin and Roddy 2018), and we
predicted, therefore, that genome size would, via its effects on the sizes and packing
densities of cells, limit Aareq. It is important to clarify that many factors can influence Agreq
of a given leaf. For example, nutrient deficiency and water stress can reduce Agreqs below its
theoretical maximum-independent of the effects of cell and genome size-by limiting either
the biochemical or stomatal contributions to carbon assimilation. When these other factors
are not limiting, then cell size is predicted to limit Aareq, and, as a result, we predicted that

genome size would define the upper limit (estimated using quantile regression) of Aarea.

Data for area-based maximum photosynthetic rate were compiled from the primary
literature (Supplemental Table 1) and merged with the Kew Plant DNA C-Values Database
(Bennett and Leitch 2012). This dataset included 210 species, of which 138 were
angiosperms, 46 were gymnosperms, and 26 were ferns. We tested whether genome size
limits Aaqrea using quantile regression. Like above, we estimated the upper limit of Agreq as
the 90t quantile, but include slope estimates across quantiles (Figure S3). Standard errors
around these quantile slopes were estimated by bootstrapping 300 replicates. There is no
phylogenetically corrected method for estimating quantile slopes, so we tested whether the
pattern observed across all species was also apparent only among the angiosperms, which
exhibit the largest range in genome size of the three main groups of vascular plants. This
analysis helped to determine whether the effects of genome size on Aarea Were driven solely

by the divergences between the three major clades.

Smaller genomes enabled higher maximum photosynthetic rates across and within major
plant clades (Figure 3). Across all terrestrial vascular plants, the upper limit (the 90th
quantile) of Aarea was defined by genome size (slope =-0.18 + 0.03). A nearly identical
slope of the 90th quantile was apparent only among the angiosperms (-0.19 * 0.05),
suggesting that the effect of genome size on maximum Agare« Wwas not due solely to the

divergences between the three major clades. Across all quantiles there was little difference
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between the quantile slopes estimated for all species versus the angiosperms alone, and
these quantile slopes were mostly within the confidence interval of the regression slope

through the entire dataset (Figure S3).

The scaling relationship between Aare« and genome size follows naturally from the
relationships between genome size and the sizes and densities of veins and stomata.
However, veins and stomata are not the only cells responsible for driving variation in
photosynthetic rates. While the maximum rate of CO: diffusion into the leaf is defined by
the sizes and densities of stomata (Franks and Beerling 2009), once inside the leaf, CO>
must diffuse through the leaf intercellular airspace and into the chloroplasts lining the
interior surfaces of mesophyll cells. Thus, the three-dimensional structure and organization
of the mesophyll is predicted to be a prime target for selection on photosynthetic
metabolism (Tholen et al. 2012; Ren et al. 2019) and to be critical to leaf photosynthetic
function (Earles et al. 2019). The limited evidence on Arabidopsis thaliana mutants
suggests that cell size is critical to this mesophyll architecture (Lehmeier et al. 2017). Based
on the results presented here (Figure 3) and elsewhere (Simonin and Roddy 2018), we
predict that the scaling relationships between genome size and cell size that coordinate
veins and stomata extend also to the sizes of cells and their organization within the leaf

mesophyll.
Genome size may limit the rate of metabolic up- or down-regulation

Although maximum potential rate of leaf gas exchange is an important parameter
determining a species’ physiological capacity, the actual rate of leaf gas exchange at any
given moment is often substantially lower, depending on a variety of physiological and
environmental factors (e.g. light level, atmospheric humidity, leaf temperature, plant water
status). Changes in sun angle, shading by passing clouds, and self-shading by fluttering
leaves all drive changes in incoming solar radiation, and these rapid dynamics have
influenced the evolution of photosynthetic biochemistry (Pearcy 1990). Under naturally
varying conditions, leaf gas exchange fluctuates dramatically and rarely reaches its

maximum rate, with greater variation occurring at the top of the plant canopy. How
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frequently a leaf can reach its maximum gas exchange rate and how well it can optimize its
physiological processes to environmental conditions depend on how rapidly the leaf can

respond to dynamic, fluctuating conditions.

There is an emerging consensus that smaller stomata respond more rapidly to fluctuating
conditions than larger stomata, allowing leaves with smaller stomata to more closely tune
their physiological rates with environmental conditions (Drake et al. 2013; Lawson and
Blatt 2014; Lawson and Vialet-Chabrand 2019). Leaf physiological processes change at
different rates, with changes in stomatal conductance occurring an order of magnitude
more slowly than changes in photosynthesis (McAusland et al. 2016). This difference in
response times between physiological processes (e.g. photosynthetic assimilation rate and
stomatal conductance) can reduce water use efficiency when stomata are closing and
reduce photosynthetic efficiency when stomata are opening (Lawson and Vialet-Chabrand
2019), limiting total photosynthesis by up to 20% (Lawson and Blatt 2014). If stomatal
response times are directly limited by the size of stomata then genome-cellular allometry
may limit not only the maximum rate of metabolism but also how quickly metabolism can
respond to fluctuating environmental conditions. Of the species for which stomatal
response times were measured by McAusland et al. (2016) and Drake et al. (2013), twelve
were included in the Kew Plant DNA C-Values database. Consistent with previous reports,
there was a positive correlation between genome size and guard cell length (R? = 0.36, P <
0.05; Figure 4a), and stomatal response rate exhibited a triangular relationship with
genome size such that smaller genomes exhibited both higher maximum stomatal response
rates but also a greater variation in stomatal response rate. While the available data on
stomatal response rates measured using standard protocols are limited, these preliminary
results suggest that genome size indirectly limits the maximum rate of stomatal opening

and closing via its effects on the sizes and densities of stomata.
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How genome size-metabolism scaling may impact plant biogeography

Polyploidy thought to increase niche breadth

Variation in genome size and structure associated with polyploidization has long been
considered to be an important driver of plant evolution and to be associated with shifts in
environmental tolerances, habitat breadth, trait variation, and interspecific interactions
(Stebbins 1940; Otto and Whitton 2000; Soltis et al. 2003; Soltis et al. 2014; Barker et al.
2016a,b), and niche differentiation between polyploids and their diploid parentals has
been considered a prerequisite for the successful establishment of newly arisen polyploids
(Levin 1975; Fowler & Levin, 1984). Describing the types of polyploids and how they are
has been thoroughly reviewed elsewhere (e.g. Stebbins 1947; Soltis et al. 2015), and we
focus our discussion here on how and why ploidy-via its relationship with genome size-
may or may not correlate with species distributions and habitat breadth. Until they can be

more rigorously tested, these ideas will remain speculative.

Polyploids have been hypothesized to be better adapted to extreme habitats, to have
greater hardiness, and to have greater ecological adaptability (reviewed by Stebbins 1985:
Brochmann et al. 2004). The possible mechanisms for these effects can be roughly grouped
into two categories: one involving the genetic and genic content of the polyploid genome
and one involving the nucleotypic effects of ploidy and genome size. Because polyploid
genomes commonly have additional genome copies, they have higher absolute genic
contents, would enable neofunctionalization of duplicated genes, and typically have higher
heterozygosity, all of which can promote higher tolerances of environmental conditions.
The nucleotypic effects of ploidal variation, though long recognized (Stebbins 1940), are

often confounded with nucleotypic effects of genome size variation.

While ploidy and genome size are commonly assumed to be synonymous, at broad
phylogenetic scales there is generally no relationship between genome size and ploidy
(Leitch and Bennett 2004), reflecting the complex history of both ancient and
contemporary whole genome duplications, particularly among the angiosperms (Jiao et al.

2011; Clark and Donoghue 2018; Landis et al. 2018; Ren et al. 2018). In contrast to
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pteridophytes, which also frequently undergo whole genome duplications (Clark et al.
2016), angiosperm genomes readily rediploidize after polyploidization such that genome
size and ploidy are positively correlated only for narrowly defined phylogenetic groups (i.e.
within genera and families, Figure 5; Leitch and Bennett 2004; Dodsworth et al. 2016). If
leaf and plant structure and function influence ecological tolerances and habitat breadth
(i.e. if plant structure-function is adaptive), then the nucleotypic effects of genome size are

predicted to influence environmental tolerances.
Smaller genomes enable greater phenotypic plasticity

One long-standing hypothesis is that higher ploidy is related to wider habitat breadth
because polyploids can tolerate greater ecological stress. Higher ploidy is associated with
greater heterozygosity (i.e. greater genetic diversity) and, frequently, higher genic content
due to multiple genome copies, both of which are thought to promote plasticity and enable
polyploids to withstand a greater range of environmental conditions than diploids.
However, several studies testing this hypothesis have not observed polyploids to have
greater habitat breadth (e.g. Stebbins 1985; Martin and Husband 2009; Glennon et al. 2014;
Johnson et al. 2014). Furthermore, these tests frequently find that diploids exhibit greater
habitat breadth than polyploids (Petit and Thompson 1999; Hijmans et al. 2007;
Brittingham et al. 2018; Castro et al. 2019). One reason is that traits are not necessarily

more variable in polyploids than in diploids (Stebbins 1985; Wei et al. 2018).

We predict that one reason ploidy is not commonly found to correlate with ecological
breadth is because genome size-rather than ploidy per se-drives variation in the absolute
range of potential cell sizes and, by extension, phenotypic plasticity in rates of resource
transport and metabolism. Thus, the phylogenetic scale-dependence of the relationship
between genome size and ploidy (Figure 5), particularly among the angiosperms, could
lead to confounding patterns depending on the phylogenetic scale at which comparisons
are made. For example, in the analysis of Rice et al. (2019), ploidy was determined relative
to other closely related species, such that within genera or families ploidy and genome size
are positively correlated, suggesting that the bias towards higher abundances of polyploids

at higher latitudes may reflect nucleotypic effects of genome size on cell size and
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metabolism. The compley, fluctuating process of polyploidization and rediploidization,
which can winnow the genome nonrandomly (Wendel 2015), would promote the
proliferation of beneficial elements associated with genome duplications (e.g. more gene
copies that can neofunctionalize) while reducing the size of the genome needed to maintain

high rates of development and metabolism (Table 1).

We posit here that the nucleotypic effects of genome size, regardless of ploidy, may
influence environmental tolerances. Because smaller genomes allow for greater variation
in cell size and metabolism (Figures 1-3), species with smaller genomes may be better able
to fine tune their tissue structure to environmental conditions. This flexibility would allow
species with smaller genomes to better optimize their metabolic rates in order to occupy a
wider range of environmental conditions. Combined with the effects of genome size on
rates of cell division (Van’t Hof and Sparrow 1963; Van’t Hof 1965; Simova and Herben
2012), the greater plasticity in cell size and higher metabolic rates attainable by species

with small genomes may enable them to better colonize new habitats.
Community-scale patterns in genome size across gradients in productivity

If habitats filter species based on rates of metabolism and if there are nucleotypic effects of
genome size on metabolism, then community-scale distributions of genome size may vary
across gradients of productivity. In habitats that can support high rates of productivity and
primary metabolism, species with small genomes are expected to predominate because
they can maintain higher rates of metabolism and more rapidly adjust their physiology to
match environmental conditions. This strategy would be one of maintaining steady state
physiological processes. At a broad scale, this prediction holds because angiosperms,
which have, on average, smaller genomes than other vascular plants are dominant in most
ecosystems, particularly those characterized by high productivity. However, high rates of
metabolism and maintaining steady-state physiology, even among the angiosperms, are not
always favorable. Two such habitats are those characterized by extreme water and nutrient
limitation, such as deserts and epiphytic habitats, and by extreme cold, such as high

latitudes. Higher incidences of polyploids have been commonly reported in higher latitudes
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and among arctic floras (Brochmann et al. 2004; Rice et al. 2019), but arid habitats have

received less attention.

Arid and epiphytic habitats are characterized by low productivity and may support species
with large genomes. In these habitats, high rates of metabolism are not always favored,
which may relax selection for small genomes. One strategy common in arid and epiphytic
habitats is succulence, which is often associated with Crassulacean acid metabolism (CAM)
photosynthesis. The CAM syndrome limits water loss by restricting CO; uptake and water
loss to nighttime when humidity is high and the atmospheric demand for evaporation
relatively low. As a result, CAM species typically rely more heavily on resource storage (e.g.
CO2, H20) or non-steady-state physiology to maintain photosynthetic metabolism and limit
water loss. If metabolism is one agent of selection on genome size, then we would predict
that in arid, resource poor environments, selection for small genomes (associated with
small cells and high metabolic rates) may be weak among CAM species, allowing genomes
of CAM species to expand in size. We tested this hypothesis using the taxonomic
distributions of CAM photosynthesis from Smith and Winter (1996) and genome size data
from the Kew Plant DNA C-Values Database (Bennett and Leitch 2012). For C3, we used the
broad distribution of angiosperms reported in Simonin and Roddy (2018), which are
representative of extant angiosperm diversity. We scored as CAM the narrowest taxonomic
level in the Kew DNA C-Values Database that was listed as containing CAM by Smith and
Winter (1996). For example, if a genus were listed as containing any CAM species, all
species in the genus were assumed to exhibit CAM photosynthesis. This approach was
biased against observing differences in genome size between C3 and CAM species because
it necessarily grouped some C3 species as CAM. To account for phylogenetic history, we
constructed a dated, family-level supertree using the methods described in Simonin and
Roddy (2018), and compared C3 and CAM genome sizes using the phyIANOVA function in
‘phytools’ (Revell 2012). Log-normalized genome sizes were significantly larger among
CAM species than among C3 species (t=8.11, df = 284.03, P < 0.001) even after accounting
for shared phylogenetic history (t = 7.51, P < 0.05; Figure 6), consistent with the prediction
that large genomes may evolve when selection for high rates of metabolism is weak.

However, future analyses that incorporate better determination of the phylogenetic
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distributions of photosynthetic pathways is needed to more rigorously test whether the
evolution of CAM photosynthesis and its associated switch towards non-steady-state

physiological processes is indeed associated with increases in genome size.

Arid, resource poor habitats are not exclusively composed of species with large genomes.
Rather, they may harbor a diversity of strategies associated with divergent niches. In
deserts, physiological strategies can be arrayed along a spectrum from strict non-steady-
state physiology characterized by low rates of metabolism (e.g. obligate CAM) to quasi-
steady-state physiology (e.g. C3 species) characterized by high rates of metabolism (Nobel
and Jordan 1983; Hunt and Nobel 1987). While CAM species can rely on resource storage
during periods of limited water availability, C3 species in deserts tend to function during a
relatively narrow period of time when water is available. Thus, because their carbon gain is
limited to such a short time period, C3 desert plants may have small genomes and cells that
enable high rates of metabolism. In fact, desert shrubs have the highest rates of stem
hydraulic conductance measured in C3 plants (Mencuccini 2003), and even among species
from humid tropical forests, dry forest species have higher hydraulic conductance than wet
forest species (Brenes-Arguedas et al. 2013). Thus, less productive habitats may select not
simply for larger genomes but instead allow for multiple strategies that encompass a
broader range of metabolic rates and, by extension, greater variation in genome size at the

community level.
Smaller genomes increase the probability of invasiveness

The multifaceted effects of genome size on plant structure, function, and ecology (Table 1)
is particularly relevant to the study of invasive species. Identifying the traits that allow an
introduced species to establish, naturalize, and invade into a new environment is a central
aim of invasion biology (Simberloff 2011), with broader implications for plant
biogeographic patterns. Here we distinguish between nonnative species-those that survive
and reproduce in their introduced range-and nonnative invasive species-those that can
disperse, establish, and spread far from their original source of introduction (Richardson et
al. 2011). This distinction is important because prior studies on the traits of ‘invaders’

focus on these different subsets of species, which have slightly different, but overlapping,
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sets of traits that determine whether they can survive and reproduce versus invade non-

native regions (Kleunen et al. 2015).

Early theory on the distinguishing traits of invasive plants postulated that “ideal weeds”
should grow rapidly, produce seed continuously and in high number throughout the
growing season, be tolerant to a wide range of environmental conditions, exhibit high trait
plasticity, and be able to reproduce vegetatively from fragments (Baker 1974). On average,
these predictions have been upheld, with nonnative invasive plants tending to exhibit traits
consistent with high fitness (e.g. number of flowers, fruits, or seed or germination rates),
high relative growth rates, high dispersal abilities (e.g. smaller seeds), and more efficient
carbon-capture strategies (e.g. high specific leaf area), relative to co-occurring native
species (Leishman et al. 2007; Kleunen et al. 2010; Ordonez et al. 2010; Kuester et al. 2014)
or naturalized but not invasive nonnative species (Rejmanek and Richardson 1996;
Gallagher et al. 2014). Combined, these traits confer a growth advantage, such that plants
with small seeds can disperse further distances, have shorter generation times, and higher
relative growth rates, owing to the greater rates of cell division and higher metabolic rates
provided by smaller genomes (Pandit et al. 2014; Suda et al. 2015). Indeed, even within
species, populations with smaller genomes are more likely to successfully invade new

habitats (Pysek et al. 2018).

Because many of the traits linked with invasiveness can be influenced by both ploidy and
genome size, both have been implicated as underlying features driving invasion (Pandit et
al. 2014; Suda et al. 2015). Because polyploids are thought to be better able to tolerate
environmental fluctuations and to be better able to adapt to new environments, polyploids
tend to be overrepresented among nonnative invasives compared to native angiosperms
(Rejmanek and Richardson 1996; Prentis et al. 2008; Beest et al. 2011; Pandit et al. 2014).
Similarly, nonnative invasive species tend to have smaller genomes than non-invasive
plants (both native and non-native), which is thought to be due to the diverse effects of
genome size on metabolism, rates of development and growth, and seed size (Rejmanek
and Richardson 1996; Bennett et al. 1998; KubeSova et al. 2010; Pandit et al. 2014).
However, the complex, scale-dependent relationship between ploidy and genome size

(Figure 5) complicates a clear understanding of the effects of ploidy versus genome size on
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invasiveness (Rejmanek and Richardson 1996; Pandit et al. 2014). Because angiosperms,
which predominate among nonnative invasives, readily rediploidize and downsize their
genomes subsequent to whole genome duplications (Leitch and Bennett 2004), assessing
the relative effects of ploidy versus genome size on invasiveness can be difficult. For
example, the likelihood of being invasive increases with chromosome number and ploidy
but decreases with genome size (Rejmanek and Richardson 1996; Pandit et al. 2014). The
multiple paths to polyploidization and the selective retention of only certain parts of the
genome during subsequent genome downsizing (Wendel 2015) could explain how both

higher ploidy and smaller genomes are correlated with invasiveness.

A possible role for metabolism in genome size evolution

As the major source of energy and matter for the biosphere, photosynthetic metabolism
represents a first-order control over ecological processes globally. This fundamental link
between metabolic and ecological processes has driven the development of the Metabolic
Theory of Ecology (MTE) that provides a mechanistic framework for predicting variation in
organismal life history attributes, population dynamics, and larger scale ecosystem
processes from organismal-level traits related to resource supply for metabolism (West et
al. 1997; Enquist et al. 1998; West et al. 1999a; West et al. 1999b; West et al. 2002; Price et
al. 2010). While appealing and seemingly endowed with incredible explanatory power, a
number of criticisms of the theory and its assumptions have been consistently raised
(Koztowski and Konarzewski 2004; Koztowski and Konarzewski 2005; Price et al. 2012).
One primary assumption is that the sizes of terminal units in vascular networks (e.g.
capillaries in circulatory systems or terminal veins in plant leaves) are invariant. The
problems with this assumption have been thoroughly detailed for animal circulatory
systems with the allometry of genome size and cell size emerging as a critical factor
influencing how body size scales with metabolism (Koztowski et al. 2003). Furthermore,
the allometry of genome size and cell size (Figure 1) and the effects of genome size on
maximum metabolic rate (Figure 3) presented here suggest that this assumption is violated
in plants, as well. Modifications to the original model that relax some of its assumptions
have improved model predictions for plants, particularly by allowing for variation in the

packing of xylem conduits (Savage et al. 2010). However, the nucleotypic effects of genome
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size have yet to be incorporated, although they may further improve models and help to
clarify the constraints and major innovations driving botanical form, function, and

diversity.

The effects of genome size on cell sizes and packing densities across vascular plants
(Figures 1,2; Beaulieu et al. 2008; Simonin and Roddy 2018) and the importance of cell size
in metabolism (Savage et al. 2010) together suggest that there may be a role for
metabolism in the evolution of genome size. While it is appealing to expect that genome
size may predict metabolic rate, the effects of genome size are likely more nuanced.
Because genome size defines only the lower limit of cell size, genome size may limit only
the maximum possible rate of energy and matter exchange (Figure 3), rather than being a
clear predictor of metabolism more generally. This suggests that evolutionary increases in
metabolic capacity may be tied to the evolution of genome size, such as has been described
in birds (Wright et al. 2014). How selection on genome size per se may be translated into
alterations of genome sequence structure is unclear but would be an important step
towards understanding the drivers of genome size variation. Independent evidence for the
role of metabolism in shaping genome-cellular allometry can be evaluated by comparing
structures with similar developmental origins such as flowers and leaves (Olson and
Pittermann 2019). Flowers, unlike leaves, need not support high rates of energy and
matter exchange for use in photosynthetic metabolism and generally have larger cells and
lower cell packing densities than their conspecific leaf counterparts (Roddy et al. 2013,
2019; Zhang et al. 2018; Roddy in press). Thus, under different selection regimes due to
differences in metabolism, traits can diverge even within the same organism (Olson and
Arroyo-Santos 2015). Furthermore, defining the biophysical limits of phenotypic variation
is central to understanding the diversity of plant form and function, and our analyses

suggest that genome size defines one bound to the range of possible cell sizes.
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Table 1. Brief summary of traits shown previously to correlate with genome size.

Sizes

Reference

Pollen volume

Bennett 1972; Knight et al. 2010

Cell mass

Martin 1966

Epidermal cell size

Beaulieu et al. 2008; Knight and Beaulieu
2008

Nuclear volume

Van’t Hof and Sparrow 1963; Baetcke et al.
1967

Nuclear dry mass

Bennett et al. 1983; White and Rees 1987

Seed mass

Grotkopp et al. 2004; Beaulieu et al. 2007

Xylem vessel diameter

Maherali et al. 2009; Hao et al. 2013; De
Baerdemaeker et al. 2018

Rates

Cell division rate, meiosis, mitosis

Van’t Hof and Sparrow 1963; Van’t Hof 1965;
Bennett 1971

Minimum generation time

Bennett 1972

Leaf expansion rate

Grime et al. 1985

Phenology

Grime and Mowforth 1982

Frost tolerance

MacGillivray and Grime 1995
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Figure legends

Figure 1. Genome size determines the minimum size of cells, and smaller genomes enable
greater variation in final cell size. Data for meristematic cells (blue triangles) were taken
from Simova and Herben (2012), and the solid black line is the regression through these
points. Data for mature stomatal guard cells of extant plants (circles and squares) for ferns
(dark green), gymnosperms (pink), and angiosperms (light blue) were taken from Simonin
and Roddy (2018), and data for mosses and hornworts (light green) were taken from Field
et al. (2015) and Renzaglia et al. (2017). The two dashed lines represent the 10th (lower)
and 90th (upper) quantile regressions through mature guard cell data for vascular plants
with their respective confidence intervals shaded. The dotted line represents the 90t

quantile through all guard cell data (vascular and non-vascular plants).

Figure 2. Variation in the sizes and packing densities of stomatal guard cells and leaf veins
with variation in genome size among Rhododendron sect. Schistanthe species (circles) and
polyploid Rhododendron cultivars (triangles). Lines represent regressions through the 90th
(upper) and 10th (lower) quantiles. These quantile regression were significantly different
for guard cell length and stomatal density (dashed) but not for vein density (dotted).
Genome size limits the lower limit of cell size and the upper limit of cell packing densities,

and there is greater variation in anatomical traits among species with smaller genomes.

Figure 3. Genome size limits the maximum rate of photosynthesis (Aareq) across C3
terrestrial plants. (a) Untransformed relationship and (b) log-transformed relationship.
Dashed black lines are regressions through the upper 90th quantile of all data with grey
shading representing the 95% confidence interval. Blue dashed lines and blue shading
represent the 90t quantile regression and its 95% confidence interval for angiosperms
alone, showing that the same slope defines the upper limit among only the angiosperms as

across all three major clades of vascular plants.
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Figure 4. Genome size may limit the maximum rate of stomatal response (i.e. how fast
stomata can open or close). Data taken from McAusland et al. (2016) and Kew Plant DNA C-

values Database.

Figure 5. Relationship between genome size and ploidy for angiosperms. Each line
represents the linear regression within a genus. At narrow taxonomic scales, ploidy and
genome size are correlated, but at broad taxonomic scales (i.e. among all angiosperms),

there is no relationship between genome size and ploidy due to rediploidization.

Figure 6. Distributions of genome size for C3 and CAM species show CAM lineages have
significantly larger genomes than C3 lineages. Lineages identified as CAM likely include
many C3 species; see text for details on identification of photosynthetic pathways. There
was a significant difference in log-normalized genome size for the two photosynthetic

pathways, even after accounting for shared phylogenetic history.

Figure S1. Quantile regression slopes and bootstrapped standard errors for of cell volume
and genome size data plotted in Figure 1 for vascular plants. Quantiles were calculated for
every 5% of the data (5% to 95%) for all vascular plants (ferns, gymnosperms,
angiosperms; black points) and for angiosperms only (blue points). Points are jittered
horizontally so they do not plot on top of each other. The OLS slope through the entire
dataset (solid red line) and its confidence interval (dotted red lines) are included for

comparison. Lower quantiles of the data have consistently steeper slopes.

Figure S2. Quantile regression slopes and bootstrapped confidence intervals for (a) guard
cell length, (b) stomatal density, and (c) vein density of Rhododendron subsect. Schistanthe
species and Rhododendron cultivars. Original data plotted in Figure 2. Quantiles were
calculated for every 5% of the data (5% to 95%), with standard errors estimated by
bootstrapping 300 replicated. The OLS slope (solid red line) and its confidence interval
(dotted red lines) are included for comparison. For all three traits, lower quantiles of the

data have consistently steeper slopes.
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Figure S3. Quantile regression slopes and bootstrapped standard errors for Aarea and
genome size data plotted in Figure 3. Quantiles were calculated for every 5% of the data
(5% to 95%) for all vascular plants (ferns, gymnosperms, angiosperms; black points) and
for angiosperms only (blue points). Points are jittered horizontally so they do not plot on
top of each other. The OLS slope through the entire dataset (solid red line) and its
confidence interval (dotted red lines) are included for comparison. Lower quantiles of the

data have consistently steeper slopes.
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