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25 Abstract

26 Maintaining high rates of photosynthesis in leaves requires efficient movement of 

27 CO2 from the atmosphere to the mesophyll cells inside the leaf where CO2 is 

28 converted into sugar. CO2 diffusion inside the leaf depends directly on the 

29 structure of the mesophyll cells and their surrounding airspace, which have been 

30 difficult to characterize because of their inherently three-dimensional 

31 organization. Yet, faster CO2 diffusion inside the leaf was likely critical in 

32 elevating rates of photosynthesis that occurred among angiosperm lineages. 

33 Here we characterize the three-dimensional surface area of the leaf mesophyll 

34 across vascular plants. We show that genome size determines the sizes and 

35 packing densities of cells in all leaf tissues and that smaller cells enable more 

36 mesophyll surface area to be packed into the leaf volume, facilitating higher CO2 

37 diffusion. Measurements and modelling revealed that the spongy mesophyll layer 

38 better facilitates gaseous phase diffusion while the palisade mesophyll layer 

39 better facilitates liquid phase diffusion. Our results demonstrate that genome 

40 downsizing among the angiosperms was critical to restructuring the entire 

41 pathway of CO2 diffusion into and through the leaf, maintaining high rates of CO2 

42 supply to the leaf mesophyll despite declining atmospheric CO2 levels during the 

43 Cretaceous.

44
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45 Introduction

46 The primary limiting enzyme in photosynthesis, rubisco, functions poorly under 

47 low CO2 concentrations. For leaves to sustain high rates of photosynthesis, they 

48 must maintain high rates of CO2 supply from the atmosphere to the sites of 

49 carboxylation in the leaf mesophyll. The importance of maintaining efficient CO2 

50 diffusion into the leaf is reflected in the evolutionary history of leaf anatomy; leaf 

51 surface conductance has increased during periods of declining atmospheric CO2 

52 concentration [1], primarily due to increasing the density and reducing the sizes 

53 of stomatal guard cells that form the pores in the epidermis through which CO2 

54 diffuses [2–5]. However, allowing CO2 to diffuse into the leaf exposes the wet 

55 internal leaf surfaces to a dry atmosphere. Therefore, maintaining a high rate of 

56 CO2 uptake necessarily requires high fluxes of water to be delivered throughout 

57 the leaf to replace water lost during transpiration (Supplementary Fig. S1), which 

58 is accomplished by a dense network of leaf veins [6,7]. Coordinated increases in 

59 the densities of leaf veins and stomata, and reductions in stomatal guard cell 

60 size, enabled the elevated photosynthetic rates that occurred only among 

61 angiosperm lineages despite declining atmospheric CO2 concentration during the 

62 Cretaceous [1,5,8–13].

63 For a given leaf volume, the number of cells that can be packed into a space and 

64 the distance between different cell types is fundamentally limited by the size of 

65 these cells [12,14]. Because cells occupy physical space and increasing 

66 investment in any one cell type will displace other cell types [15,16], reducing cell 

67 size is hypothesized to be the primary way of allowing more cell types and more 

68 cell surface area of a given type to be packed into a given leaf volume. Thus, 

69 factors that limit the minimum size of cells represent fundamental constraints on 

70 the cellular organization of leaves. While numerous environmental, physiological, 

71 and genetic factors can influence the final sizes of somatic cells, the minimum 

72 size of a cell is limited by the volume of its nucleus, which is commonly measured 

73 as genome size [17–20]. Experimental tests of the effects of genome size on cell 

74 size have shown that doubling genome size by arresting mitosis results in larger 
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75 and less abundant stomata and mesophyll cells [20–22]. Reductions in cell size 

76 and increases in cell packing densities that occurred for veins and stomata only 

77 among angiosperm lineages, therefore, required reductions in genome size [13]. 

78 While reducing cell size and increasing cell packing density elevate maximum 

79 stomatal conductance to CO2 [4,13], realizing the potential benefits of elevated 

80 stomatal conductance to CO2 diffusion would require modifications to the internal 

81 leaf structure that most limits CO2 transport: the absorptive mesophyll cell 

82 surface area exposed to the intercellular airspace.

83 Diffusion of CO2 inside the leaf is a major limitation to photosynthesis [23,24] and 

84 has been considered to be a prime target for selection to increase photosynthetic 

85 capacity [25]. Unlike other tissues, the mesophyll is defined by its intercellular 

86 airspace as much as by the cells themselves, both of which determine the overall 

87 CO2 conductance of the tissue. The conductance of the intercellular airspace 

88 (gias) is thought to be much higher than the liquid phase conductance (gliq) 

89 through the cell walls, cell membranes, and into the chloroplast stroma [26,27] 

90 because CO2 diffusivity is approximately 10,000 times higher in air than in water. 

91 These two conductances are arranged roughly in series, with gliq acting as a 

92 greater limitation to CO2 uptake. While multiple membrane [24] and intracellular 

93 factors such as carbonic anhydrase activity [28] and chloroplast positioning [29] 

94 can be actively controlled to rapidly change gliq over short timescales, once a leaf 

95 is fully expanded, the structural determinants of gias and gliq, which include the 

96 sizes and configurations of cells and airspace in the mesophyll, are thought to be 

97 relatively fixed [24,25,30]. Of the various structural determinants of gliq [30], the 

98 three-dimensional (3D) surface area of the mesophyll exposed to the intercellular 

99 airspace (SAmes) is thought to be the most important because it defines the 

100 maximum amount of chloroplast surface area that can line the cell walls [26,27]. 

101 Because variation in leaf and mesophyll thicknesses influences SAmes per leaf 

102 area [31], expressing SAmes instead by tissue volume (Vmes, i.e. the sum of the 

103 mesophyll cell volume, Vcell, and the airspace volume, Vair) accounts for variation 

104 in leaf construction [32,33]. The surface area of the mesophyll per tissue volume 

105 (SAmes/Vmes; Supplementary Fig. S2), therefore, is the primary tissue-level 
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106 structural trait limiting CO2 diffusion from the intercellular airspace into the 

107 hydrated cell walls of the mesophyll.

108 Because smaller cells have a higher surface area per volume than larger cells, 

109 reducing cell size by genome downsizing would allow for more surface area per 

110 cell volume (SAcell/Vcell) and per total tissue volume (SAmes/Vmes) that results in an 

111 increase in available diffusive area and the potential for higher rates of CO2 

112 supply to the chloroplasts lining the cell walls. We hypothesized that the cell sizes 

113 and packing densities of all cell types in a leaf are fundamentally constrained by 

114 genome size [4,5,12,13,19–21,34]. Specifically, we predicted that genome size 

115 limits minimum cell size such that smaller genomes allow for a larger range of 

116 final cell size in tissues throughout the leaf. Similarly, because more cells can be 

117 packed into a given space if these cells are smaller, we predicted that smaller 

118 genomes would also allow for higher cell packing densities and greater variation 

119 in cell packing densities. Thus, we predicted that the simple requirement that a 

120 cell contain its genome would affect cell sizes and cell packing densities of all cell 

121 types in the leaf, thereby influencing tissue-level structure and function. In this 

122 way, genome downsizing was predicted to allow for smaller cells and higher cell 

123 packing densities not only of veins and stomata but also in the mesophyll. The 

124 elevated SAmes/Vmes enabled by smaller mesophyll cells is predicted to have 

125 been an essential innovation among early angiosperms that enabled their 

126 elevated rates of CO2 supply to the photosynthesizing mesophyll cells despite 

127 declining atmospheric CO2 concentrations during the Cretaceous [1,5,8–

128 11,13,20,35,36].

129 We tested these hypotheses using high resolution, 3D X-ray microcomputed 

130 tomography (microCT) to characterize cell sizes, cell packing densities, and the 

131 exposed 3D surface area of the mesophyll tissue of leaves spanning the extant 

132 diversity of vascular plants (Supplementary Table S1). To test how these 

133 anatomical innovations in the leaf mesophyll influence CO2 diffusion, we 

134 modelled gias and gliq as a function of cell size and porosity. The mesophyll tissue 

135 of most leaves is composed of two distinct layers, the palisade and the spongy 
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136 mesophyll, which are thought to be optimized for different functions [37,38]. We 

137 analysed these two layers separately to determine how differences in their 3D 

138 tissue structure (Supplementary Figs. S1 and S2) may drive differences in gias 

139 and gliq.

140 Results and Discussion

141 Genome downsizing enables re-organization of the leaf 
142 mesophyll

143 For 86 species spanning the extant diversity of vascular plants (Supplementary 

144 Table S1), we quantified from microCT images the sizes of spongy and palisade 

145 mesophyll cells and stomatal guard cells, as well as the packing densities per 

146 unit leaf area of veins, stomata, and palisade mesophyll cells. We first tested 

147 whether genome size limited the volumes and packing densities of stomatal 

148 guard cells and palisade mesophyll cells by comparing them to published 

149 measurements of meristematic cell volume as a function of genome size (Fig. 1) 

150 [19]. The shapes of palisade mesophyll cells and stomatal guard cells can be 

151 approximated as capsules, such that cell volumes can be calculated from linear 

152 dimensions of length or diameter (see Methods) [20,39]. Mature plant cells are 

153 always larger than their meristematic precursors, often considerably larger (Fig. 

154 1a,b) [19–21,34]. By reducing the size of meristematic cells, genome downsizing 

155 allows for smaller minimum cell size and also a greater range in mature cell size 

156 of both stomatal guard cells and palisade mesophyll cells (Fig. 1a), consistent 

157 with prior results [13,20]. These effects of genome size on cell size were also 

158 reflected in the packing densities of guard cells and palisade mesophyll cells (Fig. 

159 1c,d). Smaller genomes raised the upper limit on maximum packing densities of 

160 meristematic cells, allowing for higher packing densities of both guard cells 

161 (Dstom) and palisade mesophyll cells (Dpalisade), consistent with prior results for 

162 veins, stomata [13,22], and mesophyll cells [21,34]. Not only did smaller 

163 genomes result in smaller cells and higher cell packing densities, but smaller 

Page 7 of 27

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



164 genomes also allowed for greater variation in cell sizes and cell packing densities 

165 of stomata, mesophyll, and veins (Fig. 1a,c and Supplementary Fig. S3) 

166 [13,20,40]. The shapes of stomatal guard cells and palisade mesophyll cells are 

167 regular enough to allow cell volume and surface area to be predicted from linear 

168 dimensions, but the shapes of spongy mesophyll cells are irregular and highly 

169 lobed. As a consequence, spongy mesophyll cell volume cannot be easily 

170 calculated from a single linear dimension. To extend these analyses to the 

171 spongy mesophyll we tested whether linear cell dimensions were predicted by 

172 genome size, as has been shown for guard cell length [40]. Genome size was a 

173 strong predictor of cell diameters of stomatal guard cells, palisade mesophyll 

174 cells, and spongy mesophyll cell lobes (Supplementary Table S2 and Fig. S3). 

175 We found no relationship between genome size and mesophyll porosity 

176 (Supplementary Figs. S3 and S4), which is the volumetric airspace fraction of the 

177 leaf, likely because many combinations of cell sizes and packing densities can 

178 result in the same porosity [41]. Despite the role of porosity in facilitating diffusion 

179 in the intercellular airspace [42], traits related to cellular organization within the 

180 mesophyll are likely to have a greater influence than porosity on the diffusive 

181 conductance of CO2 through the intercellular airspace and into the photosynthetic 

182 mesophyll cells [33].
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183

184 Fig. 1. (a,b) Cell volumes, (c,d) cell packing densities, and (e,f) total mesophyll 

185 surface area per tissue volume (SAmes/Vmes) in leaves scale with 2C genome size 

186 across vascular plants (angiosperms, blue; gymnosperms, orange; ferns and fern 

187 allies, grey). Minimum cell volumes (modelled from cell diameters) and maximum 

188 cell packing densities are limited by the size of meristematic cells (solid lines). 

189 Measurements of meristematic cells as a function of genome size in log-log 

190 space (b, solid line; from [19]) are reproduced in arithmetic space (a). Theoretical 

191 maximum packing density of meristematic cells (c,d) was calculated from 

192 measured cell volumes [19] as the reciprocal of meristematic cell cross-sectional 

193 area (see Methods) assuming spherically shaped cells.
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194 Because cell surfaces can be in contact with other cells and be unavailable for 

195 CO2 absorption, we tested whether the effect of genome size extends beyond 

196 limiting the sizes and packing densities of cells to influencing the surface area of 

197 the mesophyll tissue exposed to the intercellular airspace (SAmes). Genome size 

198 was a strong predictor of the total surface area per tissue volume of the 

199 mesophyll cells exposed to the intercellular airspace, SAmes/Vmes (Fig. 1e,f and 

200 Supplementary Table S2), which is the anatomically fixed component of the leaf 

201 mesophyll that influences CO2 diffusion. Our results suggest that except for a few 

202 ferns with small genomes, only angiosperms have been able to build leaves with 

203 high SAmes/Vmes (Fig. 2a). To explore this prediction beyond our dataset, we 

204 combined new measurements of SAmes/Vmes on the species for which we had 

205 microCT images with data extracted from the literature for 85 additional species 

206 (Fig. 2a and Supplementary Table S3). The distribution of SAmes/Vmes among 

207 clades in our dataset was consistent with the data extracted from the literature 

208 and showed that the highest and most variable SAmes/Vmes occur only among 

209 monocots and eudicots, suggesting that anatomical innovations among the 

210 angiosperms are responsible for the heightened SAmes/Vmes necessary to support 

211 high rates of photosynthesis. To test the prediction that genome downsizing 

212 enabled high SAmes/Vmes (Fig. 1e,f) via impacts on cell size and cell packing 

213 density, we tested whether SAmes/Vmes was coordinated with the sizes and 

214 packing densities of cells and tissues throughout the leaf. The packing densities 

215 of stomata, veins, and palisade mesophyll cells were all strongly and positively 

216 related to SAmes/Vmes (Fig. 2b-d), while the diameters of stomatal guard cells and 

217 of spongy and palisade mesophyll cells were all strongly and negatively related to 

218 SAmes/Vmes (Fig. 2e-g). This whole-leaf trade-off between cell size and cell 

219 packing density (Fig. 1, S4) was apparent in multidimensional space, in which the 

220 first axis was aligned with genome size and explained the majority of the variation 

221 whether or not phylogenetic covariation was included (Supplementary Fig. S5). 

222 While small genomes, small cells, and high SAmes/Vmes occur predominantly 

223 among the angiosperms, some xerophytic ferns, as well as the lycophyte 

224 Selaginella kraussiana, also share these traits. The repeated co-occurrence of 
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225 these traits among different clades and the statistically significant phylogenetic 

226 regressions between genome size, cell sizes and packing densities, and 

227 SAmes/Vmes (Supplementary Table S2 and Fig. S5) further corroborate the role of 

228 genome size in determining the sizes and arrangement of cells and tissues 

229 throughout the leaf that enable high fluxes of CO2 and H2O across the leaf 

230 epidermis.

231

232 Fig. 2. Mesophyll surface area per mesophyll volume (SAmes/Vmes) scales with 

233 cell size, cell packing densities, and 2C genome size across vascular plants. (a) 

234 Distribution of SAmes/Vmes across 86 species of terrestrial vascular plants 

235 (coloured points) compared to values computed from the literature (shaded grey 

236 dots, 81 angiosperms and four gymnosperms; see Supplemental Methods). 

237 Packing densities of (b) stomata on the leaf surface (Dstom), (c) veins (DV), and (d) 

238 palisade mesophyll cells (Dpalisade) all scaled positively with SAmes/Vmes while the 

239 diameters of (e) stomatal guard cells (dGC), (f) spongy mesophyll cells (dspongy), 

240 and (g) palisade mesophyll cells (dpalisade) all scaled negatively with SAmes/Vmes. 

241 Solid lines represent standardized major axes. All bivariate relationships 

242 remained highly significant after accounting for shared evolutionary history 

243 (Supplementary Table S2).
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244 Increasing liquid phase conductance optimizes the 
245 entire diffusive pathway

246 While light is intercepted primarily by the upper palisade mesophyll layer [37], 

247 CO2 enters the leaf on the lower spongy mesophyll layer for most terrestrial 

248 plants, creating opposing gradients of two of the primary reactants in 

249 photosynthesis. Within a leaf, the spongy and palisade layers have divergent cell 

250 shapes and organizations that are thought to accommodate these opposing 

251 gradients by facilitating CO2 diffusion in the gaseous and liquid phases. Both cell 

252 size and porosity can affect SAmes/Vmes and the diffusive conductances (gias and 

253 gliq) that are considered targets of selection to increase photosynthesis 

254 [20,31,38,41,42]. To determine whether cell size or porosity has a greater effect 

255 on SAmes/Vmes and on modelled gias, and gliq, we measured cell diameter, 

256 porosity, and SAmes/Vmes for the spongy and palisade layers separately for 47 

257 species in our dataset, encompassing all major lineages of vascular plants.

258 The scaling of cell diameter with SAmes/Vmes (Fig. 2e-g) suggested that cell 

259 diameter would have a greater impact than porosity on SAmes/Vmes. Smaller cells 

260 have a higher ratio of surface area to volume, an effect that could propagate up 

261 to influencing SAmes/Vmes of the entire tissue. In contrast, we predicted that 

262 porosity would not have a consistent impact on SAmes/Vmes because at very low 

263 porosities there is very little cell surface area exposed to the airspace while at 

264 very high porosities there is very little cell surface area relative to a large volume 

265 of tissue. Consistent with these predictions, decreasing cell size led to higher 

266 SAmes/Vmes across species and mesophyll layers, and variation in porosity had no 

267 consistent effect on SAmes/Vmes (Fig. 3). Rather, both low (<0.1) and high (>0.6) 

268 porosities led to lower SAmes/Vmes. This conditional effect of porosity on 

269 SAmes/Vmes suggests that there is a relatively narrow range of porosities that 

270 allows for simultaneous optimization of gliq and gias in C3 plants. However, the 

271 strong and consistent effect of reducing cell size on increasing SAmes/Vmes among 

272 species and among mesophyll tissues within a leaf further implicates cell size 
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273 and, by extension, genome size in controlling cell- and tissue-level traits 

274 responsible for increasing the CO2 conductance of the mesophyll.

275

276

277 Fig. 3. The effects of cell size and porosity on 3D mesophyll surface per 

278 mesophyll volume (SAmes/Vmes). (a) Smaller cells in both the palisade (triangles) 

279 and spongy (squares) mesophyll are associated with higher SAmes/Vmes. The 

280 solid line represents the theoretical maximum SAmes/Vmes calculated from the 

281 densest packing of cylinders in a rectangular volume (porosity of approximately 

282 0.09 m3 m-3). (b) SAmes/Vmes was highest at intermediate porosity because the 

283 highest possible porosity can occur only when there are no cells and the lowest 

284 porosity occurs when all cells are in complete contact and there is no airspace. 

285 Points are coloured by plant clade, according to Fig. 2.

286

287 To test how these anatomical traits affect gias and gliq, we compared modelled 

288 estimates of gias and gliq per unit leaf volume [24,33], in which cell size and 

289 porosity were varied independently, to measurements of cell diameter and 

290 mesophyll porosity taken from microCT images for the two mesophyll layers. 

291 Although this modelling did not incorporate adjustments that can alter gliq over 

292 short timescales, it nonetheless shows how variation in anatomy, which is 

293 relatively fixed once a leaf has expanded [24], can influence gias and gliq. Based 

294 on simple packing of capsules, we predicted that increasing volumetric gliq would 
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295 occur primarily by decreasing cell size, while increasing volumetric gias would 

296 occur primarily by increasing porosity. We also predicted that the palisade layer, 

297 whose densely packed columnar cells channel light deep into the leaf much as a 

298 fibre optic cable directs light [37], would be optimized for gliq rather than for gias in 

299 order to deliver CO2 efficiently to the places where light is abundant. In contrast, 

300 we predicted that the spongy mesophyll layer would be optimized for high gias in 

301 order to promote gaseous CO2 diffusion into the upper palisade layer [23] while 

302 also scattering and absorbing light [43].

303 Our analysis confirmed that cell size and porosity have different effects on 

304 modelled volumetric estimates of gliq and gias (background shading in Fig. 4). 

305 While increasing porosity leads to higher gias, it has a relatively small effect on gliq 

306 for a given cell size. In contrast, increasing gliq predominantly occurs by reducing 

307 cell size, which has only a moderate effect on gias and only when porosity is 

308 relatively high. Additionally, for a given cell size, increasing porosity reduces gliq. 

309 Thus, reductions in cell size increase both gliq and gias, but increasing porosity 

310 has opposite effects on gliq and gias. As predicted, our measurements showed 

311 that the palisade layer had lower porosities that are associated with higher gliq, 

312 while the spongy layer had higher porosities that are associated with higher gias 

313 (Fig. 4 and Supplementary Figs. S12-S14). This specialization of the two layers 

314 reflects the need to maintain a high gias in the spongy mesophyll where CO2 is 

315 abundant to promote its diffusion into the palisade and the need to maintain high 

316 gliq in the palisade mesophyll where light is abundant to promote liquid-phase 

317 diffusion of CO2 into the cell walls (Supplementary Figs. S6 and S8). Many 

318 species, particularly angiosperms, have palisade mesophyll characterized by 

319 small, highly packed cells that allow volumetric gliq to be higher than gias of this 

320 tissue (Figs. 1, 4 and Supplementary Fig. S4). This pattern suggests that CO2 

321 fixation in the palisade may be limited by the gaseous supply of CO2 and not by 

322 its liquid-phase diffusion into cells, consistent with prior reports for 

323 hypostomatous leaves that the majority of CO2 fixation occurs not at the top of 

324 the leaf where CO2 is unlikely to penetrate but deeper in the palisade [43]. The 
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325 structure and organization of palisade and spongy layers of the mesophyll 

326 therefore reflect the relative strengths of the opposing gradients of CO2 and light.

327

328

329 Fig. 4. Distribution of observed cell sizes and porosities for (a,b) palisade and 

330 (c,d) spongy mesophyll relative to modelled estimates of (a,c) airspace 

331 conductance (gias) and (b,d) liquid phase conductance (gliq) to CO2. Measured 

332 values of cell size and porosity (points) are plotted over theoretical conductances 

333 (coloured shading) estimated by simulating leaves of varying cell diameter and 

334 porosity (see Supplementary Methods). Points are coloured by plant clade, 

335 according to Fig. 2.
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336 Concluding remarks

337 Our results suggest that the heightened rates of leaf-level gas exchange that 

338 occurred predominantly among angiosperms are coordinated with changes not 

339 only in veins and stomata [1,5,8,9,12,13] but also in the three-dimensional 

340 organization of the leaf mesophyll tissues that limit the exchange of CO2 and 

341 water. Although coordinating changes in veins, stomata, and the mesophyll 

342 undoubtedly involves multiple molecular developmental programs, the scaling of 

343 genome size and cell size emerged as the predominant factor driving the 

344 increase in SAmes/Vmes and gliq that together enabled higher rates of CO2 

345 movement into the photosynthetic mesophyll cells. While the size and abundance 

346 of chloroplasts in the leaf will undoubtedly affect photosynthetic rates, the 

347 maximum chloroplast surface area available for CO2 diffusion is limited by the 

348 surface area of the mesophyll. Because photosynthetic metabolism is the primary 

349 source of energy and matter for the biosphere, leaf-level processes are directly 

350 linked to ecological processes globally [3]. Yet, theory linking ecosystem 

351 processes to organismal level metabolism has focused predominantly on the 

352 structure of vascular supply networks [44,45]. Our results suggest that the scaling 

353 of photosynthetic metabolism with resource supply networks extends beyond the 

354 vascular system and into the photosynthetic cells of the leaf mesophyll where 

355 energy and matter are exchanged. Moreover, these results highlight the critical 

356 role of cell size in defining maximum rates of leaf gas exchange [20,46], in 

357 contrast to assumptions in current theory that terminal metabolic units are size-

358 invariant [47,48]. Incorporating the structure of the mesophyll tissue into theory 

359 linking leaf-level and ecosystem-level processes could improve model predictions 

360 of photosynthesis. Furthermore, the physiological benefits of small cells may be 

361 one reason why the angiosperms so readily undergo genome size reductions 

362 subsequent to genome duplications [13,20,49,50]. While whole genome 

363 duplications may drive ecological and evolutionary innovation [51–53], selection 

364 for increased photosynthetic capacity subsequent to genome duplication may 
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365 drive reductions in both cell size and genome size to optimize carbon fixation, 

366 reiterating a role for metabolism in genome size evolution [5,13,20].

367

368 Materials and Methods

369 Plant material

370 Mature, fully expanded leaves from healthy, well-watered plants were collected 

371 from greenhouses, botanical gardens, fields, and other outdoor growing locations 

372 to represent a broad phylogenetic diversity of C3 vascular plants (Supplementary 

373 Table S1). We chose representative angiosperms from the ANA grade, 

374 magnoliids, monocots, basal eudicots, eurosids, and euasterids. We also 

375 sampled the lycophyte Selaginella kraussiana, 17 species of ferns from 12 

376 families, and major groups of gymnosperms, including gnetophytes, cycads, and 

377 conifers. Leaves were cut at the base of the petiole or of short stem segment, 

378 immediately put in a plastic bag with the cut end wrapped in paper towels, and 

379 scanned within 36 h of excision.

380 MicroCT data acquisition

381 MicroCT scanning was carried out at the Advanced Light Source (ALS; beamline 

382 8.3.2; Lawrence Berkeley National Lab, Berkeley, CA, USA), the Swiss Light 

383 Source (SLS; TOMCAT Tomography beamline; Paul Scherrer Institute, Villigen, 

384 Switzerland), and the Advanced Photon Source (APS; beamline 2-BM-A,B; 

385 Argonne National Laboratory, Lemont, IL, USA). Samples were prepared less 

386 than 30 min before each scan. For laminar leaves, a ∼1.5 to 2-mm-wide and 

387 ∼15-mm-long piece of leaf was excised between the midrib and the leaf outer 

388 edge. For needle and non-laminar leaves, a piece ~15-mm-long was used. 

389 Tissue samples were enclosed between Kapton (polyimide) tape to prevent 

390 desiccation while allowing high X-ray transmittance. Samples were scanned 

Page 17 of 27

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



391 using the continuous tomography mode capturing 1,025 (ALS, APS) or 1,800 

392 (SLS) projection images at 21 to 25 keV, using primarily 5x (55 species; pixel 

393 size of 1.27 µm) and 10x (29 species; pixel size of 0.64 µm) objective lenses, or 

394 a 40x objective lens (2 species; pixel size of 0.1625 µm). Each scan was 

395 completed in 5 min to 15 min.

396 Images were reconstructed using TomoPy [54] for all ALS samples or using the 

397 in-house reconstruction platform for SLS or APS samples. Reconstructed scans 

398 were processed using published methods [32,55], and image stacks were 

399 cropped to remove tissue that was dehydrated, damaged, or contained artifacts 

400 from the imaging or reconstruction steps. The final stacks contained ∼500-2000 

401 eight-bit grayscale images (downsampled from 16 or 32-bit images).

402 Leaf trait analysis

403 Leaf and mesophyll thickness were measured on cross-sectional slices of the 

404 image stack. Cell diameter was measured on at least 10 cells for each mesophyll 

405 layer on paradermal slices of the stack, as well as for guard cell length and 

406 diameter. For spongy mesophyll cells with lobed or irregular shapes, cell 

407 diameter was measured on the lobes of the cells and not on their presumed 

408 centres [56]. Some leaves had only palisade-like or spongy-like cells, resulting in 

409 some species having data for only one cell type (Supplementary Table S1). To 

410 estimate cell volume, we assumed stomatal guard cells and palisade mesophyll 

411 cells were shaped as capsules with length equal to twice the diameter of the 

412 cylinder (e.g. dpalisade or dGC), allowing for cell volume to be calculated as [20]:

413 .𝑉 =
5

96𝜋(2𝑑)3

414 We compared these estimates of mature cell volume to published measurements 

415 of meristematic cell volumes as a function of genome size [19]. We used 

416 empirical relationships between meristematic cell volume and nuclear volume 

417 and between nuclear volume and genome size [19] to estimate the relationship 

418 between meristematic cell volume and genome size, consistent with a prior 
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419 analysis [20]. To estimate maximum meristematic cell packing densities in 2D, 

420 we assumed meristematic cells were shaped as spheres and calculated the 

421 maximum packing density (number of cells per area) as one divided by the cross-

422 sectional area of the sphere, following published methods for stomata [4].

423 Palisade cell packing density in 2D was measured on stacks from paradermal 

424 planes through the palisade tissue by averaging per species the counts of 

425 palisade cells present within three defined areas. Stomatal density and vein 

426 density were measured on the original uncropped image stack to maximize the 

427 area measured. Scans in which stomata were difficult to discern or in which vein 

428 density would have been obviously biased (e.g. high fraction of the scan 

429 containing a higher order vein) were not measured for these traits.

430 To extract surface area and volumes, mesophyll cells, airspace, vasculature 

431 (combined veins and bundle sheath), and background (including the epidermis) 

432 were segmented using published methods [32,55] and ImageJ [57]. Airspace 

433 (Vpores), mesophyll cell (Vcells), both summing up to the total mesophyll volume 

434 (Vmes), vasculature volume (Vveins), and the surface area exposed to the 

435 intercellular airspace (SAmes) were then extracted using published methods [32] 

436 with the ImageJ plugin BoneJ [58], or using a custom Python program [55] 

437 (https://github.com/plant-microct-tools/leaf-traits-microct). SAmes/Vmes is less 

438 sensitive to leaf thickness than the commonly measured Sm, i.e. SAmes per leaf 

439 area (Supplemental Figure S8; Supplemental Table S1). For separate 

440 quantification of traits from palisade and spongy mesophyll, segmented stacks 

441 were cropped at the interface between tissues or where vasculature was present, 

442 in order to accurately characterize SAmes, volumes, and cell diameter within those 

443 tissues.

444 Because our sampling included scans made at different magnifications, we 

445 tested the effect of magnification on measurements of cell size and SAmes 

446 (Supplemental Results). Overall, lower magnification scans resulted in small (less 

447 than 5% for most scans) but significant changes in cell diameter and SAmes 

448 (Supplemental Fig. S6 and S7). However, reanalysis of scaling relationships 
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449 reported in Fig. 2 incorporating this error showed that all relationships remained 

450 as significant as those in the original dataset (Supplementary Table S3), 

451 suggesting that our results are robust to inclusion of scans with different 

452 magnifications. SMA slopes diverged only slightly between magnifications and 

453 most often were not significantly different (Supplementary Table S4).

454 Genome size data

455 Existing 2C genome size (pg) data available in the Kew Plant DNA C-values 

456 Database [59] were matched to the majority of species in our dataset. Fresh leaf 

457 samples of species not in the database were collected at the University of 

458 California Botanical Garden, Berkeley CA from the same plants imaged. Genome 

459 sizes (Supplementary Table S1) were measured by the Benaroya Research 

460 Institute, Virginia Mason University, using the Zea mays or Vicia faba standards 

461 and following standard protocols [60].

462 Simulating conductance data using cell size and 
463 porosity

464 To simulate gliq and gias (background shading in Fig. 4), we used all possible 

465 combinations of cell diameter (5 to 124 µm in 0.1 µm steps; 1 µm below and 40 

466 µm above the range in our data) and porosity (0.02 to 0.96 in 0.01 steps; 0.03 

467 below and 0.01 above the range in our data). For gliq, we approximated cells as 

468 capsules [39], with diameter d and height 3d, and generated the densest lattice 

469 possible, consisting of 30 cells in a (5d)2 projected area (Supplementary Fig. 

470 S10), with a total volume of 2d × projected area and a total porosity of 0.186 (see 

471 Supplemental Methods for further details). Simulating porosity above or below 

472 0.186 was done by changing pore volume and keeping cell volume constant, 

473 which modified total lattice volume to represent either a looser cell packing or 

474 cells inflated and deformed into each other.

475 Liquid phase conductance per mesophyll volume was computed [24] as a 

476 function of the surface area exposed to the intercellular airspace per volume, 

Page 20 of 27

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



477 itself a function of cell diameter and porosity within the cell lattice, using 

478 published values for the different resistance components [24] (see Supplemental 

479 Information). For gias, we accounted for tortuosity and diffusive path lengthening 

480 as functions of porosity [33], and mesophyll thickness as a function of cell 

481 diameter as observed in our dataset (R2 = 0.21, p<0.0001; Supplementary Fig. 

482 S11).

483 Statistical analysis

484 All analyses, simulations, and conductance computations were carried out in R 

485 4.0.3 [61]. Standardized major axes were computed using the smatr package 

486 [62], and phylogenetic analyses (reduced major axis, generalized least squares 

487 regression, and principal component analysis) are detailed in the Supplementary 

488 Methods.
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