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FAST RANDOMIZED NON-HERMITIAN EIGENSOLVERS BASED
ON RATIONAL FILTERING AND MATRIX PARTITIONING\ast 
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Abstract. This paper describes a set of rational filtering algorithms to compute a few eigen-
values (and associated eigenvectors) of non-Hermitian matrix pencils. Our interest lies in computing
eigenvalues located inside a given disk, and the proposed algorithms approximate these eigenvalues
and associated eigenvectors by harmonic Rayleigh--Ritz projections on subspaces built by computing
range spaces of rational matrix functions through randomized range finders. These rational matrix
functions are designed so that directions associated with nonsought eigenvalues are dampened to
(approximately) zero. Variants based on matrix partitionings are introduced to further reduce the
overall complexity of the proposed framework. Compared with existing eigenvalue solvers based on
rational matrix functions, the proposed technique requires no estimation of the number of eigenvalues
located inside the disk. Several theoretical and practical issues are discussed, and the competitiveness
of the proposed framework is demonstrated via numerical experiments.

Key words. rational filtering, matrix partitioning, contour integral eigensolvers, non-Hermitian
eigenvalue problems, randomized algorithms
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1. Introduction. This paper describes a rational filtering framework to com-
pute a few eigenvalues and associated eigenvectors of non-Hermitian eigenvalue prob-
lems of the form

(1.1) Ax = \lambda Mx,

where the matrices A \in \BbbC n\times n and M \in \BbbC n\times n are assumed large and sparse, and the
pencil (A,M) is assumed regular and diagonalizable. The focus of this paper lies in
computing all eigenvalues located in the interior of a disk \scrD prescribed in the complex
domain. An illustrative example is shown in Figure 1.1.

Rational filtering eigenvalue solvers can be seen as (harmonic) Rayleigh--Ritz pro-
cedures in which the projection subspace is built by exploiting a (complex) rational
transformation of the matrix pencil (A,M). These transformations are constructed
so that the gap between eigenvalues located inside the disk \scrD versus those located
outside the latter is as big as possible after the transformation. Applying a projec-
tion scheme to the transformed pencil can then significantly enhance the convergence
towards the sought invariant subspace. The most popular approaches to construct
efficient rational transformations is either via shift-and-invert or via a discretization
of the Cauchy integral representation of the eigenprojector along the boundary of the
disk \scrD [6, 38, 43, 44, 51, 54]. Compared to shift-and-invert, contour integral eigen-
solvers are generally oblivious to the location of the sought eigenvalues inside the disk
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x

y

\scrD 

\Gamma 

Fig. 1.1. Sought eigenvalues are denoted by red filled dots. Unwanted eigenvalues located
outside the circumference \Gamma (denoted by a green dashed curve) of the disk \scrD are denoted by black
open circles.

\scrD and enjoy enhanced scalability when implemented in distributed memory comput-
ing environments [1, 18, 21, 24, 50]. Other rational filters, though not necessarily
based on contour integration, can be found in [4, 5, 15, 25, 28, 31, 40, 47, 48, 49].

In this paper, we consider algorithms in which the projection subspace is set
equal to the column space of matrices formed after applying a rational transforma-
tion to the matrix pencil (A,M). These rational transformations are constructed so
that eigenvector directions associated with eigenvalues located outside the disk \scrD are
approximately mapped to zero, and the corresponding column spaces are captured
through randomized range finders [33, 34]. The algorithms proposed in this paper are
also combined with matrix partitionings to reduce the computational complexity of
the construction of the projection subspace. So far, matrix partitioning approaches
have been featured within the context of rational filtering only for symmetric eigen-
value problems [21, 23]. One of the main motivations of this paper is to extend this
class of techniques to non-Hermitian eigenvalue problems.

Overall, the proposed framework possesses the following advantages.
Improved robustness. Classical rational filtering approaches such as FEAST [38]

or the SS algorithm [43, 44] require an estimation of the number of eigenvalues located
inside the disk \scrD . However, such an estimation is not always readily available or easy
to compute for generalized eigenvalue problems. On the other hand, an inaccurate
estimation can lead to slow convergence or failure to capture all required eigenpairs.
The proposed algorithms bypass this issue by dynamically increasing the dimension
of the projection subspace.

Reduced complexity. By combining rational filtering with substructuring, the pro-
jection subspace is formed as the direct sum of two separate subspaces approximated
independently. This is done by applying a 2\times 2 block partitioning to the pencil (A,M).
Two specialized algorithms are proposed to further reduce the computational costs
associated with classical rational filtering eigensolvers. The 2 \times 2 block partitioning
can be created either in an ad hoc way or by applying a graph partitioner to the
adjacency graph of the pencil (A,M).

Enhanced parallelism. In addition to the ample opportunities for parallelism of-
fered by rational filtering eigensolvers, the proposed algorithms can take advantage of
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an additional level of parallelism introduced by matrix substructuring.
The structure of this paper is organized as follows. Section 2 describes a tech-

nique based on the combination of randomized range finders, harmonic Rayleigh--Ritz
projections, and rational transformations. Section 3 presents two variants based on
matrix partitioning which aim at reducing the computational cost associated with the
construction of an efficient projection subspace. Section 4 discusses practical details
and presents computational cost comparisons. Section 5 provides numerical experi-
ments on a few test problems. Finally, section 6 presents our concluding remarks.

1.1. Notation. Throughout this paper we denote the spectrum of (A,M) by
\Lambda (A,M). The total number of eigenvalues located inside the disk \scrD is assumed
unknown and is denoted by nev. The eigentriplets of the matrix pencil (A,M) are
denoted by

\bigl( 
\lambda i, x

(i), \^x(i)
\bigr) 
, i = 1, . . . , n, where \lambda i denotes the ith eigenvalue of smallest

distance from the center of the disk \scrD , and x(i) and
\bigl( 
\^x(i)
\bigr) H

denote the corresponding
right and left eigenvectors, respectively. Notice that using the above definition we
have \lambda 1, . . . , \lambda nev \in \scrD and \lambda nev+1, . . . , \lambda n /\in \scrD . The superscript ``H"" denotes the
conjugate transpose of the corresponding matrix. Unless mentioned otherwise, the
term ``eigenvector"" should be understood to refer to a right eigenvector. Throughout
the rest of this paper we use the notation rank(X), orth(X), and range(X) to denote
the rank, orthonormalization, and range (column space) of the m \times n matrix X,
respectively. Moreover, we use the notation span

\bigl( 
r(1), . . . , r(k)

\bigr) 
to denote the linear

span of vectors r(1), . . . , r(k).

2. Harmonic Rayleigh--Ritz projections and randomized range finders
for column spaces of matrix functions. Computing a few exterior eigenvalues
and associated eigenvectors of large and sparse matrix pencils is typically achieved
via applying a Rayleigh--Ritz procedure (RR) onto a (nearly) invariant subspace as-
sociated with the sought eigenvalues [37]. For Hermitian eigenvalue problems, the
RR procedure retains several optimality properties; see, e.g., [29]. For non-Hermitian
eigenvalue problems, no such optimality is guaranteed; e.g., when the sought eigenval-
ues are located in the interior of the spectrum, for example, inside a disk \scrD surrounded
by several unwanted eigenvalues, the RR procedure might provide poor results [36].

An alternative for the solution of interior eigenvalue problems is the harmonic
Rayleigh--Ritz procedure (HRR) suggested in [35]. More specifically, let matrix Z
represent a basis of some projection subspace \scrZ . The HRR procedure extracts ap-
proximate eigenpairs of the form (\theta , Zq) by solving the following eigenvalue problem:

(2.1) ZH(A - \zeta cM)H(A - \zeta cM)Zq = (\theta  - \zeta c)Z
H(A - \zeta cM)HMZq, \zeta c \in \BbbC .

For eigenvalue problems such as the ones considered in this paper, it is reasonable to
set \zeta c equal to the center of the disk \scrD . The approximate eigenvalue \theta and the eigen-
vector Zq are referred to as the (harmonic) Ritz value and Ritz vector, respectively.
In practice, if the subspace \scrZ includes the sought invariant subspace, then (2.1) will
return accurate approximations of the corresponding eigenpairs provided that there
are no spurious eigenvalues close to the Ritz values located inside the disk \scrD [19, 35].

Based on the above discussion, we seek to compute a subspace \scrZ which includes
the invariant subspace associated with nev sought eigenvalues \lambda 1, . . . , \lambda nev . This sec-
tion considers ansatz subspaces of the form \scrZ = range

\bigl( 
\rho (M - 1A)

\bigr) 
for some scalar

function \rho such that \rho (M - 1A) is rank-deficient. The rest of this section considers such
a function \rho while it also discusses a randomized algorithm to compute the range of
rank-deficient matrices.
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S794 VASSILIS KALANTZIS, YUANZHE XI, AND LIOR HORESH

2.1. Fast randomized range finder for rank-deficient matrices. Let X \in 
\BbbC m\times n be a rectangular matrix. The goal of a range finding procedure is to compute
an orthonormal matrix Y such that \| (I  - Y Y H)X\| is zero. In this paper, we are
interested in scenarios where matrix X is rank-deficient and accessible only through
a matrix-vector product routine.

Let k \in \BbbN , k < min(m,n), denote the rank of matrix X. The range of matrix
X is equal to the span of the left-singular vectors corresponding to the k nonzero
singular values. The span of these left-singular vectors can be computed in a matrix-
free fashion by Lanczos bidiagonalization (LBD) [14]. In the absence of round-off
errors, LBD requires k matrix-vector products with each of the matrices X and XH ,
in addition to the cost introduced by the chosen orthogonalization strategy; see, e.g.,
[17]. Alternatively, we can apply k steps of the Lanczos process on XXH [26], but
this approach still requires 2k matrix-vector products overall.

Algorithm 2.1. Randomized range finding algorithm
0. Inputs: X \in \BbbC m\times n, Y := 0
1a. For i = 1, . . . ,min(m,n)
2. Fill r \in \BbbC n with normally distributed random entries
3. Y = [Y,Xr]
4. Set the i\times 1 vector \sigma (Y ) equal to the (sorted) singular

values of matrix Y

5. If \sigma 
(Y )
i /\sigma 

(Y )
1 \leq machine epsilon, break;

1b. End
6. Orthonormalize and return Y

The complexity of the range finding problem can be reduced by considering tech-
niques from randomized linear algebra [12, 30, 34]. Randomized numerical algorithms
have gained significant prominence over the last two decades due to their superior
performance in several important numerical linear algebra problems, e.g., low-rank
matrix approximations [16, 32] and principal component analysis [8, 39]. Returning
to the range finding problem, let R \in \BbbC n\times k be a matrix whose entries are drawn from
a Gaussian distribution. Then, with probability one, we have rank(XR) = k and
range(XR) = range(X) [33]. Thus, a randomized range finder requires only half of
the matrix-vector products performed by LBD or Lanczos. Our interest lies in sce-
narios where the exact rank of matrix X is either unknown or expensive to estimate.
To bypass this issue, next we consider a modification of the randomized range finder
where the matrix-vector products with matrix X are performed in an incremental
manner and no information regarding k is needed.

Let r(i) \in \BbbC n, i = 1, 2, . . ., denote a sequence of vectors with normally randomly
distributed entries, and let

\bigl[ 
Xr(1), Xr(2), . . .

\bigr] 
denote the evolving matrix in which

we accumulate the products of matrix X with r(i). After k such products, the rank
(and range) of the evolving matrix is equal to that of matrix X. Since the following
matrix-vector productsXr(i), i = k+1, k+2, . . ., already lie in range(X), the evolving
matrix will become singular. Therefore, we can bypass the unknown rank of matrix
X by monitoring the singular values of the evolving matrix. The above approach is
listed as Algorithm 2.1. The procedure terminates when the ratio of the smallest to
the largest singular value of the matrix [Xr(1), Xr(2), . . .] becomes zero, which in a
numerical computing environment translates to smaller than or equal to the machine
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epsilon.1 In the absence of round-off errors, Algorithm 2.1 terminates after k + 1
iterations. The SVD of the evolving matrix in step 3 can be updated on the fly
each time a new column is added [22, 55]. We note here that Algorithm 2.1 can also
be seen as a variation of the adaptive range finder described in [16, section 4] with
the exception that the stopping criterion is based on the magnitude of the condition
number of the evolving matrix.

While our interest lies in computing the exact range(X), in practice we stop the
iterative procedure in Algorithm 2.1 when the ratio of the smallest to the largest
singular value becomes less than a small threshold, e.g., 10 - 12. This helps to avoid
orthonormalizing an ill-conditioned basis at the last step of Algorithm 2.1; see, e.g.,
[13]. If Algorithm 2.1 terminates after k0+k1 < k+1 iterations, then, with probability
at least 1 - 6k - k11 , the matrix Y = orth(X

\bigl[ 
r(1), . . . , r(k0+k1)

\bigr] 
) satisfies [16]

(2.2) \| (I  - Y Y H)X\| 2 \leq 
\Bigl( 
1 + 11

\sqrt{} 
k0 + k1

\sqrt{} 
min(m,n)

\Bigr) 
\sigma k0+1(X),

where \sigma j(X) denotes the jth singular value of matrix X. Therefore, when the singular
values of matrix X decay fast enough, Algorithm 2.1 can still return a good approx-
imation of range(X) in less than k + 1 iterations. Note, though, that we cannot
predict the number of iterations associated with a higher stop tolerance in Algorithm
2.1.

2.2. Column spaces of matrix functions as projection subspaces. Let
\rho : \BbbC \ast \rightarrow \BbbR , \BbbC \ast \subseteq \BbbC , be a scalar function that is defined over \Lambda (A,M). Since (A,M)
is diagonalizable, applying the function \rho to matrix M - 1A is equivalent to

(2.3) \rho (M - 1A) =

n\sum 
i=1

\rho (\lambda i)x
(i)
\Bigl( 
\^x(i)
\Bigr) H

M.

Notice now that span
\bigl( 
x(1), . . . , x(nev)

\bigr) 
\subseteq range(\rho (M - 1A)) for any function \rho such

that \rho (\lambda i) \not = 0, i = 1, . . . , nev. Algorithm 2.2 outlines a two-step procedure to ap-
proximate the eigenvalues located inside the disk \scrD and associated eigenvectors. The
first step is to compute an orthonormal basis matrix Z of range(\rho (M - 1A)) by calling
Algorithm 2.1. The number of iterations performed by Algorithm 2.1 is bounded by
the number of eigenvalues \lambda that satisfy \rho (\lambda ) \not = 0.Therefore, the scalar function \rho 
should be set such that \rho (\lambda i) is about equal to machine precision for as many eigen-
values \lambda i /\in \scrD as possible. The second step is to perform an HRR projection step to
approximate the eigenvalues located inside \scrD and their associated eigenvectors. Note
that no information about the value of nev is required.

Algorithm 2.2. Prototype algorithm
0. Inputs: \rho : \BbbC \rightarrow \BbbR , \scrD 
1. Compute an orthonormal basis Z of range(\rho (M - 1A))

by Algorithm 2.1
2. Solve the eigenvalue problem in (2.1) and return all

Ritz values \theta \in \scrD and associated Ritz vectors

Motivated by the above discussion, an ideal function \rho is defined by the contour

1We consider a number to be equal to zero if its numerical value is less than the machine epsilon
of the IEEE 754 binary64 definition.
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integral

(2.4) \scrP (\zeta ) =
 - 1

2\pi i

\int 
\Gamma 

1

\zeta  - \nu 
d\nu ,

where the complex contour \Gamma denotes the circumference of the disk \scrD , and the inte-
gration is performed counterclockwise. By Cauchy's residue theorem it follows that
\scrP (\zeta ) = 1 for any \zeta \in \scrD , and zero otherwise. Applying (2.4) to (2.3) yields

(2.5) \scrP (M - 1A) =
 - 1

2\pi i

\int 
\Gamma 

\bigl( 
M - 1A - \nu I

\bigr)  - 1
d\nu =

nev\sum 
i=1

x(i)
\Bigl( 
\^x(i)
\Bigr) H

M.

Algorithm 2.2 then terminates after exactly nev iterations.
In practice, (2.4) will be approximated by numerical quadrature which leads to a

rational ``filter"" function of the form

(2.6) \rho (\zeta ) =

N\sum 
j=1

\omega j
\zeta  - \zeta j

,

where the integer N denotes the order of the approximation, and the complex pairs
\{ \omega j , \zeta j\} j=1,...,N denote the weights and nodes of the quadrature rule, respectively.
Rational filter functions of this form were pioneered in the context of eigenvalue
solvers first in [2, 6, 38, 43]. The application of (2.6) to the pencil (A,M) then gives

(2.7) \rho (M - 1A) =

N\sum 
j=1

\omega j(M
 - 1A - \zeta jI)

 - 1 =

N\sum 
j=1

\omega j(A - \zeta jM) - 1M,

and computing \rho (M - 1A)r for a vector r at each iteration of Algorithm 2.2 involves
(a) one matrix-vector product with matrix M , and (b) the solution of one linear
system with each matrix A  - \zeta jM, j = 1, . . . , N . These N linear system solutions
can be obtained in parallel by replicating matrices A and M in N different groups of
processors.

Ideally, the function in (2.6) should decay to zero as \zeta moves away from \scrD . Figure
2.1 plots the modulus of a rational filter \rho (\zeta ) defined on the unit disk (\scrD \equiv \{ | z| : | z| \leq 
1\} ) with the trapezoidal rule of order N = 8 (left) and N = 16 (right). Increasing
the value of N leads to a faster decay of the rational filter \rho (\zeta ) outside the boundary
of \scrD . In particular, the approximation of \scrP (\zeta ) by \rho (\zeta ) at the center of the disk \scrD 
converges exponentially2 with respect to N [3, 46].

The convergence of Algorithm 2.1 is likely to be slow for small values of N since
range(\rho (M - 1A)) could contain many eigenvector directions associated with a large
number of eigenvalues located outside \scrD . As a result, subspace iteration might be a
better alternative in this case, and this is exploited in the FEAST eigenvalue solver
library [45, 38]. The drawback of subspace iteration as a projection scheme is that
a good estimation of nev is necessary (see, e.g., [10, 52, 53]), a condition which is
bypassed by Algorithm 2.2.

Throughout the rest of this paper we describe two variants which aim at reducing
the computational cost of Algorithm 2.2.

2Note that eigenvalues \lambda located very close to the poles \zeta j can lead to values \rho (\lambda ) which are
larger than one even if \lambda /\in \scrD .
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RATIONAL FILTERING NON-HERMITIAN EIGENSOLVERS S797

Fig. 2.1. The modulus of the rational filter \rho (\zeta ) defined on the unit disk with the trapezoidal
rule of order N = 8 (left) and N = 16 (right).

3. Algorithms based on matrix partitionings. Let d, s \in \BbbN , such that
n = s+ d, and partition each eigenvector x(i), i = 1, . . . , n, of the pencil (A,M) as

(3.1) x(i) =

\Biggl( 
u(i)

y(i)

\Biggr) 
, u(i) \in \BbbC d, y(i) \in \BbbC s.

In addition, let 0\chi ,\psi denote the zero matrix of size \chi \times \psi . Then, we can write

span
\Bigl( 
x(1), . . . , x(nev)

\Bigr) 
= span

\Biggl( \Biggl[ 
u(1), . . . , u(nev)

0s,nev

\Biggr] 
+

\Biggl[ 
0d,nev

y(1), . . . , y(nev)

\Biggr] \Biggr) (3.2)

\subseteq span

\Biggl( \Biggl[ 
u(1), . . . , u(nev)

0s,nev

\Biggr] \Biggr) 
\oplus span

\Biggl( \Biggl[ 
0d,nev

y(1), . . . , y(nev)

\Biggr] \Biggr) 
.(3.3)

The expression in (3.2) implies that span
\bigl( 
x(1), . . . , x(nev)

\bigr) 
is captured by the direct

sum of span
\bigl( 
u(1), . . . , u(nev)

\bigr) 
and span

\bigl( 
y(1), . . . , y(nev)

\bigr) 
. The rest of this section

describes two variations of Algorithm 2.2, presented in sections 3.2 and 3.3. These al-
gorithms make use of matrix partitioning to reduce the computational costs associated
with the construction of a good HRR projection subspace.

3.1. Two equivalent matrix resolvent representations. Consider the fol-
lowing 2\times 2 block-partitioning of the non-Hermitian matrices A and M :

(3.4) A =

\biggl( 
B F
E C

\biggr) 
and M =

\biggl( 
MB MF

ME MC

\biggr) 
,

where B, MB \in \BbbC d\times d, F, MF \in \BbbC d\times s, E, ME \in \BbbC s\times d, and C, MC \in \BbbC s\times s. More-
over, define the following matrix-valued functions of \zeta \in \BbbC :

B(\zeta ) = B  - \zeta MB , F (\zeta ) = F  - \zeta MF , E(\zeta ) = E  - \zeta ME , and C(\zeta ) = C  - \zeta MC .

For any \zeta /\in \Lambda (A,M), the matrix (A - \zeta M) - 1 can be written as
(3.5)

(A - \zeta M) - 1 =

\Biggl( 
B(\zeta ) - 1

\bigl[ 
I + F (\zeta )S(\zeta ) - 1E(\zeta )B(\zeta ) - 1

\bigr] 
 - B(\zeta ) - 1F (\zeta )S(\zeta ) - 1

 - S(\zeta ) - 1E(\zeta )B(\zeta ) - 1 S(\zeta ) - 1

\Biggr) 
,
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where the s\times s matrix-valued function

S(\zeta ) = C(\zeta ) - E(\zeta )B(\zeta ) - 1F (\zeta )

is the Schur complement of matrix A - \zeta M . Combining (3.5) with (2.7) then gives
(3.6)

\rho (M - 1A) =

N\sum 
j=1

\omega j

\biggl[ 
B(\zeta j)

 - 1
\bigl[ 
I + F (\zeta j)S(\zeta j)

 - 1E(\zeta j)B(\zeta j)
 - 1

\bigr] 
 - B(\zeta j)

 - 1F (\zeta j)S(\zeta j)
 - 1

 - S(\zeta j) - 1E(\zeta j)B(\zeta j)
 - 1 S(\zeta j)

 - 1

\biggr] 
M.

Similarly, the matrix (A - \zeta jM) - 1 can be expressed in terms of the eigenvectors
of the matrix pencil (A,M) as

(3.7) (A - \zeta jM) - 1 =

n\sum 
i=1

x(i)
\bigl( 
\^x(i)
\bigr) H

\lambda i  - \zeta j
.

Then, by partitioning the left eigenvectors of the pencil (A,M) as in (3.1),\Bigl( 
\^x(i)
\Bigr) H

=
\Bigl[ \bigl( 
\^u(i)
\bigr) H \bigl( 

\^y(i)
\bigr) H\Bigr] 

,
\Bigl( 
\^u(i)
\Bigr) H

\in \BbbC 1\times d,
\Bigl( 
\^y(i)
\Bigr) H

\in \BbbC 1\times s,

and combining (2.7) with (3.7), we obtain the following identity:

(3.8) \rho (M - 1A) =

n\sum 
i=1

\rho (\lambda i)

\Biggl[ 
u(i)

\bigl( 
\^u(i)
\bigr) H

u(i)
\bigl( 
\^y(i)
\bigr) H

y(i)
\bigl( 
\^u(i)
\bigr) H

y(i)
\bigl( 
\^y(i)
\bigr) H
\Biggr] 
M.

3.2. First algorithm. In this section, we present an algorithm which exploits
the equivalent representations of \rho (M - 1A) shown in (3.6) and (3.8) to build a subspace
which captures span

\bigl( 
u(1), . . . , u(nev)

\bigr) 
and span

\bigl( 
y(1), . . . , y(nev)

\bigr) 
.

Equating the (1,2) and (2,2) blocks on the right-hand sides of (3.6) and (3.8) gives

(3.9)

 - 
N\sum 
j=1

\omega jB(\zeta j)
 - 1F (\zeta j)S(\zeta j)

 - 1 =

n\sum 
i=1

\rho (\lambda i)u
(i)
\Bigl( 
\^y(i)
\Bigr) H

,

N\sum 
j=1

\omega jS(\zeta j)
 - 1 =

n\sum 
i=1

\rho (\lambda i)y
(i)
\Bigl( 
\^y(i)
\Bigr) H

.

These identities indicate that, under mild conditions, we can capture a superset of
span

\bigl( 
u(1), . . . , u(nev)

\bigr) 
and span

\bigl( 
y(1), . . . , y(nev)

\bigr) 
by capturing the range of the ma-

trices on the left-hand side in (3.9).

Theorem 3.1. Let
\bigl[ 
u(i)
\bigr] 
\rho (\lambda i) \not =0

,
\bigl[ 
y(i)
\bigr] 
\rho (\lambda i)\not =0

, and
\bigl[ 
\^y(i)
\bigr] 
\rho (\lambda i)\not =0

denote the matri-

ces whose columns are formed by those vectors u(i), y(i), and \^y(i), for which \rho (\lambda i) \not =
0, i = 1, . . . , n, respectively. If the rank of matrices

\sum N
j=1 \omega jB(\zeta j)

 - 1F (\zeta j)S(\zeta j)
 - 1

and
\sum N
j=1 \omega jS(\zeta j)

 - 1 is equal to that of matrices
\bigl[ 
u(i)
\bigr] 
\rho (\lambda i) \not =0

and
\bigl[ 
y(i)
\bigr] 
\rho (\lambda i) \not =0

, re-

spectively, then

(3.10) range

\biggl( \Bigl[ 
u(i)
\Bigr] 
\rho (\lambda i)\not =0

\biggr) 
= range

\left(  N\sum 
j=1

\omega jB(\zeta j)
 - 1F (\zeta j)S(\zeta j)

 - 1

\right)  D
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and

(3.11) range

\biggl( \Bigl[ 
y(i)
\Bigr] 
\rho (\lambda i)\not =0

\biggr) 
= range

\left(  N\sum 
j=1

\omega jS(\zeta j)
 - 1

\right)  .

Proof. First, notice that range
\bigl( \bigl[ 
\rho (\lambda i)u

(i)
\bigr] 
\rho (\lambda i)\not =0

\bigr) 
= range

\bigl( \bigl[ 
u(i)
\bigr] 
\rho (\lambda i)\not =0

\bigr) 
, and

range
\bigl( \bigl[ 
\rho (\lambda i)y

(i)
\bigr] 
\rho (\lambda i) \not =0

\bigr) 
= range

\bigl( \bigl[ 
y(i)
\bigr] 
\rho (\lambda i) \not =0

\bigr) 
. Second, we have

N\sum 
j=1

\omega jB(\zeta j)
 - 1F (\zeta j)S(\zeta j)

 - 1 =
\Bigl[ 
\rho (\lambda i)u

(i)
\Bigr] 
\rho (\lambda i) \not =0

\Bigl[ 
\^y(i)
\Bigr] H
\rho (\lambda i) \not =0

and
N\sum 
j=1

\omega jS(\zeta j)
 - 1 =

\Bigl[ 
\rho (\lambda i)y

(i)
\Bigr] 
\rho (\lambda i) \not =0

\Bigl[ 
\^y(i)
\Bigr] H
\rho (\lambda i) \not =0

.

Recall now that for two matrices X1 and X2, if the rank of the matrix X1X2 is equal
to that of X1, then the span of the columns of X1 is equal to the range of X1X2. The
results in (3.10) and (3.11) follow directly by setting X1 =

\bigl[ 
\rho (\lambda i)u

(i)
\bigr] 
\rho (\lambda i) \not =0

in (3.10)

and X1 =
\bigl[ 
\rho (\lambda i)y

(i)
\bigr] 
\rho (\lambda i) \not =0

in (3.11), respectively, while X2 =
\bigl[ 
\^y(i)
\bigr] H
\rho (\lambda i)\not =0

.

Theorem 3.1 implies that a necessary condition for (3.10) and (3.11) to hold is

(3.12) max

\biggl( 
\ttr \tta \ttn \ttk 

\biggl( \Bigl[ 
u(i)

\Bigr] 
\rho (\lambda i)\not =0

\biggr) 
, \ttr \tta \ttn \ttk 

\biggl( \Bigl[ 
y(i)

\Bigr] 
\rho (\lambda i)\not =0

\biggr) \biggr) 
\leq \ttr \tta \ttn \ttk 

\biggl( \Bigl[ 
\^y(i)

\Bigr] 
\rho (\lambda i)\not =0

\biggr) 
.

For symmetric eigenvalue problems, we have that y(i) = \^y(i) and (3.12) is trivially sat-
isfied [20]. In practice, the violation of (3.12) for non-Hermitian eigenvalue problems
is quite rare in a finite-precision arithmetic environment.

Algorithm 3.1 outlines a matrix partitioning procedure to build the HRR pro-
jection subspace in (2.1) by setting the latter subspace equal to the direct sum of

subspaces range
\bigl( \sum N

j=1 \omega jB(\zeta j)
 - 1F (\zeta j)S(\zeta j)

 - 1
\bigr) 
and range

\bigl( \sum N
j=1 \omega jS(\zeta j)

 - 1
\bigr) 
. Each

instance of Algorithm 2.1 called in Algorithm 3.1 performs a number of iterations
which is at most equal to the number of eigenvalues \lambda for which \rho (\lambda ) \not = 0. Moreover,
the two instances of Algorithm 2.1 shown in steps 1 and 2 are performed in parallel,
and thus the linear system solutions computed in step 2 are exploited at step 1 as
well. Moreover, similarly to Algorithm 2.2, Algorithm 3.1 requires no estimation of
the value of nev.

Algorithm 3.1.
0a. Inputs: N, \scrD 
0b. Compute the complex pairs \{ \omega j , \zeta j\} j=1,2,...,N , set G :=W := 0
0c. (Optionally) Reorder (A,M) as in section 4.2

1. Compute an orthonormal basis G of range
\Bigl( \sum N

j=1 \omega jS(\zeta j)
 - 1
\Bigr) 

by Algorithm 2.1

2. Compute an orthonormal basis W of range
\Bigl( \sum N

j=1 \omega jB(\zeta j)
 - 1F (\zeta j)S(\zeta j)

 - 1
\Bigr) 

by Algorithm 2.1
3. Set Z = [W G ], solve the eigenvalue problem in (2.1) and return

all Ritz values \theta \in \scrD and associated Ritz vectors

Unless mentioned otherwise, the default value of the number of poles in the ra-
tional filter \rho will be equal to N = 16.
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3.3. Second algorithm. This section describes an alternative technique to con-
struct the matrix W in Algorithm 3.1 under the assumption that the pencil (B,MB)
is diagonalizable. Throughout the rest of this section we will denote the eigentriplets
of the pencil (B,MB) by

\bigl( 
\delta i, v

(i), \^v(i)
\bigr) 
, i = 1, 2, . . . , d, where \delta i denotes the eigenvalue

of (B,MB) with the ith shortest distance from the center of the disk \scrD , and v(i) and\bigl( 
\^v(i)
\bigr) H

denote the corresponding right and left eigenvectors, respectively.
By combining (3.2) and (3.4), we can write the top d\times 1 part of the eigenvector

x(i) =
\Bigl( 
u(i)

y(i)

\Bigr) 
associated with the eigenvalue \lambda i as

(3.13) u(i) =  - B(\lambda i)
 - 1F (\lambda i)y

(i).

While expression (3.13) is not practical, it serves as a starting point for the construc-
tion of a subspace which (approximately) captures span

\bigl( 
u(i)
\bigr) 
without depending on

the (unknown) quantities \lambda i and y
(i).

Let G be a matrix such that y(i) \in range(G), e.g., the matrix G constructed in
Algorithm 3.1. In addition, define the matrices

V\phi =
\Bigl[ 
v(1), v(2), . . . , v(\phi )

\Bigr] 
and \^V\phi =

\Bigl[ 
\^v(1), \^v(2), . . . , \^v(\phi )

\Bigr] 
,

where \phi \in \scrZ \ast is larger than or equal to the number of eigenvalues of (B,MB) located

inside the disk \scrD . Taking advantage of the identity I = V\phi \^V
H
\phi MB + (I  - V\phi \^V

H
\phi MB),

and noticing that span
\bigl( 
V\phi \^V

H
\phi MBB(\lambda i)

 - 1F (\lambda i)y
(i)
\bigr) 
\subseteq span

\bigl( 
v(1), v(2), . . . , v(\phi )

\bigr) 
, we

can write
(3.14)

\tts \ttp \tta \ttn 
\Bigl( 
u(i)

\Bigr) 
= \tts \ttp \tta \ttn 

\Bigl( 
B(\lambda i)

 - 1F (\lambda i)y
(i)
\Bigr) 

= \tts \ttp \tta \ttn 
\Bigl( 
V\phi 

\^V H
\phi MBB(\lambda i)

 - 1F (\lambda i)y
(i) + (I  - V\phi 

\^V H
\phi MB)B(\lambda i)

 - 1F (\lambda i)y
(i)
\Bigr) 

\subseteq \tts \ttp \tta \ttn 
\Bigl( 
v(1), v(2), . . . , v(\phi )

\Bigr) 
+ \tts \ttp \tta \ttn 

\Bigl( 
(I  - V\phi 

\^V H
\phi MB)B(\lambda i)

 - 1F (\zeta )G
\Bigr) 

+ \tts \ttp \tta \ttn 
\Bigl( 
(I  - V\phi 

\^V H
\phi MB)B(\lambda i)

 - 1MFG
\Bigr) 
,

where \zeta \in \scrD , and we can replace F (\lambda i) by its equivalent form

F (\lambda i) = F (\zeta ) - (\lambda i  - \zeta )MF .

The expression in (3.14) still depends on \lambda i through the term B(\lambda i)
 - 1. Next, we

show an equivalent expression of the matrix (I  - V\phi \^V
H
\phi MB)B(\lambda i)

 - 1.

Theorem 3.2. Let \zeta c \in \BbbC be the center of disk \scrD and \phi \in \BbbN be larger than
or equal to the number of eigenvalues of (B,MB) located inside \scrD . If we define the
matrix

\widetilde B(\zeta ) :=
\Bigl( 
I  - V\phi \^V

H
\phi MB

\Bigr) 
B(\zeta ) - 1,

then

(3.15)
\Bigl( 
I  - V\phi \^V

H
\phi MB

\Bigr) 
B(\lambda i)

 - 1 = \widetilde B(\zeta c)

\infty \sum 
k=0

\Bigl[ 
(\lambda i  - \zeta c)MB

\widetilde B(\zeta c)
\Bigr] k

for any \lambda i \in \scrD .
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Proof. Define the matrices

V =
\Bigl[ 
V\phi , v

(\phi +1), . . . , v(d)
\Bigr] 

and \^V =
\Bigl[ 
\^V\phi , \^v

(\phi +1), . . . , \^v(d)
\Bigr] 
.

Recall that \^V HMBV = I, and thus MB = \^V  - HV  - 1 and

B = \^V  - H

\Biggl( 
\delta 1

. . .
\delta d

\Biggr) 
V  - 1.

Using the above identities we can write

\widetilde B(\zeta ) =
\Bigl( 
I  - V\phi \^V

H
\phi MB

\Bigr) 
V

\Biggl( 
\delta 1 - \zeta 

. . .
\delta d - \zeta 

\Biggr)  - 1

\^V H

= V

\left(         

0\phi ,\phi 

1

\delta \phi +1  - \zeta 
. . .

1

\delta d  - \zeta 

\right)         
\^V H .

Let us now define the scalar \gamma j =
\lambda i - \zeta c
\delta j - \zeta c . We can write

\widetilde B(\zeta c)
\Bigl[ 
(\lambda i  - \zeta c)MB

\widetilde B(\zeta c)
\Bigr] k

= V

\left(           

0\phi ,\phi 

\gamma k\phi +1

\delta \phi +1  - \zeta c
. . .

\gamma kd
\delta d  - \zeta c

\right)           
\^V H .

Accounting for all powers k = 0, 1, 2, . . . gives

\widetilde B(\zeta c)

\infty \sum 
k=0

\Bigl[ 
(\lambda i  - \zeta c)MB

\widetilde B(\zeta c)
\Bigr] k

= V

\left(           

0\phi ,\phi \sum \infty 
k=0 \gamma 

k
\phi +1

\delta \phi +1  - \zeta c
. . . \sum \infty 

k=0 \gamma 
k
d

\delta d  - \zeta c

\right)           
\^V H .

Since \zeta c is the center of \scrD , it follows that | \gamma j | < 1 for any \delta j /\in \scrD . There-

fore, the geometric series converges and
\sum \infty 
k=0 \gamma 

k
j = 1

1 - \gamma j =
\delta j - \zeta c
\delta j - \lambda i . It follows that

1
\delta j - \zeta c

\sum \infty 
k=0 \gamma 

k
j = 1

\delta j - \lambda i .
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We finally have

\widetilde B(\zeta c)

\infty \sum 
k=0

\Bigl[ 
(\lambda i  - \zeta c)MB

\widetilde B(\zeta c)
\Bigr] k

= V

\left(          

0\phi ,\phi 

1

\delta \phi +1  - \lambda i
. . .

1

\delta d  - \lambda i

\right)          
\^V H

=
\Bigl( 
I  - V\phi \^V

H
\phi MB

\Bigr) 
B(\lambda i)

 - 1.

This concludes the proof.

Theorem 3.2 implies that we can approximate
\bigl( 
I  - V\phi \^V

H
\phi MB

\bigr) 
B(\lambda i)

 - 1 through
a finite truncation of the right-hand side in (3.15). The approximation error of this
truncation is considered in the following proposition.

Proposition 3.3. Let \psi be a positive integer, and define the error matrix

R\psi (\lambda i) = (I  - V\phi \^V
H
\phi MB)B(\lambda i)

 - 1  - \widetilde B(\zeta c)

\psi \sum 
k=0

\Bigl[ 
(\lambda i  - \zeta c)MB

\widetilde B(\zeta c)
\Bigr] k
.

Then

(3.16) R\psi (\lambda i) =

\infty \sum 
k=\psi +1

d\sum 
j=\phi +1

\biggl[ 
(\lambda i  - \zeta c)

k

(\delta j  - \zeta c)k+1

\biggr] 
v(j)

\Bigl( 
\^v(j)
\Bigr) H

MB .

Proof. Recall the scalar \gamma j =
\lambda i - \zeta c
\delta j - \zeta c . The matrix R\psi (\lambda i) is then equal to

R\psi (\lambda i) = V

\left(           

0\phi ,\phi \sum \infty 
k=\psi +1 \gamma 

k
\phi +1

\delta \phi +1  - \zeta c
. . . \sum \infty 

\psi +1 \gamma 
k
d

\delta d  - \zeta c

\right)           
\^V H .

The proof concludes by replacing \gamma j with its ratio.

Proposition 3.3 indicates that when \zeta c is close to the sought eigenvalues \lambda 1, . . . ,
\lambda nev and the eigenvalues \delta \phi +1, . . . , \delta d are located far away from the disk \scrD , the matrix\widetilde B(\zeta c)

\sum \psi 
k=0

\bigl[ 
(\lambda i  - \zeta c)MB

\widetilde B(\zeta c)
\bigr] k

can be used as an accurate approximation of the

matrix (I  - V\phi \^V
H
\phi MB)B(\lambda i)

 - 1 even for small values of \psi .
Based on the above discussion, we expect to find a reasonable approximation of

the subspace span
\bigl( 
u(1), . . . , u(nev)

\bigr) 
in the range of the matrix

(3.17) W\phi ,\psi =
\Bigl[ 
V\phi ,

\Bigl( 
I  - V\phi \^V

H
\phi MB

\Bigr) 
\^B\psi (\zeta c) \^GF ,

\Bigl( 
I  - V\phi \^V

H
\phi MB

\Bigr) 
\^B\psi (\zeta c) \^GMF\underbrace{}  \underbrace{}  

only if MF \not = 0

\Bigr] 
,
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where

\^B\psi (\zeta c) =

\biggl[ 
\~B(\zeta c), \~B(\zeta c)

\Bigl[ 
MB

\~B(\zeta c)
\Bigr] 
, . . . , \~B(\zeta c)

\Bigl[ 
MB

\~B(\zeta c)
\Bigr] \psi \biggr] 

,

and we set

\^GF =

\left[      
F (\zeta c)G

F (\zeta c)G

. . .

F (\zeta c)G

\right]      , \^GMF
=

\left[      
MFG

MFG

. . .

MFG

\right]      .

Algorithm 3.2.
0a. Inputs: N, \scrD , \psi (optionally), \phi (optionally)
0b. Compute the complex pairs \{ \omega j , \zeta j\} j=1,2,...,N , set G := 0
0c. (Optionally) Reorder (A,M) as in section 4.2

1. Compute an orthonormal basis G of range
\Bigl( \sum N

j=1 \omega jS(\zeta j)
 - 1
\Bigr) 

by Algorithm 2.1
2. Compute the eigenpairs associated with the \phi eigenvalues of smallest

modulus of the pencil (B(\zeta ),MB) and form the matrix V\phi 
3. Set the matrix W\phi ,\psi as in (3.17)

4. Set Z =
\bigl[ 
W\phi ,\psi 

G

\bigr] 
, solve the eigenvalue problem in (2.1), and return

all Ritz values \theta \in \scrD and associated Ritz vectors

The complete algorithmic procedure is summarized in Algorithm 3.2. The ac-
curacy in the approximation of the eigenpairs (\lambda i, x

(i)), i = 1, . . . , nev, depends on
the distance of the eigenvalues \lambda i \in \scrD from both the center of the disk \scrD and the
(nondeflated) eigenvalues of the matrix pencil (B,MB). In contrast, the accuracy
provided by Algorithm 3.1 is irrespective of the location of the eigenvalues \lambda i \in \scrD .
Thus, the latter should be the algorithm of choice when one seeks higher accuracy in
the approximation of the nev sought eigenpairs of the pencil (A,M). On the other
hand, Algorithm 3.2 should be preferred when a few digits of accuracy are deemed
enough, and lower wall-clock execution time is critical.

Compared to Algorithm 3.1, Algorithm 3.2 introduces two new parameters, \psi \in \BbbN 
and \phi \in \BbbN . Larger values of these two integers lead to higher accuracy but increase
the associated computational cost. Increasing the value of \psi aims at reducing the
error along all eigenvector directions of (B,MB), while increasing the value of \phi aims
at eliminating the approximation error associated with eigenvectors corresponding
closer to the center of the disk \scrD . Generally speaking, the main improvements in
accuracy come from increasing the value of \psi . Our default choice is to set \psi = 1
and to set \phi equal to the number of eigenvalues of the pencil (B,MB) located inside
the disk \scrD . If additional accuracy is needed, one can augment W\phi ,\psi with either
additional eigenvectors of the pencil (B,MB) (i.e., increase \phi ), or additional resolvent
approximation matrix terms (i.e., increase \psi ), and only repeat the RR projection
step. This approach can be repeated more than once, i.e., until the residual norms of
all nev approximate eigenpairs are less than a chosen threshold.D
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Table 4.1
Total number of linear system solutions of the form B(\zeta )xd = bd and S(\zeta )xs = bs computed by

Algorithm 2.2, Algorithm 3.1, Algorithm 3.2, and the algorithm used in the FEAST software package.
The variables \eta 1 \in \BbbN , \eta 2 \in \BbbN , \eta 3 \in \BbbN denote the number of iterations performed by Algorithm 2.1
when called from Algorithm 2.2, Algorithm 3.1, and Algorithm 3.2, respectively. The variable \tau \phi 
denotes the number of linear systems of the form B(\zeta c)xd = bd required to compute the \phi sought
eigenvectors of the pencil (B  - \zeta cMB ,MB) by implicitly restarted Arnoldi (IRA) combined with
shift-and-invert [27]. The variable \eta 4 \in \BbbN denotes the number of iterations performed by subspace
iteration.

Alg. 3.2

Alg. 2.2 Alg. 3.1 MF = 0 MF \not = 0 Sub. it.

B(\zeta )xd = bd 2N\eta 1 N\eta 2 \eta 3(\psi + 1) + \tau \phi 2\eta 3(\psi + 1) + \tau \phi 2mN\eta 4
S(\zeta )xs = bs N\eta 1 N\eta 2 N\eta 3 N\eta 3 mN\eta 4

4. Practical details.

4.1. Computational cost comparison. The main computational bottleneck
of the rational filtering algorithms discussed in this paper is the solution of complex-
shifted sparse linear systems of the form B(\zeta )xd = bd and S(\zeta )xs = bs. Therefore, an
algorithm that requires fewer such linear system solutions will typically be faster as
well.

Table 4.1 summarizes the computational costs of Algorithm 2.2, Algorithm 3.1,
and Algorithm 3.2, where we assume that all linear systems are solved by a direct
solver and their complexity is oblivious to the actual value of \zeta /\in \Lambda (B,MB). The
variables \eta 1 \in \BbbN , \eta 2 \in \BbbN , \eta 3 \in \BbbN denote the number of iterations performed by
Algorithm 2.1 when called from Algorithm 2.2, Algorithm 3.1, and Algorithm 3.2,
respectively. It is straightforward to observe that when \eta 1 \approx \eta 2 \approx \eta 3, Algorithm 3.1
requires about half as many linear system solutions of the form B(\zeta )xd = bd as Algo-
rithm 2.2 does. Moreover, Algorithm 3.2 requires a number of linear system solutions
which is independent of the number of poles N . Thus, larger values of N should
increase the computational complexity gap in favor of Algorithm 3.2. For comparison
purposes, we also list the computational complexity of subspace iteration applied to
matrix \rho (M - 1A) with an initial subspace of dimension m \geq nev. In contrast to the
algorithms proposed in this paper, the convergence of subspace iteration depends on
the dimension m of its initial subspace.

4.2. Matrix partitionings. The matrix partitioning algorithms discussed in
this paper can take advantage of a reordering of the pencil (A,M) so that the pencil
(B,MB) is block-diagonal. For Algorithm 3.2, this implies that the computation of the
matrix V\phi then decouples into p independent generalized non-Hermitian eigenvalue
problems. The eigenvalues of each one of these p matrix pencils can then be computed
in parallel.

To obtain the above reordering we partition the adjacency graph of the matrix
| A| +

\bigm| \bigm| AT \bigm| \bigm| + | M | +
\bigm| \bigm| MT

\bigm| \bigm| into p \geq 2 nonoverlapping partitions [41]. We then reorder
the equations/unknowns so that the interior variables across all partitions are ordered
before the interface ones. The latter procedure is equivalent to transforming the
original pencil (A,M) into the form

\bigl( 
PAPT , PMPT

\bigr) 
, where the n \times n matrix P

holds the row permutation of (A,M). The eigenpairs of (A,M) are connected withD
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those of the matrix pencil
\bigl( 
PAPT , PMPT

\bigr) 
through the formula

PAPT
\Bigl( 
Px(i)

\Bigr) 
= \lambda iPMPT

\Bigl( 
Px(i)

\Bigr) 
.

The matrices PAPT and PMPT can be written us

PAPT =

\left(       
B1 F1

B2 F2

. . .
...

Bp Fp

E1 E2 . . . Ep C

\right)       , PMPT =

\left(        
M

(1)
B M

(1)
F

M
(2)
B M

(2)
F

. . .
...

M
(p)
B M

(p)
F

M
(1)
E M

(2)
E . . . M

(p)
E MC

\right)        ,

where matrices Bi and M
(i)
B are square matrices of size di \times di, matrices Fi (Ei) and

M
(i)
F

\bigl( 
M

(i)
E

\bigr) 
are of size di\times si (si\times di), and the integers di and si denote the number

of interior and interface nodes located in the ith subdomain of the adjacency graph
of | A| +

\bigm| \bigm| AT \bigm| \bigm| + | M | +
\bigm| \bigm| MT

\bigm| \bigm| , respectively. On the other hand, matrices C and MC are
of size s\times s, where s =

\sum p
i=1 si.

5. Experiments. The numerical experiments presented in this section were per-
formed in a MATLAB environment (version R2018b), using 64-bit arithmetic, on a
single core of a MacBook Pro equipped with a quad-core 2.5 GHz Intel Core i7 proces-
sor and 16 GB 1600 MHz DDR3 of system memory. The matrices used throughout
our experiments are listed in Table 5.1 and can be retrieved from the SuiteSparse
Matrix Collection [9] and the Matrix Market repository [7].

Table 5.1
n: size of matrices A and M ; nnz(.): number of nonzero entries.

\# Matrix pencil n nnz(A)/n nnz(M)/n Application

1. \ttb \ttf \ttw \ttseven \tteight \tttwo 782 9.6 7.6 Engineering
2. \ttu \ttt \ttm \ttone \ttseven \ttzero \ttzero \ttb 1,700 12.7 1.0 Electromagnetics
3. \ttw \tta \ttn \ttg \ttone 2,903 6.6 1.0 Semiconductors
4. \ttr \ttd \ttb \ttthree \tttwo \ttzero \ttzero \ttl 3,200 5.9 1.0 CFD
5. \ttt \tth \tte \ttr \ttm \tta \ttl 3,456 19.2 1.0 Thermal
6. \ttd \ttw \ttfour \ttzero \ttnine \ttsix 8,192 5.1 1.0 Engineering
7. \ttb \tti \ttg 13,209 6.9 1.0 Directed weighted graph

Throughout the rest of this section we consider the application of three different
algorithms: (a) Algorithm 3.1, (b) Algorithm 3.2, and (c) subspace iteration with the
matrix \rho (M - 1A), where the initial subspace is of dimension m \geq nev. We will refer
to this approach as RSI. As a separate note, a high-performance implementation of
subspace iteration with rational filtering can be found in the FEAST software package.

The radius of the disk \scrD is set equal to 1.001 times the radius of the minimal
enclosing circle of eigenvalues \lambda 1, . . . , \lambda nev . The rational filter function in (2.6) is con-
structed through discretizing (2.4) by the trapezoidal rule of order N . Throughout
the rest of this section we assume that the iterative loop in Algorithm 2.1 terminates
when the ratio of the smallest to the largest singular value is less than or equal to
1.0 \times 10 - 12, and we set a maximum number of 400 iterations. All matrix pencils
were reordered as discussed in section 4.2 using p = 8. The residual norm of each

approximate eigenpair (\^\lambda , \^x) is computed as \^\rho = \| A\^x - \^\lambda M \^x\| 2

\| A\^x\| 2+| \^\lambda | \| M \^x\| 2
. All algorithms dis-

cussed in this section return only those approximate eigenpairs (\^\lambda , \^x) for which \^\lambda \in \scrD .
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When more than nev approximate eigenvalues are located in \scrD , we purge the spurious
ones by keeping only those for which the associated residual norm is smaller than the
threshold tolerance 1.0 \times 10 - 3. This approach was successful in all experiments we
performed.

5.1. A detailed example. We consider the computation of the nev = 20 eigen-
values of smallest modulus (and their associated eigenvectors) of the matrices wang1
and thermal. The size of the Schur complement matrices after the application of the
graph partitioner is equal to s = 576 and s = 668, respectively. The application of
Algorithm 3.1 is visualized in Figure 5.1. The first row of plots shows the nev sought
and nev immediate unwanted eigenvalues of smallest modulus, while the second row
of plots shows the ratio of the smallest to the largest singular value as determined
at each iteration of Algorithm 2.1 during its application to matrix

\sum N
j=1 \omega jS(\zeta j)

 - 1.3

Notice that this ratio approximates zero and decreases faster for larger values of N as
a consequence of the fact that the rank of the matrix

\sum N
j=1 \omega jS(\zeta j)

 - 1 approaches that

of the matrix
\sum nev
i=1 y

(i)
\bigl( 
\^y(i)
\bigr) H

, which is bounded from above by nev. Increasing the
value of N does not always lead to a proportional gain in terms of convergence rate.
For example, increasing N = 8 to N = 16 reduces the number of iterations by a factor
of at least four for the first two matrices considered. On the other hand, increasing
N = 16 to N = 32 reduces the number of iterations by a factor which is smaller than
two. Moreover, small values of N , e.g., N = 4, might lead to very slow convergence.
The third and fourth rows of plots show the associated eigenvalue errors (left col-
umn) and residual norms (right column) returned by Algorithm 3.1. For the choice

N = 4, the range of matrices
\sum N
j=1 \omega jB(\zeta j)

 - 1F (\zeta j)S(\zeta j)
 - 1 and

\sum N
j=1 \omega jS(\zeta j)

 - 1 was
not captured to high precision, and this is reflected in the approximation of the sought
eigenpairs. For the choices N = 8, N = 16, and N = 32, the range of both matrices
was captured up to the required tolerance and the sought eigenpairs were captured
to higher accuracy.

The results in Figure 5.1 suggest that larger values of N can lead to higher accu-
racy in Algorithm 3.1 even though the range of matrices

\sum N
j=1 \omega jB(\zeta j)

 - 1F (\zeta j)S(\zeta j)
 - 1

and
\sum N
j=1 \omega jS(\zeta j)

 - 1 is captured highly accurately for allN = 8, N = 16, andN = 32.

Consider, for example, the matrix
\sum N
j=1 \omega jS(\zeta j)

 - 1 =
\bigl[ 
\rho (\lambda i)y

(i)
\bigr] 
\rho (\lambda i)\not =0

\bigl[ 
\^y(i)
\bigr] H
\rho (\lambda i)\not =0

.

In practice, even though the condition in Theorem 3.1 holds, some of the trailing non-
zero singular values of the matrix

\sum N
j=1 \omega jS(\zeta j)

 - 1 might be (much) smaller than those

of
\bigl[ 
\rho (\lambda i)y

(i)
\bigr] 
\rho (\lambda i) \not =0

, thus ``suppressing"" some directions of span
\bigl( \bigl[ 
\rho (\lambda i)y

(i)
\bigr] 
\rho (\lambda i)\not =0

\bigr) 
in the range of the matrix

\sum N
j=1 \omega jS(\zeta j)

 - 1. Since these directions generally have a

nonzero projection to the subspace span
\bigl( 
y(1), . . . , y(nev)

\bigr) 
, we expect that the accuracy

to which we can capture the latter subspace might also be reduced. The same holds
for span

\bigl( 
u(1), . . . , u(nev)

\bigr) 
and the range of matrix

\sum N
j=1 \omega jB(\zeta j)

 - 1F (\zeta j)S(\zeta j)
 - 1 as

well.
Figure 5.2 visualizes the above discussion for matrix wang1. In particular, we

plot the singular values of the matrices
\bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] 
, as well

as those of their matrix product, for h = 1 and h = 8, and nev = 20. Smaller
values of h simulate larger values of N . The size of the Schur complement ma-
trices was varied as s = 182 and s = 576. Observe that the singular values of

3Results for matrix
\sum N

j=1 \omega jB(\zeta j)
 - 1F (\zeta j)S(\zeta j)

 - 1 were essentially identical and thus not re-
ported.
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Fig. 5.1. Application of Algorithm 3.1 to matrices wang1 (left column) and thermal (right
column). First row: the nev sought eigenvalues of (A,M) and nev immediate unwanted eigenvalues
of smallest modulus. Second row: the ratio of smallest to largest singular value of matrix G as
determined at each iteration of Algorithm 2.1 during its application to matrix

\sum N
j=1 \omega jS(\zeta j)

 - 1.
Third row: absolute eigenvalue error. Fourth row: residual norm. The indices of the x-axis are
organized such that index ``i"" corresponds to the sought eigenvalue with the ith smallest real part.
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Fig. 5.2. Singular values of matrices
\bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] 
and their prod-

uct
\bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] H
for different values of h \in \BbbN and size s of the matrix\sum N

j=1 \omega jS(\zeta j)
 - 1. In all figures, we set nev = 20. First row: h = 1, and matrix A was partitioned

so that the size of each Schur complement matrix in
\sum N

j=1 \omega jS(\zeta j)
 - 1 is equal to s = 182 (left) and

s = 576 (right). Second row: same as before but now we set h = 8. Third row: angles between

range
\bigl( \bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] H \bigr) 
and vectors y(1), . . . , y(nev).

the matrix
\bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] H
trail those of

\bigl[ 
y(1), . . . , y(hnev)

\bigr] 
. As

a result, some directions of span
\bigl( 
y(1), . . . , y(hnev)

\bigr) 
are captured less accurately in

range
\bigl( \bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] H \bigr) 
. The latter effect is sketched in the

bottom row of plots where we plot the angle between the vectors y(1), . . . , y(nev) and

range
\bigl( \bigl[ 
y(1), . . . , y(hnev)

\bigr] 
,
\bigl[ 
\^y(1), . . . , \^y(hnev)

\bigr] H \bigr) 
. Ideally, all angles should be equal to

zero. However, we observe larger angles when h is larger (i.e., N gets smaller) and
the vectors y(i) and \^y(i) lie in a lower-dimensional subspace (i.e., s gets smaller).

Figure 5.3 plots the eigenvalue approximation errors and corresponding residual
norms in the approximation of the nev smallest modulus eigenvalues and associated
eigenvectors of the thermal matrix by Algorithm 3.2. The number of computed
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Fig. 5.3. Application of Algorithm 3.2 to the thermal matrix. Top row: absolute eigenvalue
errors for different values of \psi and \phi = 14 (left) and \phi = 160 (right). Bottom row: residual norms
for the same values. The indices of the x-axis are organized such that index ``i"" corresponds to the
sought eigenvalue with the ith smallest real part.

matrix resolvent terms was set to \psi = 0, 1, 2 and \psi = 3, while the number of
computed (deflated) eigenvectors was varied to \phi = 14 and \phi = 160. The choice
\phi = 14 coincides with computing only those eigenvalues of the pencil (B,MB) located
inside the disk \scrD . The number of poles was set equal to N = 16.4 As expected, the
accuracy in the approximation of the sought eigenpairs improves with larger values of
\psi since the action of the matrix

\bigl( 
I  - V\phi \^V

H
\phi MB

\bigr) 
B(\lambda i)

 - 1 is now approximated more
accurately. Similarly, increasing \phi = 14 to \phi = 160 leads to enhanced accuracy. Note
that the major improvements in accuracy come from increasing the value of \psi . This
was a general trend observed for the rest of our test matrices as well. Moreover, as
was also discussed in section 3.3, the accuracy obtained by Algorithm 3.2 depends on
the location of each eigenvalue \lambda i \in \scrD since the action of

\bigl( 
I  - V\phi \^V

H
\phi MB

\bigr) 
B(\lambda i)

 - 1

is better approximated for those \lambda i \in \scrD located closer to the center of the disk \scrD .
This is in contrast to Algorithm 3.1, which provides an almost uniform accuracy for
all eigenpairs (\lambda i, x

(i)) for which \lambda i \in \scrD .

5.2. Comparisons against subspace iteration with rational filtering. We
now consider the computation of the nev = 40 eigenvalues of smallest modulus (and
their associated eigenvectors) of the matrix pencil bfw782 and the matrices utm1700b,
rdb3200l, dw4096, and big. Figure 5.4 plots the 2nev eigenvalues of smallest modulus
of the last four matrices. Table 5.2 lists the maximum and minimum absolute
eigenvalue errors and associated residual norms returned by Algorithm 3.1 asN varies.
The number of iterations performed by Algorithm 3.1 is also listed. As expected,

4The results obtained for the choices N = 8 and N = 32 were essentially identical to those for
the case N = 16 and thus are not reported.
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Fig. 5.4. Plot of the 2nev eigenvalues of smallest modulus of some of the matrices listed in
Table 5.1.

Table 5.2
Minimum and maximum eigenvalue errors and residual norms returned by Algorithm 3.1 for

the test matrices listed in Table 5.1. The total number of iterations performed by Algorithm 3.1 is
also reported. A value ``F"" indicates that the loop in Algorithm 3.1 did not terminate within 400
iterations.

Algorithm 3.1

min | \lambda  - \^\lambda | max | \lambda  - \^\lambda | min \^\rho max \^\rho It

\ttb 
\ttf 
\ttw 
\ttseven 
\tteight 
\tttwo \bfitN = \bffour 4.3 \times 10 - 1 2.1 \times 10 - 0 3.2 \times 10 - 2 2.4 \times 10 - 1 87

\bfitN = \bfeight 1.5 \times 10 - 2 3.2 \times 10 - 1 2.9 \times 10 - 4 2.0 \times 10 - 2 87

\bfitN = \bfone \bfsix 1.3 \times 10 - 7 4.5 \times 10 - 4 5.9 \times 10 - 8 1.0 \times 10 - 6 76

\bfitN = \bfthree \bftwo 1.1 \times 10 - 9 7.4 \times 10 - 6 6.6 \times 10 - 10 2.8 \times 10 - 8 55

\ttu 
\ttt 
\ttm 
\ttone 
\ttseven 
\ttzero 
\ttzero 
\ttb \bfitN = \bffour 1.4 \times 10 - 8 1.3 \times 10 - 4 2.0 \times 10 - 7 3.9 \times 10 - 6 235

\bfitN = \bfeight 1.2 \times 10 - 9 3.2 \times 10 - 6 6.9 \times 10 - 9 2.5 \times 10 - 7 134

\bfitN = \bfone \bfsix 8.0 \times 10 - 12 7.0 \times 10 - 8 5.9 \times 10 - 10 4.0 \times 10 - 8 72

\bfitN = \bfthree \bftwo 1.6 \times 10 - 11 3.1 \times 10 - 8 6.6 \times 10 - 10 6.0 \times 10 - 8 53

\ttr 
\ttd 
\ttb 
\ttthree 
\tttwo 
\ttzero 
\ttzero 
\ttl \bfitN = \bffour 2.0 \times 10 - 5 1.7 \times 10 - 3 9.1 \times 10 - 4 1.5 \times 10 - 2 296

\bfitN = \bfeight 7.2 \times 10 - 9 5.7 \times 10 - 4 2.3 \times 10 - 7 3.5 \times 10 - 6 161

\bfitN = \bfone \bfsix 1.6 \times 10 - 12 3.9 \times 10 - 9 7.5 \times 10 - 10 4.5 \times 10 - 8 77

\bfitN = \bfthree \bftwo 1.3 \times 10 - 15 2.3 \times 10 - 13 2.1 \times 10 - 11 5.6 \times 10 - 10 52

\ttd 
\ttw 
\ttfour 
\ttzero 
\ttnine 
\ttsix \bfitN = \bffour 2.4 \times 10 - 8 4.0 \times 10 - 5 2.9 \times 10 - 5 1.4 \times 10 - 2 F

\bfitN = \bfeight 7.2 \times 10 - 12 6.1 \times 10 - 9 1.9 \times 10 - 8 3.1 \times 10 - 5 329

\bfitN = \bfone \bfsix 2.6 \times 10 - 15 1.8 \times 10 - 10 2.7 \times 10 - 10 5.5 \times 10 - 6 147

\bfitN = \bfthree \bftwo 9.8 \times 10 - 15 3.4 \times 10 - 13 2.6 \times 10 - 12 1.5 \times 10 - 11 75

\ttb 
\tti 
\ttg 

\bfitN = \bffour 4.8 \times 10 - 6 3.0 \times 10 - 2 3.8 \times 10 - 4 1.1 \times 10 - 2 377

\bfitN = \bfeight 1.5 \times 10 - 11 3.6 \times 10 - 6 2.1 \times 10 - 6 1.2 \times 10 - 4 226

\bfitN = \bfone \bfsix 6.2 \times 10 - 13 1.7 \times 10 - 9 1.0 \times 10 - 8 2.8 \times 10 - 6 108

\bfitN = \bfthree \bftwo 1.3 \times 10 - 14 6.3 \times 10 - 11 1.8 \times 10 - 9 1.3 \times 10 - 6 68
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Table 5.3
Maximum eigenvalue error and residual norm returned by Algorithm 3.2 for some of the test

matrices listed in Table 5.1. These results were obtained by setting N = 16 and varying the value of
computed resolvent terms \psi .

\ttb \ttf \ttw \ttseven \tteight \tttwo \ttu \ttt \ttm \ttone \ttseven \ttzero \ttzero \ttb \ttr \ttd \ttb \ttthree \tttwo \ttzero \ttzero \ttl \ttw \ttd \ttfour \ttzero \ttnine \ttsix \ttb \tti \ttg 

| \lambda 
 - 

\^ \lambda 
| \psi = 0 9.0 \times 10 - 2 5.1 \times 10 - 3 1.5 \times 10 - 1 2.8 \times 10 - 1 7.2 \times 10 - 2

\psi = 1 5.9 \times 10 - 3 1.0 \times 10 - 5 9.1 \times 10 - 3 1.2 \times 10 - 1 2.0 \times 10 - 3

\psi = 2 1.5 \times 10 - 4 2.8 \times 10 - 7 2.4 \times 10 - 4 2.9 \times 10 - 3 1.4 \times 10 - 5

\psi = 3 8.4 \times 10 - 6 9.0 \times 10 - 8 7.5 \times 10 - 6 9.7 \times 10 - 5 8.9 \times 10 - 7

\^\rho 

\psi = 0 4.3 \times 10 - 2 1.2 \times 10 - 3 1.0 \times 10 - 0 4.6 \times 10 - 1 2.6 \times 10 - 1

\psi = 1 4.1 \times 10 - 3 4.7 \times 10 - 4 6.0 \times 10 - 2 4.3 \times 10 - 1 1.1 \times 10 - 1

\psi = 2 2.4 \times 10 - 3 2.8 \times 10 - 6 1.6 \times 10 - 3 3.0 \times 10 - 2 4.0 \times 10 - 3

\psi = 3 3.8 \times 10 - 5 6.6 \times 10 - 7 7.3 \times 10 - 5 1.2 \times 10 - 4 6.2 \times 10 - 5

Table 5.4
Average number of linear systems of the form B(\zeta j)xd = bd and S(\zeta j)xs = bs solved per

pole \zeta j , j = 1, . . . , N . For Algorithm 3.2, we consider only the case \psi = 3. For RSI, we set
m := m1 = 1.1nev , m := m2 = 1.5nev , and m := m3 = 2nev.

\ttb \ttf \ttw \ttseven \tteight \tttwo \ttu \ttt \ttm \ttone \ttseven \ttzero \ttzero \ttb \ttr \ttd \ttb \ttthree \tttwo \ttzero \ttzero \ttl \ttd \ttw \ttfour \ttzero \ttnine \ttsix \ttb \tti \ttg 

B(\zeta j) S(\zeta j) B(\zeta j) S(\zeta j) B(\zeta j) S(\zeta j) B(\zeta j) S(\zeta j) B(\zeta j) S(\zeta j)

\bfitN 
=

\bfeight Alg. 3.1 87 87 134 134 161 161 329 329 226 226
Alg. 3.2 112 87 76 134 71 161 176 329 127 226
RSI(m1) 264 132 616 308 616 308 616 308 704 352
RSI(m2) 120 60 240 120 240 120 480 240 480 240
RSI(m3) 160 80 320 160 320 160 320 160 320 160

\bfitN 
=

\bfone 
\bfsix Alg. 3.1 76 76 72 72 77 77 147 147 108 108

Alg. 3.2 50 76 23 72 26 77 42 147 33 108
RSI(m1) 440 220 352 176 352 176 616 308 352 176
RSI(m2) 360 180 120 60 240 120 240 120 240 120
RSI(m3) 320 160 160 80 160 80 160 80 160 80

\bfitN 
=

\bfthree 
\bftwo Alg. 3.1 55 55 53 53 52 52 75 75 68 68

Alg. 3.2 20 55 9 53 10 52 12 75 12 68
RSI(m1) 264 132 176 88 264 132 616 308 352 176
RSI(m2) 240 120 120 60 120 60 240 120 240 120
RSI(m3) 160 80 160 80 160 80 160 80 160 80

larger values of N lead to fewer iterations since the rational filter \rho (\zeta ) decays faster
outside \scrD . In agreement with the results discussed in Figure 5.2, larger values of N
also lead to higher accuracy. Additionally, Table 5.3 lists the maximum eigenvalue
error and residual norm returned by Algorithm 3.2 when the value of \phi is set equal
to the number of eigenvalues located inside the disk \scrD and \psi varies.

Table 5.4 lists the average number (with respect to N) of linear systems of the
form B(\zeta )xd = bd and S(\zeta )xs = bs solved by Algorithm 3.1, Algorithm 3.2, and RSI.5

The loop in RSI terminates when the maximum residual in the approximation of the
nev sought eigenpairs becomes smaller than or equal to the maximum residual norm
achieved by Algorithm 3.1. These residual norms listed in Table 5.2. Notice that
the number of linear systems B(\zeta )xd = bd solved by Algorithm 3.2 is independent of
N , and thus the average value becomes smaller as N increases. On the other hand,
the accuracy achieved by Algorithm 3.2 is also lower. For RSI, we consider three
different dimensions of the starting subspace, set as m = 1.1nev, m = 1.5nev, and
m = 2nev. The rate of convergence of RSI is dictated by the ratio \rho (\lambda m)/\rho (\lambda nev ),

5These numbers do not include the cost to compute a good approximation of nev in RSI.
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and thus the convergence rate improves as m increases. We observe two main trends.
First, for small values of m, e.g., m = 1.1nev, RSI is considerably more expensive
than both Algorithm 3.1 and Algorithm 3.2. This is because for small values of m the
ratio \rho (\lambda m)/\rho (\lambda nev ) might not be close to zero, thus leading to slower convergence
in RSI. Second, as m increases, the average number of linear systems solved by RSI
generally decreases: however, the large value of m might lead to a few unnecessary
solves; i.e., for N = 32 choosing m = 2nev sometimes provides the same accuracy
with m = 1.5nev.

0 1 2 3 4
10

-16

10
-12

10
-8

10
-4

10
-2

0 1 2 3 4
10

-16

10
-12

10
-8

10
-4

10
-2

Fig. 5.5. Maximum residual norm achieved at each iteration of RSI as N varies and m =
1.5nev , nev = 40. The values listed at the origin denote the maximum residual norm achieved by
Algorithm 3.1 before postprocessing by RSI.

In the prior experiment, we assumed the tolerance threshold in RSI was dictated
by the maximum residual norm achieved by Algorithm 3.1. Since Algorithm 3.1 is a
one-shot method, its maximum attainable accuracy is lower than that of RSI since
the latter is an iterative approach. Yet the accuracy of the approximate eigenpairs
returned by Algorithm 3.1 can improve using the corresponding eigenvectors as an
initial subspace in a separate run of RSI. While this enhancement has an increased
computational cost, it is generally still cheaper than applying subspace iteration with
a random starting subspace since it avoids the overhead associated with computing
a good approximation of nev through the techniques described in [42, 10]. Figure 5.5
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plots the maximum residual norm achieved at the end of each iteration when RSI is
applied to matrices utm1700b and dw4096 with m = 1.5nev and nev = 40. The initial
subspace in RSI was set using (a) m random vectors as in the results reported above
(dashed lines), and (b) the nev approximate eigenvectors returned by Algorithm 3.1
augmented by m  - nev random vectors (solid lines). In the latter case, the value at
the origin denotes the accuracy achieved by Algorithm 3.1 before postprocessing by
RSI. The combination of RSI with Algorithm 3.1 leads to faster convergence since
the initial subspace is of much higher quality. What approach will be faster overall
depends on the particular problem. For example, choosing N = 8 and a random
initial subspace leads to very slow convergence in the case of matrix dw4096.

6. Conclusion. This paper presents a class of algorithms for the computation
of all eigenvalues (and associated eigenvectors) of non-Hermitian matrix pencils lo-
cated inside a disk. The proposed algorithms approximate the sought eigenpairs by
harmonic RR projections on subspaces built by computing range spaces of rational
matrix functions through randomized range finders. These rational matrix functions
are designed so that directions associated with nonsought eigenvalues are dampened
to (approximately) zero. Moreover, the proposed algorithms do not require any a
priori estimation of the number of eigenvalues located inside the disk. The competi-
tiveness of the proposed algorithms was demonstrated through numerical experiments
performed on a few test problems.

Several research directions are left as future work. One such direction is the ex-
tension of the algorithms presented in this paper with non-Hermitian Krylov subspace
iterative solvers and hierarchical preconditioners such as those discussed in [11]. More-
over, although this paper focused on algorithms, rational filtering eigenvalue solvers
owe a large portion of their appeal in the ample parallelism they offer, and a dis-
tributed memory implementation of the proposed technique would be also of interest.
Another interesting research direction is the extension of the algorithms presented in
this paper for the computation of a partial Schur decomposition, or the simultaneous
computation of both the left and the right eigenvectors.
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