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ABSTRACT:

Information, energy, and matter are fundamental properties of all levels of biological
organization, and life emerges from the continuous flux of matter, energy, and information. This
perspective piece defines and explains each of the three pillars of this nexus. We propose that a
quantitative characterization of the complex interconversions between matter, energy, and
information that comprise this nexus will help us derive biological insights that connect
phenomena across different levels of biological organization. We articulate examples from
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multiple biological scales that highlight how this nexus approach leads to a more complete
understanding of the biological system. Metrics of energy, information, and matter can provide a
common currency that helps link phenomena across levels of biological organization. The
propagation of energy and information through levels of biological organization can result in
emergent properties and system-wide changes that impact other hierarchical levels. Deeper
consideration of measured imbalances in energy, information, and matter can help researchers
identify key factors that influence system function at one scale, highlighting avenues to link
phenomena across levels of biological organization and develop predictive models of biological
systems.

INTRODUCTION

Our current understanding of Biology has been built primarily through reductionism. This
reductionist approach has resulted in highly specialized knowledge; however, developing better
ways to identify, characterize, and predict phenomena across spatial and temporal scales is
becoming increasingly important. Better understanding and engineering of biological systems
will undoubtedly require new conceptual and analytical frameworks that transcend traditional
disciplinary boundaries in order to discover universal rules of life. Here we describe one
possible conceptual framework: that biological systems in their broadest definition are anti-
entropy systems that emerge from the nexus of energy, information, and matter. We
propose that one avenue for reintegrating biological disciplines is through studying this
nexus across systems and scales in order to develop quantitative and, ultimately,
predictive models of biological phenomena. This perspective piece explains each of the
three pillars of this nexus. We will articulate examples from multiple biological scales that
highlight how this nexus approach leads to a more complete understanding of the biological
system. Finally, we provide some opportunities and challenges to employing this nexus
approach in practice. Our vision is that characterizing the nexus of energy, information, and
matter will help researchers identify system components currently missing from biological
studies and thereby reshape our experiments and interpretations.

How do energy, information, and matter interact to produce outcomes in biological systems?

Information, energy, and matter are fundamental properties of all levels of biological
organization (Schroedinger 1944; Prigogine 1967; Murphy & O’Neill 1997; Beck & Schlogel
1993; Maynard Smith 1999, 2000; Brewer and Smith 2011), and life emerges from the
continuous fluxes of matter, energy, and information. We use the term energy to refer to a
property of physical or chemical resources that enables work to support life functions such as
moving, feeding, reproducing, and growing. The practical definition of information for the
biological sciences that we use here is anything that has the potential to reduce uncertainty for a
biological entity (e.g. DNA, RNA, communication signals between cells or organisms, presence
or absence of participants in a community). This definition of information is based primarily in
information theory and is necessarily broad because of our focus on a diversity of biological
systems (i.e. from atomic to ecological). However, different types of information may be more
relevant to certain biological questions (summarized recently by O’Connor et al. 2019). We
propose that a quantitative characterization of the complex interconversions between matter,
energy, and information that constitute this nexus will help us derive biological insights that
connect phenomena across different levels of biological organization and that could improve our
ability to predict responses of biological systems to disturbance.
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Matter can be quantified as mass, making it relatively straightforward to relate across levels of
biological organization. Although experimentally determining mass may be technically
challenging, particularly at the molecular or ecosystem scales, the same units apply across
scales. However, the form that matter takes will have a dramatic impact on both energy and
information. For example, biological units with the same mass may differ in elemental
composition, molecular complement, cell number or cell size, organ sizes, or species
composition. Determining which mass components or forms are most relevant for information
and energy flow is essential to formulating a predictive theory of the energy-information-matter
nexus.

Energy can be quantified at all levels of biological organization as well. For example, at the
molecular scale, chemical reactions such as ATP hydrolysis can release energy, such that
production or breakdown of ATP or other molecules are common measures of energetic flux. At
the cellular, tissue, or organismal levels, energy use is typically estimated by measuring
respiration rate. At the ecosystem scale, energy is quantified by using energy balance equations
to estimate radiation inputs and outputs and storage of energy in biomass (e.g. photosynthetic
carbon fixation) and its mobilization and transformation as it moves through an ecosystem (e.g.
Kooijman 2010). Radiative balance regulates heat exchange and temperature, both of which are
crucial in determining critical biological processes ranging from metabolism to survival and
reproduction. Quantifying energy necessarily depends on measuring energy change, and
experimental techniques often measure only a subset of the energetic flux, challenging a
complete consideration of energy conversion.

Information can also be quantified, in principle, at all levels of biological organization. Entropy
is a measure of uncertainty in a system (Box 1), and information is negatively related to
uncertainty in a quantifiable way. The field of information theory (first developed by Claude
Shannon, 1948) measures information as statistical entropy and provides well-defined methods
for quantifying information. The term ‘entropy’ is used both in information theory and
thermodynamics, and entropy in these two cases does not represent equivalent concepts
(Wicken 1987; Box 1). Because biological systems are composed of structural units (e.g. atoms,
molecules, cells, organisms), information is inherent to the structure of the biological system;
this syntactic information results from the non-randomness of biological systems in time and
space (O’'Connor et al. 2019). To the extent that biological systems are ordered and in
disequilibrium with their surroundings, they require energy to overcome the natural tendency of
physical systems to move towards increasing entropy. Information theoretic approaches have
been applied across scales, from the molecular scale (e.g. in the genetic code; Vetsigian et al.
2006) to the ecological scale (e.g. to quantify species diversity using Shannon’s Diversity Index
and Maximum Entropy methods (Barnes et al. 1998; Spellerberg & Fedor 2003; Haegeman &
Etienne 2010). Information theory is a central tenet both of sensory neuroscience and of signal
detection theory in psychology and animal behavior, and has recently been applied to
biochemical and social networks. However, despite the formal statistical definition and its
demonstrated application to quantifying information, actually measuring information in biological
contexts is quite difficult. One reason is that biological systems include different types of
information, and the unification of these types of information remains challenging (O’Connor et
al. 2019). While syntactic information describes the nonrandom spatiotemporal structure in a
system, semiotic information refers to what signals (e.g. between cells or between organisms)
or sensory cues from the environment represent about the state of the system (O’Connor et al.
2019; see also structural and dynamic information; Morowitz 1968). The distinction between
these types of information is useful because different subfields of biology may use the same
term (i.e. ‘information’) to describe vastly different concepts. As our case studies below
illustrate, information within a molecule, cell, or ecosystem can take multiple forms, so a
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comprehensive accounting of information requires a deep understanding of the biology.
Moreover, biological systems do not process and act upon all available information, such that
quantifying information content using information theory may overestimate the amount of
information that is biologically relevant.

Although living systems use energy and matter to create order and hence are anti-entropy
systems, noise itself can be advantageous. For example, random mutation is necessary for
evolution to occur. New enzyme functions (Nasvall et al. 2012), strain variants (Woods et al.
2011), and metabolic potential that can be accessed to gain a competitive advantage (Vemuri et
al. 2006; Catlett et al. 2015) all require some amount of entropy as the creative canvas. On
more rapid time scales, stochasticity in neural systems can also improve information processing
performance (McDonnell & Ward 2011). These examples illustrate that living systems do not
universally move towards reducing uncertainty or stochasticity by maximizing information
transmission and processing.

In biological scenarios, energy, matter, and information are constantly being interconverted, so
the nexus between them is a dynamic system. Thermodynamics uses straightforward equations
that relate energy, information, and matter (Box 1). Because living systems are not closed
systems, but rather open systems that exist far from equilibrium (Schneider & Kay 1994),
applying physical principles to biology is inherently complex. Our typical goal as biologists is not
to completely account for the changes in statistical entropy, enthalpy, and Gibbs free energy in
cells, organisms, or ecosystems. Practitioners of biological subdisciplines typically study a part
of any given system and account for only a subset of all inputs, outputs, and system
components in their studies. Explicit consideration of the energy-information-matter nexus could
help identify overlooked parts of complex systems. For example, a physiologist might measure
oxygen consumption as a measure of energy consumption through respiration but not quantify
heat loss or gain. Similarly, a molecular biologist might measure DNA content without
characterizing the genetic sequence that determines information content or potential (but see
Jiang and Xu 2010 for one approach to quantify the information content of DNA). We propose
that explicitly considering the nexus of energy, information, and matter can highlight critical
inputs, outputs, and components currently missing from biological studies and thereby reshape
our experiments and interpretations.

To illustrate insights derived from considering the energy-information-matter nexus, we highlight
the ribosome, a highly conserved ribonucleoprotein complex — a molecular machine — that
generates the polypeptides essential to all organisms (Schmeing & Ramakrishnan 2009). By
iteratively unravelling the many ways energy and information interact in the context of ribosome
function, we have learned not only how cells engage with, develop in, and respond to their
environment (Ecker & Schaechter 1963; Maitra & Dill 2015); we have also gained a tool to
describe the evolutionary trajectory of life on earth (Woese & Fox 1977). Ribosomes integrate
environmental and cellular information to translate the ribonucleotide triplet code from
messenger RNA into a polypeptide of amino acid residues (Nirenberg & Matthaei 1961;
Nirenberg & Leder 1964), thereby using information and energy to reconfigure matter into
proteins necessary for essential cellular chemical and physical work. The resulting proteins both
use and produce energy. Concepts from information theory and thermodynamics have been key
to understanding ribosome function (Gamow et al. 1956, Sievers et al. 2004). Ribosomes
reduce thermodynamic entropy by binding substrates and using energy stored in bonds of
guanosine triphosphate (GTP) to catalyze polypeptide chain elongation and termination. GTP
availability largely determines the rate of protein synthesis as guided by information from the
triplet code (Savelsbergh et al. 2000; Aqvist & Kamerlin 2015). The physical structure of
ribosomes depends on RNA and protein sequences of ribosomal components and on
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environmental factors such as temperature (VanBogelen & Neidhardt 1990), such that
information and energy external to the ribosome influence its material form. Characterizing
information, energy, and matter within the ribosome and its environment has revealed
ribosomes to be sophisticated sensors of metabolism that gate protein production and cellular
behavior (reviewed in Chubukov et al. 2014; Maitra & Dill 2015; Dai & Zhu 2020).

Fundamentally, insights into the nexus of energy, information, and matter on biological systems
require an understanding across multiple levels of biological organization at multiple spatial and
temporal scales. Even the relatively straightforward function of the ribosome depends on a
broader cellular environment, as previously described. One challenge mentioned above is
finding metrics of energy, information, and matter that can be quantified in a common way
across levels of biological organization. Another challenge is that the propagation of information
and energy through levels of biological organization can result in emergent properties and
system-wide changes that impact other hierarchical levels. Defining the spatial and temporal
scale of study necessarily draws boundaries that often preclude fully accounting for the flows of
energy, information, and matter that are relevant to biology. Thus, defining the boundaries of a
biological system typically results in imbalanced flows of energy, information, and matter. For
example, an individual cell exists in relationship to other cells that influence its physiological
processes. While we can quantify the conversion between information and matter that occurs
during transcription, the information, energy, or matter that motivate that transcription may
originate in the extracellular environment. Additionally, the genomic DNA that stores the
information of the cell is itself produced by and the result of a long series of prior events and
experiences of abiotic and biotic interactions that have shaped through natural selection the
genome sequence. Similarly, if the scale is a multicellular organism, such as an animal or plant,
then its mere movement or dispersal across space moves information, energy, and matter and
exposes the organism to new energy, information, and matter in the environment (Little et al.
2020). Deeper consideration of measured imbalances in energy, information, and matter can
help researchers identify key factors that influence system function at one scale, highlighting
avenues to link phenomena across levels of biological organization.

In summary, the energy-information-matter nexus is relevant at all scales of biological
organization and may provide a common framework that helps link phenomena at different
levels of biological organization. This framework offers great potential to highlight emergent
phenomena and missing key regulators of biological systems. The next section illustrates
applications of this framework at different levels of organization from molecules to ecosystems.

Energy-information-matter nexuses: Challenges and examples

We outline below four examples of applications of how considering the nexus of energy,
information, and matter can facilitate new insights. Examples are ordered from the smallest to
largest spatial scales, and each highlights distinct features of the energy-information-matter
nexus. We explain throughout how prior research has focused on complex relationships
between energy, information, and matter, and we identify challenges and opportunities in
applying the energy-information-matter nexus framework.

1. Microbes as a nexus: integrating matter, energy, and information to predict and design
biological systems

One area where the concept of the energy-information-matter nexus is already being
applied is in microbiology. The ease with which laboratory strains of Escherichia coli and
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Saccharomyces cerevisciae can be manipulated has led to the emerging field of
synthetic biology where genetic elements are recombined to design new traits and
behaviors. Synthetic biology has contributed to, and continues to benefit from, efforts to
understand the interplay between metabolic pathways and energy conservation
mechanisms of the organism as a whole. Synthetic biologists are developing
increasingly sophisticated approaches to study microbial growth grounded in energy and
information (via physics and information theory) with the aim toward predicting and
designing microbial behaviors to benefit society.

An essential concept in understanding the inherent potential of a microbial system is the
use of Gibbs free energy to describe the energy that is available to do chemical or
mechanical work within the cell (Shapiro & Shapley 1965). Microbiologists explore the
nexus of energy, information, and matter in living cells when they use the Gibbs equation
(Box 1) to explain, predict, and successfully cultivate new organisms. For example, the
application of Gibbs free energy to microbe-catalyzed biochemical reactions has allowed
us to estimate key thermodynamic properties of ATP and the enzyme ATPase that
allows release of bioavailable energy by ATP hydrolysis (Friedl & Shairer 1981; Miiller &
Hess 2017). The Gibbs equation predicts the environmental conditions that can support
life such as in extreme Earth habitats or in theoretical or extraterrestrial habitats (as in
the sub-field of Astrobiology; Decker et al. 1970; Tijhuis et al. 1993). It has also been
used to predict the electrical current required to support growth of microbes on cathodes
(Rabaey & Rozendal 2010). Finally, thermodynamic calculations involving Gibbs free
energy were essential to guiding the laborious, expensive, and time-consuming culturing
experiments leading to discovery of new Orders of microorganisms.

However, the spontaneity of a chemical reaction as determined from Gibbs free energy
change is not sufficient to indicate whether an organism can grow, as the Gibbs equation
does not consider information transmission or kinetics. Organisms transmit hereditary
(syntactic) information that specifies the molecules and resulting chemical processes
that are necessary to harness available free energy to maintain homeostasis and create
progeny. The biochemistry to support life must also occur on a timescale faster than the
entropic decay of cellular structures. The physical environment (temperature, pH,
oxidation/reduction potentials, etc.) determines the physical stability of biological
macromolecules and directly influences the free energy required to maintain
homeostasis. Additionally, the nutrient requirements of the organism (as defined by the
genetic information) must be obtained on a timescale that maintains sufficient
intracellular chemical fluxes to maintain homeostasis and allow reproduction.

Nevertheless, applying the Gibbs equation approach systematically across the broader
field of microbiology offers a promising avenue to extend descriptions of microbial
genetic diversity so as to characterize functional roles of species in complex
communities. The Gibbs equation is a useful starting point to formulate hypotheses
about the function of known or unknown microbes that can guide experiments.
Sequencing microbial metagenomes reveals a vast unexplored DNA information space.
Amongst that cacophony of sequences, we can discern patterns of energy conservation
strategies that relate to the Gibbs equation. For instance, the enzymes and cofactors
underpinning growth are biochemically coupled in cultured microbes. Enzymes such as
those of the TCA cycle, Wolfe cycle, and Wood-Ljungdahl metabolic pathways are not
only often coupled in how they assemble inside cells (Beeckmans & Kanarek 1981;
Forster & Staib 1990; Costa et al. 2010, Lieber et al. 2014; Adam et al. 2018), but also at
the informational level of gene expression when organized into co-transcribed operons
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or co-regulated modules (Teichmann & Babu 2002; Grahame et al. 2005; Muller et al.
2013). Furthermore, the presence and relative abundance of enzymes in different
metabolic pathways roughly relate to the nutrient environment experienced by the
organisms. However, without full knowledge of the energetic inputs and outputs, enzyme
functions, and regulatory information processing, we struggle to confidently ascribe
functions of metabolic enzymes and hence ecological roles of organisms (Friedberg
2006; Widder et al. 2016). We cannot determine which patterns in metabolic pathway
diversity are due to chance, the extent of undiscovered pathways, or whether and how
physical and environmental factors constrain metabolic evolution (Bordbar et al. 2014;
Crona et al. 2020). This lack of knowledge limits our ability to design novel pathways, to
infer soil greenhouse gas emissions using environmental microbial community
metagenome data, or to develop synthetic gut microbiomes as therapeutics. To produce
technologies that fully harness microbial biodiversity, the applications must account for
conservation of mass, bioenergetics, and both intracellular signaling and heritable
information.

Morphogenesis: integration of intrinsic and extrinsic information, energy, and matter for
optimum phenotypes

Morphogenesis is the formation of organismal structures through development. During
morphogenesis, information guides the transformation of energy and matter to produce
mature cells, tissues, organs, and organisms capable of living in their environment (i.e.
syntactic information is used to organize the biological system). Because morphogenesis
is fundamental to producing phenotypes that can function in selective regimes, explicitly
considering the energy-information-matter nexus would help identify missing inputs and
components that shape phenotypic diversity. The rise of molecular genetics and genome
sequencing promised to decode all the information needed to produce a living organism.
Acquisition of this ‘code’ was thought to be a clear step towards predicting and
manipulating organismal structure and function based on the underlying assumption that
all the information needed to form an organism is contained in the genome. Under this
model, genetic information guides conversions between energy and matter that
ultimately result in a biological system. This metaphor of "genes as blueprints" is
pervasive in developmental biology but woefully inadequate (Nijhout 1990). In fact,
developmental processes are elaborate, context-dependent temporal and spatial
processes, and morphogenesis occurs when gene products interact with their
environment (Nijhout 1990). Indeed, the external environment provides more than just
energy (e.g. sunlight) and matter (e.g. water). It also contains informational inputs (i.e.
semiotic information) that must be integrated successfully during development. The
information stored in genomic matter must be decoded and converted into chemical
materials that are used in developmental processes, which are largely self-organizing
(Nijhout 1990; Moczek 2012). Self-organizing processes use a wealth of extrinsic
information, in addition to that stored in the genome (Vinogradov 2004), to influence
developmental trajectories. In this way self-organization can be viewed as an
informationally efficient way of producing phenotypes that naturally meet the mechanical
demands of the biotic and abiotic environments in which they occur.

One example of how the information-energy-matter nexus is important in characterizing
morphogenesis is in the development of plant cells and tissues. Plant cells expand when
internal turgor pressure exceeds the strength of the cell wall, resulting in plastic
deformation of the cell wall (Kutschera 1991). Turgor pressure is controlled partially by
biological processes (e.g. gene expression influencing osmotic accumulation) but also
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by abiotic conditions such as water availability, which influences the Gibbs free energy in
the system and, thus, the amount of work that can be done (Box 1). Plastic deformation
of the cell wall is opposed by deposition of additional cellulose fibrils that strengthen the
cell wall. Interestingly, the orientation of the microtubules that direct fibril deposition is
controlled by mechanical stresses on the cell (Green 1962; Panteris et al. 1993;
Wernicke et al. 1993; Panteris & Galatis 2005; Paradez 2006; Hamant et al. 2008;
Sampathkumar et al. 2014; Mirabet et al. 2018). Thus, genetic information is combined
with external and internal resources (energy and matter) to produce biochemical building
blocks (e.g. microtubules, cellulose fibrils), but the resulting cell and tissue phenotypes
result from physical interactions with the external environment. Insofar as the
extracellular environment influences cell wall properties and cell shape morphogenesis,
cell sizes and shapes may themselves store information about the external environment.
The cell types for which this process has been well-elucidated are leaf epidermal 'puzzle’
cells. In a given leaf, these cells all possess the same genome yet are highly variable in
shape (Sapala et al. 2018; Véfély et al. 2018). The variation in puzzle cell shape within
an organ can be modeled strictly by incorporating the mechanical feedback process
described above, in which cell wall reinforcement responds to local stresses to oppose
turgor-driven cell wall expansion and deformation. Additionally, much of the large
diversity of epidermal cell shapes apparent among species (V6fély et al. 2018) can be
recapitulated by modifying just a few parameters in this model, such as growth
anisotropy and overall organ growth rate (Sapala et al. 2018). While we typically
consider that energy and matter are provided by the environment of the cell (e.g.
sunlight and water), the cell’s interactions with its physical environment also provide a
wealth of information. Understanding the developmental origins of phenotypes,
therefore, requires explicit consideration of information, energy, and matter both inside
the cell and outside the cell. Furthermore, using environmental information — rather than
employing rigid developmental programs based solely on genetic information — allows
biological structures to be built with less encoded information, and to be both physically
robust and also variable and tunable to the environment.

Another aspect of genomic information is worth noting. Because the genome is
composed of matter (nucleic acids), it occupies physical space inside the cell. Therefore,
the size of the genome limits minimum cell size, and because smaller cells have a higher
ratio of surface area-to-volume, smaller cells enable higher rates of diffusion and
photosynthesis (Roddy et al. 2019; Théroux-Rancourt et al. 2021). While smaller
genomes in principle contain less syntactic information, in plants small genomes are
composed of a higher fraction of gene-coding regions than are large genomes (Novak et
al. 2020). Additionally, genome downsizing enables greater cell size variation and, thus,
greater anatomical plasticity. This allows species with smaller genomes to better fine-
tune their anatomy to the environment (Simonin & Roddy 2018; Roddy et al. 2019).
Thus, genome downsizing (i.e. potential loss of syntactic information) may be associated
with greater reliance on environmental information (i.e. semiotic information) to drive cell
and tissue development, thereby matching phenotypes to their ecological setting better
than if the developmental program were strictly and entirely encoded in the genome. The
‘genes as blueprints’ metaphor ignores the role of the environment in providing
information, but by embracing the nexus of energy, information, and matter, we can
improve our understanding of morphogenesis in order to better predict and synthesize
phenotypes and functions.

The energy-information tradeoff in neural systems depends on neuron size, cell types,
and coding strategies
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Neural systems exhibit two related aspects of the energy-information-matter nexus that
remain open questions. One is the influence of qualities and quantities of matter in
defining energy and information tradeoffs, and the other is that all available information
is not necessarily used by the biological system.

Neurons use action potentials and other changes in membrane potential to encode
semiotic information such as signals from other organisms and cues from the
environment. Every temporary membrane depolarization initiates neuron repolarization.
This repolarization requires energy, as the enzyme sodium-potassium ATPase
hydrolyzes one ATP molecule to move two potassium ions into the cell and three sodium
ions out of the cell. Investigators studying the photoreceptor cells that convert light
information to neural signals have been remarkably successful in defining these energy
and information intersections. Analyses of photoreceptor ion channel function and
Shannon information (a syntactic information measure) have identified a direct tradeoff.
Calculated estimates of sodium-potassium ATPase activity approximate single-cell
biophysical measurements of the energetic costs of photoreceptor function (Laughlin et
al. 1998). Further, photoreceptor cells that can transmit information at higher rates are
more energetically costly to maintain (Niven et al. 2007). The latter conclusion indicates
that features that can be considered qualities of matter, such as cell size and ion
channel content, alter the quantitative relationship between energy and information.
Although the information-energy tradeoff in photoreceptors can be precisely quantified in
ATP molecules consumed per bit, even these precise experiments have limitations. For
instance, this energetic accounting evaluates immediate ion flow but not broader costs of
signaling over time, such as those of neurotransmitter packaging, protein production and
transport, or photoreceptor development. Moreover, the measure of information and
calculated reduction in Shannon entropy is restricted to the experimental stimulus set
used (as in reference states in Box 1). In contrast, real world stimuli are multiple and
constantly changing.

These limitations aside, these studies illustrate relationships between energetic costs
and information processing in sensory systems. However, extensions of these same
approaches in other neural systems have been limited by our incomplete understanding
of neural coding principles. We have an incomplete understanding of how information
inherent in neurophysiology is used. In classic neural coding studies, a sensory neuron’s
rate of action potentials represents properties of the sensory input, enabling a simple
calculation of energy consumption per bit based on the number of action potentials used
in representing a stimulus. lon channel complements and placement establish varying
costs of action potentials, so this calculation would vary based on both cell type (the
form of matter) and firing patterns in response to a stimulus (Sengupta et al. 2010; Lewis
et al. 2014; Niven 2016). However, neurons employ other dynamic types of coding as
well. Examples include shifts in relative timing of action potentials or phase of action
potentials relative to large-scale oscillations (Panzeri et al. 2010). In these examples,
links between energetic costs and information content are less direct or understood.
Likely, neural firing multiplexes different types of codes, and neural dynamics reflect
multiple features of natural sensory stimuli on different time scales (Panzeri et al. 2010).
The efficiency possible in multiplexed coding is in line with other features of neural
systems that reduce energetic costs of information for individual cells. Understanding the
implications of neural multiplexing would require looking at the neural energy-
information-matter nexus with orders of magnitude higher complexity than is done
currently, and methods of doing so remain to be developed.
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Other factors complicate the idea of an energy-information tradeoff in neural systems.
Populations of neurons can carry redundant information. Moreover, the presence of
syntactic information in neural firing patterns does not imply the animal uses that
information to direct its behavior (Panzeri et al. 2017). Hence, the energetic cost of
information actually used by the organism is quite challenging to define. Related to
matter, nervous systems have static or fixed costs, such as nonzero baseline firing rates
and neurotransmitter turnover and cell maintenance, that constrain information capacity.
These fixed costs, all in some way related to either quantity or quality of the biological
matter, can vary widely among neuronal subtypes. Additionally, maintaining more
neurons increases system information capacity but in a nonlinear fashion, typically with
diminishing returns at some point. Hence there is no simple relationship between
information capacity, energetic demand, and either total number of neurons or mass of
neural tissue. This situation represents a tremendous opportunity for theoretical and
empirical biological scientists to come together to identify general principles about how
animals balance these energetic and material costs with the benefits of reduced
uncertainty about the abiotic and biotic environment.

Ecological Stoichiometry: Phosphorus mediates information and energy across scales -
from genes to ecosystems.

A form of matter, the element phosphorus, is an important mediator of the relationship
between energy and information, and phosphorus illustrates the potential for the energy-
information-matter nexus to bridge levels of biological organization. Bioavailable
phosphorus in the form of phosphate is a key factor limiting growth of species in many
ecosystems. It is an essential component of fertilizer in most agroecosystems that
provide the world’s food supply. Along with nitrogen, phosphorous often limits primary
productivity in terrestrial, inland, and oceanic ecosystems (Elser et al. 2000; Elser et al.
2007).

We see the likely origins of this phenomenon on a much smaller scale. Phosphorous is
also particularly abundant in ribosomal RNA, such that phosphate limitation in
ecosystems is due to the high demand for phosphorous by ribosomal RNA during
periods of rapid growth (Elser et al. 1996). Additionally, phosphorous plays an important
role in energy storage and mobilization. Energy flow through biological systems is
associated with the formation and hydrolysis of phosphate bonds, most commonly in
ATP, and the free energy change associated with ATP hydrolysis enables enzymatic
work in cells. Paradoxically, a phosphate group from ATP is also frequently transferred
to proteins, where it mediates information processing by changing the functional
characteristics of the protein. If the enzyme in question is a phosphate-adding kinase or
a phosphate-removing phosphatase, phosphorylation or dephosphorylation enhances or
suppresses enzyme activity. Cascades of kinases and phosphatases are the signature
signaling mechanisms within a cell, turning processes on and off. Phosphate is thus also
essential to the management of information processing by protein phosphorylation.
Finally, at the molecular level, phosphate makes up the backbone of the critical
information transmission molecules DNA and RNA.

The competition is so fierce for phosphate that some organisms have found ways to
access other forms of phosphorus (phosphite, hypophosphite, phosphonate, phosphine)
and some are thought to specifically decrease the bioavailability of phosphorus for
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competing organisms by converting phosphate to phosphonate or phosphinate
molecules (Yu et al. 2013; Pasek et al. 2014). Altogether, phosphorus illustrates the
energy-information-matter nexus at the molecular level (as syntactic information in
nucleic acid, as a mechanism of releasing energy during ATP hydrolysis, and as
phosphate transfer altering protein function), at the cellular level (within signaling
cascades serving as switches for cellular processes), and even manifests at the
ecosystem level (as a key limiting nutrient). On a global scale, phosphorus demand is
expected to exceed supply in the coming decades, leading to a world-wide scarcity and
increase in the commercial cost and need for recovery programs to obtain this essential
element (Desmidt et al. 2015). Expanding our analysis of the energy-information-matter
nexus would open new research questions. For example, do phosphorus limitation and
consequent mediation of information and energy fluxes vary across taxa, at multiple
trophic levels, or in organisms of different motility and energy demands (e.g. endotherms
vs. exotherms)?

The above are just a few examples of why we view the pursuit of the energy-information-matter
nexus as critical to uniting phenomena across scales in biological systems. In each case, the
benefits and challenges of examining systems from the energy-information-matter nexus
across scales demonstrates the potential power of this framework. These are:
e A baseline of research into direct energy, information, and matter measurements and
tradeoffs using principles described in Box 1 already exists, to differing degrees.
e Practical and applied benefits exist, such as being able to accurately anticipate
effects of global warming on the biosphere at all scales, to address a key globally limiting
element, and to generate life that is possible but does not yet exist.
e A universal conceptual framework to view the energy-information-matter nexus within
and between scales is elusive.
e Matter must be considered both quantitatively (mass) and qualitatively (substance
and form)
e An expanded concept of information sources and types must be considered.
e Theoretical treatments of information capacity and information use must be
developed.
e Colloquial uses of ‘information’ must be aligned with the mathematical formulations.

Carrying the vision forward: next steps

The largest hurdle to successful application of the nexus concept is determining practical
implementation strategies within our scientific enterprise. Success will be possible only through
a concerted effort from multiple angles. Here we identify broad challenges as starting points.

Educational. As a discipline, we can certainly improve the training of biologists in a common
vocabulary related to energy, information, and matter at the curricular and continuing education
levels (Brewer & Smith 2011). The ultimate goal is to train biologists at every stage who are
capable of communicating their work using this vocabulary. While many undergraduate biology
curricula include physics and mathematics coursework, these required courses rarely, if ever,
focus on biological applications of information and energetic approaches or, even more critically,
their nexus. We also propose a coordinated effort to disseminate examples quantifying energy,
information, and matter at the nexus that can be readily adapted for use in undergraduate
courses. Another concrete resource could be a primer of relevant physics for biologists at any
career stage. As our efforts to reach across our own disciplines have taught us, such a written
resource will be most accessible if informed by physicists and informaticists but written by
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biologists using approachable examples. In sum, theoretical approaches must be integrated into
our current empirical approaches.

Experimental. We propose to identify specific nexuses as research targets for larger scale
collaborative funding. Interdisciplinary research teams would invent or identify new scientific
methodologies, quantitative measures, and system components necessary to evaluate changes
in the balance of energy, information, and matter at all biological levels. Effective ways to
facilitate teams with the essential collaborative skills have been addressed recently by the
National Research Council and others, including an explicit focus on the importance of diversity
and interpersonal skills (Cheruvelil et al. 2014; National Research Council 2015). For this and
other efforts to achieve scientific summits previously considered unconquerable, we rely on the
continuing efforts to remove systemic barriers in scientific communities and their funders that
limit interdisciplinary work (Bromham et al. 2015).

In conclusion, we propose that studying the nexuses of energy, information, and matter can
reintegrate biological subdisciplines. The stakes for reintegration are increasingly high, as
robust predictive models and biological technologies may form essential responses to climate
change, may contribute to sustainable food and fuel production, and may mitigate the
associated risks to social order. Employing energy, information, and matter as common
currencies that apply across spatial and temporal scales provides unique opportunities to
integrate across levels of biological organization. Expanding ongoing efforts to support team-
based work and novel approaches to train young investigators will be at the forefront of these
efforts to unite the plurality of approaches and reduce sub-disciplinary boundaries in the
biological sciences.

BOX 1:

We outline here fundamental physical principles that demonstrate some of the different ways
that information, energy, and matter can be mathematically conceptualized and related
quantitatively. We note that these equations are not directly applied to most biological empirical
studies, in that few biologists fully account for energy and information flow. We introduce these
equations and relationships to illustrate the mathematical underpinning of the nexus and to
clarify physics terminology that is foundational to the framework proposed here.

The thermodynamic entropy S of a system with N possible microstates (i) is given by:
S=-k3Y¥¥ P -InP

where P; denotes the probability that the system is in microstate i, and k represents the
Boltzmann’s constant. Thermodynamic entropy of the system represents the uncertainty about
which microstate the system occupies. Empirical measurements can reveal the system
macrostate, but each macrostate has multiple possible microstates that are indistinguishable to
experimenters (see Wicken 1987 for additional discussion of unique features of thermodynamic
entropy).

Similarly, the Shannon entropy (designated “H(SE)” for clarity) is defined as:
N

i
where P; is the probability of occurrence of state i given the N possible states of the system.
H(SE) is a measure of the information content of an observed event, which in a biological
context could refer to an experiment, population, or signal. Shannon entropy differs from
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thermodynamic entropy in the constant k and the base of the logarithm, which typically would be
2 for a binary system or 4 in the case of DNA, representing the four nucleotides. Moreover,
Shannon entropy calculations vary depending on the choice of the possible set of states to
which the observed state is compared (see Wicken 1987 for extensive comparison between
thermodynamic entropy and Shannon entropy). The set of reference states for this calculation
represent those considered possible before the event is observed. For example, prior
knowledge might reduce the set of possible states of the system under consideration, hence
altering the measure of H(SE) for a particular event.

To further explore Shannon entropy, we consider the information in a DNA molecule. For one
nucleotide, there are four possible states: A C G or T. For a strand with two nucleotides, there
are sixteen possible states (AAAC AGATCACCCGCTGAGCGGGTTATCTGTT)
because the information in DNA depends on order. A strand with three nucleotides has 64
possible states. The Shannon entropy, like the thermodynamic entropy, depends on the size of
the system; entropy is higher for DNA strands with more nucleotides, as the system contains
more possible states. Note that both S and H(SE) are maximized at a value of log(N) when all of
the N system (micro)states have equal probability (P; = 1/N). DNA sequences within conserved
protein coding genes thus have lower entropy than maximal, as all arrangements of nucleotides
are not equally likely. Both S and H(SE) are zero for the case where one (micro)state j has
probability P; = 1 and all other (micro)states have zero probability P; = 0 for i # j. The event or
outcome from the vantage point of information theory contains zero information. For example, if
you know the genome sequence of a person, the sequence of their monozygotic twin has very
low entropy (only non-zero because of somatic mutations). The Shannon entropy thus is linked
to the amount of uncertainty or surprise in an experimental outcome or observation. We note
that despite the generally negative relationship between entropy and information, a variety of
equations relating information and entropy apply, reflecting the diversity of uses of the word
information (e.g. Morowitz 1968; Xu and Jiang 2010).

A higher-order probabilistic representation of a biological system can be described that
theoretically relates the entropy and energy of the system. Reducing thermodynamic entropy S
costs free energy:

AG = AH-TAS

where G is the Gibbs free energy, H is the enthalpy and T is the Kelvin temperature.:

A derivation of the Gibbs equation that is useful in biological systems on a small scale is:

AG = -nFE°

Where the change in Gibbs free energy is related to the number of electrons n, the Faraday
constant F, and the electrical potential of the cell E?, which can be interpreted as any electron
donor/acceptor pair.

Many equations relate energy and matter (e.g. Kooijman 2010 at organismal-ecological scales),
as interconversions between energy and matter are a widely studied part of the Energy-
Information-Matter nexus in some fields. Small biological scales permit the adaptation of

Einstein's Theory of Relativity to biology:

E=mc?



O©COONOOTBRWN -

47

Where E is the total energy of the system, m is the mass of the system, and c is the speed of
light. The Theory of Relativity has been used to estimate the energy needed for electrical
conductance, or rates of proton or carbon tunneling in biochemical catalysis (e.g. Kohen &
Klinman 1999; Chowdhury & Banerjee 2000; Reece et al. 2006).

These physical laws have been directly applied to few biological systems. Even the examples of
biological nexuses we discuss in this paper have mathematical formulations that describe only a
subset of the nexus. Comprehensive application of physical laws to biological questions is most
feasible at sub-micrometer scale (often in dilute aqueous buffers), under special cases (e.g.
sealed anaerobic microbial cultures), or at very short timescales; however, quantitative
treatment of energy, information, and matter interconversions that span scales of biological
organization has great promise to provide biological insights.
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