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Abstract: Change-point detection regains much attention recently for analyzing array or sequencing data
for copy number variation (CNV) detection. In such applications, the true signals are typically very short
and buried in the long data sequence, which makes it challenging to identify the variations efficiently
and accurately. In this article, we propose a new change-point detection method, a backward procedure,
which is not only fast and simple enough to exploit high-dimensional data but also performs very well
for detecting short signals. Although motivated by CNV detection, the backward procedure is generally
applicable to assorted change-point problems that arise in a variety of scientific applications. It is illustrated
by both simulated and real CNV data that the backward detection has clear advantages over other
competing methods, especially when the true signal is short. The Canadian Journal of Statistics 48:
366–385; 2020 © 2020 Statistical Society of Canada
Résumé: La détection de points de rupture gagne en popularité pour la détection de variations du nombre
de copies (VNC) avec des données de micro-puces ou de séquençage. Dans de telles applications, un signal
habituellement court se trouve dans une longue séquence de données, ce qui complique sa détection efficace
et précise. Les auteurs proposent une nouvelle méthode de détection du point de rupture, une procédure
à rebours, qui en plus d’être suffisament simple et rapide pour exploiter des données en haute dimension,
offre de très bonnes performances dans la détection de signaux courts. Même si elle a été motivée par
la détection de VNC, la méthode à rebours est généralement applicable à une panoplie de problèmes de
détection du point de rupture qui émergent de différentes applications scientifiques. Les auteurs illustrent
les avantages clairs de la méthode à rebours, notamment lorsque le signal est court, par rapport aux autres
méthodes, autant sur des données de VNC simulées que réelles. La revue canadienne de statistique 48:
366–385; 2020 © 2020 Société statistique du Canada

1. INTRODUCTION

As a classic topic, change-point detection regains much attention recently in the context of
uncovering structural change in big data. In particular, a normal mean change-point model and
its variants have been applied to analyze high-throughput data for DNA copy number variation
(CNV) detection. The CNV is defined as duplication or deletion of a segment of DNA sequences
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TABLE 1: Data types for CNV information and the corresponding resolutions.

Data Measurement Resolution

Array CGH Fluorescence intensity ratio 10–100× kb

SNP array Fluorescence intensity ratio/B-allele frequency kb

NGS Read depth/distance of paired end b

compared to the reference genome, and can cause significant effects at molecular levels and be
associated with susceptibility (or resistance) to disease (Feuk, Carson & Scherer, 2006; Freeman
et al., 2006; McCarroll & Altshuler, 2007).

There are multiple sources of data that provide us with copy number information. The
microarray Comparative Genomic Hybridization (aCGH) techniques have been widely used for
CNV detection (Urban et al., 2006). The aCGH is helpful to detect long CNV segments with
tens of kilobases (kb) or more, but is not able to locate small-scale CNVs with length shorter
than its minimal resolution (>10 kb), which are common in the human genome (Sebat et al.,
2004; Carter, 2007; Wong et al., 2007). In addition to the aCGH approach, the single nucleotide
polymorphism (SNP) genotyping array has become an alternative in CNV detection because of
its improved resolution (Sun et al., 2009). For example, popular SNP array platforms such as
Illumina (Peiffer et al., 2006) and Affymetrix (McCarroll et al., 2008) allow detection of CNVs
with kilobase-resolution. In SNP arrays, CNV information is measured by the total fluorescent
intensity signal ratios from both alleles at each SNP locus referred to as the log-R-ratio (LRR). It
also allows us to obtain the relative ratio of the fluorescent signals between two alleles, known as
B allele frequency. Finally, in very recent applications, aligned DNA sequencing data with even
higher resolution can be directly used for CNV detection. The next generation sequencing (NGS)
techniques typically produce millions of short reads that are to be aligned with the reference
genome. Both the associated read depth (RD) and distances of paired-end (DPE) from the aligned
sequence are important sources of inferring CNV (Medvedev, Stanciu & Brudno, 2009; Abyzov
et al., 2011; Duan et al., 2013; Chen et al., 2017). Note that there is a trade-off between the
resolution and data size. With higher resolution data, it is possible to discover shorter CNVs;
at the same time, the larger data size brings great challenge in computation. This might be one
of the reasons why the SNP array has been most popular in recent CNV studies since aCGH
data have low resolutions and RD or DPE data from NGS are too large to be handled directly.
However, as related computing technologies advance, the NGS data are getting more attention in
recent applications. Finally, we summarize popular data sources for CNV detection in Table 1.

There have been many methods developed for CNV detection. Different approaches are
applied to different types of data sources. As one of the most popular approaches, the CNV
detection problem can be regarded as an application of the change-point model which has been
actively studied in statistics. For example, both the LRR from SNP array and log2 ratio from
aCGH have a mean value of zero for normal copy number, while negative (resp. positive) for
the deletion (resp. duplication). Similar ideas can also be employed for the RD data in the sense
that one may observe less (resp. more) read counts in a region with deleted (resp. duplicated)
copy number. In all the examples, the data structure changes at CNVs. Naturally, one may infer
CNVs by checking the subregions where the LRR or read-depth is significantly different from
the mean of rest.

The change-point model has a long history that traces back to the 1950s. See Page
(1955, 1957), Chernoff & Zacks (1964), Gardner (1969) and Sen & Srivastava (1975) for the
early developments of the change-point model with at most one change point. The data size
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considered in those papers is also small. However, new applications call for more flexible
models capable of detecting multiple change points scattered along a huge sequence. Recent
developments include circular binary segmentation (CBS, Olshen et al., 2004; Venkatraman
& Olshen, 2007), 𝓁1 penalization (Huang et al., 2005; Tibshirani & Wang, 2008; Zhang
et al., 2010), total-variation-penalized estimation (TVP, Harchaoui & Lévy-Leduc, 2010),
fragment assembling algorithm (FASeg, Yu et al., 2007), screening and ranking algorithm
(SaRa, Niu & Zhang, 2012; Hao, Niu & Zhang, 2013), likelihood ratio selection (LRS, Jeng,
Cai & Li, 2010), simultaneous multiscale change point estimator (SMUCE, Frick, Munk &
Sieling, 2014) and wild binary segmentation (WBS, Fryzlewicz, 2014) among many others.
Hidden Markov model is another popular approach for CNV detection (Fridlyand et al.,
2004; Wang et al., 2007; Szatkiewicz et al., 2013). Yet the hidden Markov model relies on
some application specific-assumptions valid only for certain copy-number data. Zhang (2010)
provided a comprehensive overview on CNV detection as an application of the change-point
model. Roy & Reif (2013) compared the performance of a few recent CNV detection methods
under various scenarios.

As an application of the change-point model, inferring CNV is regarded as a very challenging
problem since the CNV subregions are usually very short and hidden in a very long sequence.
The size of detectable CNVs typically ranges from a thousand to millions of base pairs (bp).
The International HapMap 3 Consortium (2010) shows that the average size of total CNVs in
the individual genome is 3.5 ± 0.5 Mbp (0.1%). As an illustration, we analyze the SNP array
data collected from the Autism Genetics Resource Exchange (AGRE; Bucan et al., 2009) which
contain three parallel LRR sequences of a father--mother–offspring trio. Figure 1a depicts the
LRR sequence of the mother’s whole genome and clearly illustrates that it is impossible to pick
CNV out by eye. Figure 1b shows a zoom-in plot of one of the detected CNVs from the mother’s
sequence whereas Figure 1c displays a histogram of sizes (in terms of the number of biomarkers)
of CNVs which are commonly detected by the methods considered in this article, respectively.
The size of the entire LRR sequence in Figure 1a is 561,466, while the one CNV depicted in
Figure 1b has size 6. We would like to remark that the most of CNVs are very short (as shown in
Figure 1c) and hidden in a long and noisy sequence, which makes the detection non-trivial. We
will revisit this data in Section 6 where a complete analysis is illustrated.

In this context, a desirable CNV-detection method should be not only accurate enough to
detect such short CNVs but also computationally fast enough to get estimates within a practically
manageable time limit even for a very long data sequence. Toward this, we propose a new

FIGURE 1: The subpanel (a) shows the whole sequence of the mother’s LRR; (b) depicts one of
them from the mother’s LRR sequence of the AGRE trio SNP array data; and (c) is a histogram

of length of CNVs commonly detected by several methods.
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change-point detection method called backward detection (BWD) whose name comes from
the backward variable selection in linear regression. BWD is computationally efficient, with a
complexity O(n log n) to analyze a sequence of length n. Moreover, it performs very well in
picking out closely located change-points. Therefore, it is an ideal tool for CNV detection. The
idea of the BWD is conceptually similar to Wald’s agglomerative clustering (Wald, 1963), but
different in that the location information of the sequence data is employed naturally. We also note
that our method for change-point detection can be viewed as a “bottom-up” strategy which has
not been studied as extensively in the literature as “top-down” ones (such as binary segmentation)
mainly on account of the computational intensity of “top-down” methods. Recently, Fryzlewicz
(2018) proposed an efficient “bottom-up” method for the general multiple change-point detection
problem by using what he calls the tail-greedy unbalanced Haar (TGUH) transformation. Yet,
our numerical simulation shows that the TCUH often fails to detect short and sparse signals
commonly encountered in CNV detection.

The rest of the article is organized as follows. In Section 2, a normal mean change-point
model and several popular detection strategies are introduced. In Section 3, the BWD method
is described in detail. A stopping rule for BWD is developed in Section 4. The numerical
performance of the proposed method is evaluated in Section 5, and illustrations to both log R
ratio data from SNP arrays and the RDs from aligned sequence data are given in Section 6. A
discussion follows in Section 7.

2. CHANGE-POINT MODEL

A normal mean change-point model assumes

Yi = 𝜇i + 𝜖i, i = 1, 2,… , n (1)

with 𝜖i being iid N(0, 𝜎2). The means 𝜇i are assumed to be piecewise constant with K change
points at t = (t1, t2,… , tK)T . Denote t0 = 0 and tK+1 = n for convenience. Change points are
characterized by the property that 𝜇i = 𝜇𝑗 for any i, 𝑗 ∈ {tk + 1,… , tk+1}, 0 ≤ k ≤ K, and
𝜇tk ≠ 𝜇tk+1 for 1 ≤ k ≤ K. Yet the number of change points K is typically unknown. The goal
of change-point detection is to estimate both the number K and the location vector of change
points t. Thus CNV detection can be regarded as a direct application of the change-point model
(1). However, the CNVs are often very short and buried in a very long data sequence, which
makes the problem even more challenging because of the high dimension of 𝝁 = (𝜇1,… , 𝜇n)T .
The normal mean change-point model (1) is often reasonable in CNV application on account
of random noise during the experiments (Barnes et al., 2008). In other cases, data may need
to be transformed. For example, raw RD data are discrete and spatially correlated on account
of the complicated sequencing process, and hence the normal error assumption is not proper.
Nevertheless, the local median transformation can be used to ensure its normality (Cai, Jeng &
Li, 2012).

Suppose that the number of change points, K, is known, then the change-point detection
problem can be formulated in terms of minimizing the sum of squared errors (SSE). For a set of
numbers Yi with index i in a set , we define their SSE by SSE({Yi, i ∈ }) =

∑
i∈(Yi − Ȳ)2

where Ȳ = 1
||

∑
i∈ Yi and || denotes the cardinality of the index set . Then change-point

detection is to estimate t by solving the following optimization problem

min
t

K∑
𝑗=0

SSE
({

Yi ∶ t𝑗 + 1 ≤ i ≤ t𝑗+1
})

, (2)

subject to 0 = t0 < t1 < t2 < · · · < tK < tK+1 = n.
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Note that (2) is inherently a combinatorial problem and very challenging for large n. The

total number of different combinations is n!
K!(n−K)! ≥

(
n
K

)K
which can be huge especially in the

application of CNV. This makes it difficult to detect change points by solving (2) directly not to
mention the fact that K is typically not known. When n is small and K is bounded, the exhaustive
search method has been studied by Yao (1988) and Yao & Au (1989). They showed that an
exhaustive search with BIC is consistent for estimating K and t. To improve computational
efficiency, dynamic programming can be applied to solve (2) with complexity of O(n2) (Braun,
Braun & Muller, 2000; Jackson et al., 2005). Killick, Fearnhead & Eckley (2012) developed
an efficient algorithm named PELT that solves the problem with linear cost O(n), but requires
additional assumptions which might not be practical in certain applications. In general, these
methods have not been widely applied in CNV applications.

We remark that the mean change-point model (1) can be equivalently reformulated as a linear
regression model (Huang et al., 2005; Tibshirani & Wang, 2008) and the change-point detection
problem is then viewed as a variable selection one. Motivated by backward elimination methods
in variable selection, we propose a stepwise procedure called BWD to solve the change-point
detection problem. Some stepwise methods in the context of change-point detection have been
explored. For example, a classical binary segmentation method (BS; Vostrikova, 1981) applies
a single change-point detection tool recursively, identifying one change point at a time, until
some stopping criterion is met. We consider BS to be a forward detection method because it
starts with a null model with no change point and sequentially detects change points, by analogy
to the forward variable selection in a regression context. In spite of its simplicity, as pointed
out by Olshen et al., (2004), forward detection is not able to detect short segments buried in
a long sequence of observations, which limits its utilization in certain applications such as
CNV detection. The CBS (Olshen et al., 2004; Venkatraman & Olshen, 2007) modifies BS by
identifying two change points simultaneously and has gained great popularity in CNV detection.
However, we observe from limited numerical studies that on the account of the forward detection
nature of CBS, it is still unsatisfactory when the true segment (i.e., CNV) is very short. Moreover,
CBS has higher computational complexity than the BS, which brings additional burden to dealing
with big data.

3. METHOD

3.1. Why Not Forward Detection?
In what follows, we elaborate why forward detection may fail to detect short signals, thus
providing a clear motivation for the proposed BWD in CNV detection. Forward detection starts
with no change point and tries to detect the very first one by solving the following optimization
problem

min
s1

1∑
𝑗=0

SSE({Yi, i ∈ {s𝑗 + 1,… , s𝑗+1}}), (3)

subject to 0 = s0 < s1 < s2 = n.

The optimizer ŝ1 of (3) estimates one of the change points and divides the data into two parts
{Yi, i ∈ {1, 2,… , ŝ1}} and {Yi, i ∈ {ŝ1 + 1,… , n}}. We may apply (3) to each of these two parts
to detect further change points and this can be continued until we have identified all change
points.

Note that the total number of combinations for (3) is n and thus the corresponding optimization
is feasible. However, as mentioned above the performance of forward detection may not be
satisfactory in some situations. For example, if there are only two change points at t1 and t2
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and 𝜇i = 0 if i < t1 or i ≥ t2 and 𝜇 if t1 ≤ i < t2, the forward detection does not work well if
the length of signal L = t2 − t1 is small while both t1 and n − t2 are large. However, this type of
challenging situation is very common in the CNV applications as shown in Figure 1.

To illustrate drawbacks of the forward detection, we consider a simplified scenario in which
the locations of the two potential change points t𝑗 , 𝑗 = 1, 2 are known, but it is not clear whether
the associated mean 𝜇 is actually changed (i.e., 𝜇 = 0 or not). Proposition 1 formally states that
forward detection asymptotically fails even in this simple scenario unless L is sufficiently large
compared to n.

Proposition 1. Suppose limn→∞ t1∕n = c ∈ (0, 1) and L = t2 − t1 = O(n𝛽) for some 𝛽 ∈ [0, 1].
If 𝛽 < 1∕2 then the forward detection fails as n → ∞ for an arbitrary given (𝜇, 𝜎2).

Proof. The first step of forward detection declares that the mean-change occurs at t𝑗 , 𝑗 =
1, 2 if |D̄n,t𝑗 | = |Ȳt𝑗 − Ȳn−t𝑗 | is significantly large enough. Here Ȳt =

∑t
i=1 Yi∕t and Ȳn−t =∑n

i=t+1 Yi∕(n − t), for a given t ∈ {1,… , n − 1}.
To test for t1, the sampling distribution of D̄n,t1 for a given 𝜇 is

D̄n,t1 + L𝜇∕(n − t1)

𝜎̂n

√
1
t1
+ 1

n−t1

→ N (0, 1) , in distribution,

where 𝜎̂2
n denotes a consistent estimator of unknown 𝜎2. Then it can be shown that the

associated asymptotic power converges to the nominal level 𝛼 for any given pair of (𝜇, 𝜎2) if
limn→∞ n−1∕2L = 0. A similar result can be shown for t2 as well, which completes proof. ◼

Proposition 1 provides a necessary condition for forward detection in terms of the relative
length of the true signal length L as a function of sample size n. The order of L, denoted by
𝛽, should be larger than 1∕2 for the original change-point model in which the change points t1
and t2 are unknown. Recently, Fryzlewicz (2014) showed that forward selection is consistent for
recovering the true change points when 𝛽 is larger than 3/4.

3.2. Backward Detection
Contrary to forward detection, the BWD starts from the opposite extreme that every single
position is assumed to be a change point. That is, we begin with n groups corresponding to
these n − 1 change points and each group contains only one observation. We introduce notation
𝔾 = {1,2,… ,n} with i = {i}.

The BWD works by repeatedly merging two neighbouring groups into one. Note that the
merging of two neighbouring groups will increase the total SSE. For any two neighbouring
groups, we use the rise in the SSE to quantify the potential of merging them together. At each
merging step, we choose to merge two neighbouring groups with the smallest rise of SSE.
Namely, we define

Ri = SSE({Y𝑗 , 𝑗 ∈ i ∪ i+1}) − SSE({Y𝑗 , 𝑗 ∈ i}) − SSE({Y𝑗 , 𝑗 ∈ i+1}), (4)

where SSE({Y𝑗 , 𝑗 ∈ }) denotes the SSE for all observations with indices in .
At the beginning of iteration m = 0, 1,… , n − 2, there are n − m groups. Denote the current

groups by 𝔾(m) = {(m)
1 ,

(m)
2 ,… ,

(m)
n−m} and the corresponding potential of merging two neigh-

bouring groups by {R(m)
1 ,R(m)

2 ,… ,R(m)
n−m−1}. The superscript is used to represent the mth iteration.

Identify 𝑗 = argmini=1,2,…,n−m−1 R(m)
i . Then we merge groups 

(m)
𝑗

and 
(m)
𝑗+1 into a new group.
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Updated grouping is denoted by 𝔾(m+1) = {(m)
1 ,

(m)
2 ,… ,

(m)
𝑗−1,

(m)
𝑗

∪ 
(m)
𝑗+1,

(m)
𝑗+2,… ,

(m)
n−m} and

potentials of merging is updated to {R(m)
1 ,R(m)

2 ,… ,R(m)
𝑗−2,R

(m)
𝑗− ,R(m)

𝑗+ ,R(m)
𝑗+2,… ,R(m)

n−m−1}, where

R(m)
𝑗− = SSE({Y𝑗 , 𝑗 ∈ 

(m)
𝑗−1 ∪ 

(m)
𝑗

∪ 
(m)
𝑗+1})−

SSE({Y𝑗 , 𝑗 ∈ 
(m)
𝑗−1}) − SSE({Y𝑗 , 𝑗 ∈ 

(m)
𝑗

∪ 
(m)
𝑗+1}), and

R(m)
𝑗+ = SSE({Y𝑗 , 𝑗 ∈ 

(m)
𝑗

∪ 
(m)
𝑗+1 ∪ 

(m)
𝑗+2})−

SSE({Y𝑗 , 𝑗 ∈ 
(m)
𝑗

∪ 
(m)
𝑗+1}) − SSE({Y𝑗 , 𝑗 ∈ 

(m)
𝑗+2}).

Now, the steps described above are repeatedly applied until a desired stopping rule is satisfied.
The associated stopping rule is discussed in the following section. If the procedure is not
terminated, only one group will survive at the end of iteration n − 2.

Despite their structural similarity, the BWD is substantially different from forward detection,
since the null and alternative hypotheses at each step are reversed. At each step, the BWD tests
the equivalence between the two group means while the forward tests their difference. Therefore,
the BWD tends to stay with more groups with smaller sizes unless there is strong evidence
to merge some of them and hence is more powerful to detect short signals buried on a long
sequence. We also remark that the BWD starts with solving a series of local problems (each of
which focuses on finding structural changes in a small part of the data) and at the end becomes
a single global problem that employs the entire sequence. On the other hand, forward detection
starts as a global method and divides it into several local problems. This is one of the reasons
why BWD is preferred for identifying short signals in lengthy noise sequences, where local
methods are known to outperform global methods in general.

Finally, the BWD algorithm can be summarized as follows.

Input: Y1,… ,Yn.

1. Initialize 𝔾(1) = {{1},… , {n}} and R(1) = {R(1)
1 ,… ,R(1)

n−1} from (4).
2. At the mth iteration, m = 1,… , n − 1:

2–1 Obtain 𝑗 = argmini R(m)
i .

2–2 Break the loop if R(m)
𝑗

is larger than a prespecified cutoff, and go to the next step
otherwise.

2–3 Update

𝔾(m+1) = {(m)
1 ,… ,

(m)
𝑗−1,

(m)
𝑗

∪ 
(m)
𝑗+1,

(m)
𝑗+2,… ,(m)

n−m},

R(m+1) = {R(m)
1 ,R(m)

2 ,… ,R(m)
𝑗−2,R

(m)
𝑗− ,R(m)

𝑗+ ,R(m)
𝑗+2,… ,R(m)

n−m−1},

K = n − m − 1.

Output: 𝔾(K).

3.3. Modification for Epidemic Change Points
In CNV analysis, most parts of a sequence (normal) have a known baseline mean, say 𝜇0, and a
mean-change away from 𝜇0 (variant) is followed by a change back to 𝜇0. This is often referred
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to as an epidemic change points (Yao, 1993) and is an important feature of CNV analysis. To
take into account such a pairing structure, we modify the algorithm by adding the following Step
2–2′ between Steps 2–2 and 2–3.

2–2′ If the sample average of observations in the merged sets, Ȳ

(m)
𝑗

∪(m)
𝑗+1

is not significantly

different from the baseline mean 𝜇0, that is, v1∕2𝜎̂−1
n

||||Ȳ
(m)
𝑗

∪(m)
𝑗+1

− 𝜇0
|||| > z𝛼 where z𝛼 is

the upper 𝛼th quantile of a standard normal random variable and v = |||(m)
𝑗

∪ 
(m)
𝑗+1

|||, then

update R(m)
𝑗− and R(m)

𝑗+ based on 𝜇0 instead of Ȳ

(m)
𝑗

∪(m)
𝑗+1

.

Finally, we have developed the bwd R-package, available on CRAN, that implements the
proposed algorithm.

3.4. Computational Complexity
Computational efficiency is of practical interest in CNV applications due to their inherent
high-dimensionality. At each iteration in the BWD, the most computationally intensive part is to
find 𝑗 = argmini R(m)

i which takes O(n) at the worst. This gives the total complexity of O(n2),
which is too slow especially when n is very large.

However, it is realized that finding the maximum and corresponding index is straight forward
once R(1) is ordered, which takes O(n log n) computations. Note that the sorting step is required
only once at the initial stage. Once it is sorted, it takes O(1) to find the maximizer index at the
mth iteration while we need additional effort to update R(m+1) in an ordered fashion. However,
such an update takes only O(log n) computations. In particular, we borrow the idea from the
bi-section method, a well-known root finding algorithm. We can first compare R(m)

𝑗+ (or R(m)
𝑗− ) to

the median of the values in R(m). Compare it with the 75th percentile if it is greater than the
median and 25th percentile otherwise. We continue this until finding its exact location. Finally,
the total computational complexity of the BWD is then reduced to O(n log n).

4. STOPPING RULE

In every step of the BWD, two small groups are merged into a bigger group and we want to
test whether this merging removes a real change point. In such a standard case, it is natural
to use the t-statistic. Since the unknown variance is assumed to be homogeneous across all the
observations, a global estimate of the noise variance is used at every step. At the mth iteration
the following statistic

S(m) =
|||Ȳ (m)

𝑗
− Ȳ (m)

𝑗+1
|||

𝜎̂n

√||(m)
𝑗

||−1 + ||(m)
𝑗+1

||−1
, (5)

is used to determine when to stop. The backward procedure is terminated if S(m) is too large.

Here 𝜎2
n denotes an estimate of the unknown noise variance based on all the observation. If the

true signals are very short and sparse, the sample variance of Yi can also be used in practice as a
simple alternative. The use of a global estimate brings an additional saving in computation since
R𝑗 = 𝜎2

nS2
(m). We use 𝜎2

n = n−1 ∑n
i=1

(
Yi − Ȳ (h)

i

)2 with Ȳ (h)
i = (2h + 1)−1 ∑i+h

𝑗=i−h Y𝑗 for a given
window h > 0 in the upcoming analysis as used in Niu & Zhang (2012). An alternative estimate
is the median absolute deviation estimator, as pointed out in Jeng, Cai & Li (2010).

Similarly to the usual t-statistic, S(m) in (5) may cause a false alarm when both of the two
groups have small size. To avoid the possible false alarm caused by small group sizes, we can set

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



374 SHIN, WU AND HAO Vol. 48, No. 3

S(m) = 0 if both of the two consecutive segments are shorter than a minimum number M. The M
can be chosen to be, say, 3 or 5 depending on the application. Such a modification is acceptable
in CNV applications since it is very unlikely that any of two CNVs are closely located.

Now, the question is how large the critical value should be to attain a desired target level
𝛼 where 𝛼 denotes the familywise error rate (FER) of the proposed BWD. We remark that the
(1 − 𝛼∕2)th quantile of the t-statistic with the associated degrees of freedom will fail to attain the
nominal level since S(m) is correlated with other group means via the maximizer index 𝑗. We pro-
pose the following numerical procedure to select a cutoff value that controls FER being at most 𝛼.

1. Repeat the steps (a)–(c) below B times: for each iteration b, b = 1,… ,B,

1-(a) Randomly generate a sequence of size n from the null distribution that there exists
no change point.

1-(b) Apply the backward procedure until merging the whole sequence into one group.
1-(c) ub = maxm=1,…,n−1 S(m).

2. The (1 − 𝛼)th sample quantile of u1,… , uB would be the cutoff value which attains a given
level 𝛼.

We remark that the cutoff value is chosen from the null distribution of maxm=1,…,n−1 S(m),
not S(m), thus 𝛼 controls the FER. The very first step 1-(a) that simulates samples from the
null distribution is crucial in the proposed numerical procedure. Toward this we consider two
scenarios: (i) Normality is assumed to be true while a noise variance 𝜎2 is still unknown. (ii)
Neither normality nor 𝜎2 are known. In the first scenario, we can generate samples form the
standard normal distribution. Note also that this can be easily extended to any distribution other
than normal distribution, whenever it is known. In the second scenario when the underlying
distribution is not known, the null distribution can be obtained by randomly permuting or
bootstrapping residuals ri = Yi − Ȳ (h)

i , i = 1,… , n.
The proposed numerical procedure becomes computationally too intensive especially when

the sample size is very large, for instance over a million, which is not uncommon in CNV
applications. Under the normality assumption, we numerically investigate cutoff values for
different 𝛼 = 0.01, 0.05 and 0.10 as functions of sample size n. Figure 2 depicts estimated
cutoffs for different sample sizes from 1,000 to 100,000 by 1,000 and it shows a clear log-linear
relationship between the estimated cutoffs and the sample size n. Thus desired cutoffs for large
n can be approximated from the fitted regression line.

5. SIMULATED EXAMPLES

We evaluated the performance of the proposed backward procedure via numerical comparison
against existing methods. The target levels considered were 𝛼 = 0.01 and 0.05. We considered
both the original BWD (BWD1) and the modified BWD (BWD2) for epidemic change-points
under the assumption that the baseline mean 𝜇0 is known. As described in Section 4, there are
two ways to obtain the cutoff values depending on how to simulate null samples. We can obtain
a cutoff either from standard normal samples under the normality assumption (cutoff1) or from
the permuted residuals if the normality assumption is not valid (cutoff2). We used the former
in Section 5.1 with Gaussian error and the latter in Section 5.2 with non-Gaussian error. We
considered CBS, WBS, LRS and TVP as competing methods. CBS is one of the most widely
used methods in the literature and shares principals similar to a typical stepwise approach with
the proposed method. WBS is a recent development based on binary segmentation (i.e., forward
detection) that overcomes its shortcoming when detecting a short signal. LRS is a carefully

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 A BACKWARD PROCEDURE FOR CHANGE-POINT DETECTION 375

n

cu
to

ff

0e+00

(a) (b)

2e+04 4e+04 6e+04 8e+04 1e+05

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

log(n)

cu
to

ff

7 8 9 10 11

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

α = 0.10
α = 0.05
α = 0.01

FIGURE 2: Log-linear relationship between estimated cutoffs (𝛼 = 0.01, 0.05, 0.10) and sample
size n under normality assumption. The (red) solid lines in (a) and (b) are fitted regression lines

of cutoffs on sample size n and log n, respectively.

designed method for detecting sparse and short signals and is known to be optimal under some
required model assumptions that include normality, and shortness and sparsity of the signals.
In addition, we compared our method to a recently proposed bottom-up method, called TGUH
(Fryzlewicz, 2018). TGUH is designed for a general change-point detection problem and our
simulation shows that TBUH is in pain when it detects a short signal.

We considered the following mean change-point model

yi =
𝜅∑

k=1

𝛿k1{i∈Ik} + 𝜖i,

where Ik ⊂ {1,… , n}, k = 1,… , 𝜅 denote index sets corresponding to true signals with Ik ∩ Ik′ =
0 for any k ≠ k′, 𝜅 is the number of signal segments (i.e., CNVs), and 𝛿k, are unknown
means of true signals. We set |Ik| = L and 𝛿k = 𝛿, k = 1,… , 𝜅, and hence the strength of
true signals is controlled by L and 𝛿∕𝜎. We considered two different noise distributions of 𝜖

including the normal distribution and the t-distribution with degrees of freedom (df). We set
(n, L, 𝛿) = {1,000, 3,000, 5,000} × {5, 10} × {1.5, 2.0, 2.5} with 𝜎 = 1 for the normal model, and
(L, d𝑓 ) = {5, 10} × {10, 5} with n = 1,000 and 𝛿 = 3 for the t-distribution model. The number
of true segments was given by 𝜅 = n∕1,000 and minimum distance between two true segments
was set to 200. Numerical performance was evaluated based on 1,000 independent repetitions.

We claim that the signal segment Ik is correctly detected by Îk if Ik ∩ Îk ≠ 𝜙 and |Îk| < 2L.
To measure performance of the methods the following two measures are considered.

• Sensitivity: (# of correctly detected signals) / (# of true signals, 𝜅)
• Precision : (# of correctly detected signals) / (# of detected signals)

Sensitivity relates to the ability to identify true signals and precision measures reliability of
the detected signals. Note that both measures lie between zero and one (by setting 0∕0 = 0) and
a method is perfect if both measures have a value of one.
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TABLE 2: Performances under normal error—BWD and LRS outperform CBS and WBS. The BWD with
𝛼 = 0.05 (0.01) shows higher (lower) sensitivity but lower (higher) precision compared to LRS.

L 5 10

𝛿 1.5 2.0 2.5 1.5 2.0 2.5

n Methods Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre.

1,000

BWD

.01
cutoff1 .195 .924 .581 .975 .919 .985 .646 .983 .960 .993 .998 .994

cutoff2 .229 .909 .640 .965 .925 .982 .696 .971 .970 .983 .999 .985

.05
cutoff1 .335 .819 .727 .910 .952 .933 .777 .914 .983 .939 .999 .945

cutoff2 .335 .819 .726 .913 .950 .943 .773 .920 .982 .944 .999 .948

CBS .165 .948 .555 .975 .900 .979 .648 .972 .972 .976 .999 .977

WBS .176 .884 .570 .942 .909 .954 .634 .948 .971 .956 .999 .957

LRS .216 .911 .638 .973 .942 .983 .701 .979 .984 .988 1.000 .989

3,000

BWD

.01
cutoff1 .123 .966 .493 .990 .856 .995 .543 .992 .954 .997 .999 .999

cutoff2 .161 .947 .578 .985 .902 .992 .610 .988 .965 .995 .999 .997

.05
cutoff1 .229 .911 .653 .972 .926 .982 .700 .972 .980 .982 .999 .988

cutoff2 .250 .900 .676 .964 .931 .976 .718 .968 .982 .978 1.000 .981

CBS .103 .960 .490 .984 .882 .985 .572 .983 .974 .982 .999 .983

WBS .079 .967 .399 .991 .819 .990 .470 .991 .938 .992 .999 .990

LRS .152 .948 .553 .986 .898 .993 .606 .988 .972 .994 .999 .996

5,000

BWD

.01
cutoff1 .116 .967 .482 .994 .863 .997 .532 .992 .945 .996 .999 .996

cutoff2 .112 .971 .472 .995 .852 .998 .517 .992 .941 .997 .999 .997

.05
cutoff1 .212 .936 .632 .981 .924 .991 .667 .981 .974 .989 .999 .991

cutoff2 .213 .937 .623 .983 .917 .993 .664 .982 .974 .989 .999 .991

CBS .088 .973 .468 .989 .890 .987 .551 .983 .966 .985 1.000 .987

WBS .052 .985 .327 .994 .730 .995 .383 .994 .891 .995 .997 .995

LRS .130 .962 .512 .992 .881 .996 .563 .992 .957 .997 .999 .997

5.1. Gaussian Error
In many applications including CNV detection, the normality assumption is often used. Although
our backward procedure does not strongly require the normality assumption, it performs best
under normal noise because of the use of squared error loss. Table 2 reports the performance
of different methods considered in various scenarios under normality. Both the original and
modified versions of BWD outperform the others except LRS in most scenarios considered.
This is because the true signal was very short (L = 5 and 10). LRS performed quite well.
This is not surprising since the designed simulation model perfectly satisfies the assumptions
required for LRS. The modification for epidemic change points is useful when the true signals
are not strong. TVP was very fast, but gave too many false positives. TGUH showed very low
sensitivity indicating that it cannot detect short signals well. It is interesting to observe that BWD
still performed comparably well in the sense that it outperformed LRS in terms of sensitivity
with 𝛼 = 0.05 and in terms of precision with 𝛼 = 0.01. It is another benefit of BWD that it
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TABLE 3: Performance under t-distributed error—BWD outperforms all other methods for detecting short
signals.

L 5 10

df 10 5 10 5

Methods Sen. Pre. Sen. Pre. Sen. Pre. Sen. Pre.

BWD1
.01 .932 .990 .589 .982 1.000 .993 .968 .983

.05 .965 .949 .879 .879 1.000 .952 .994 .942

BWD2
.01 .936 .993 .606 .985 1.000 .996 .967 .986

.05 .969 .952 .876 .893 1.000 .958 .993 .954

CBS .853 .987 .287 .986 .998 .986 .864 .990

WBS .981 .867 .939 .644 1.000 .865 .999 .651

LRS .983 .711 .907 .338 1.000 .741 .999 .375

TVP .997 .183 .974 .212 1.000 .204 .999 .230

TGUH .273 .720 .545 .619 .391 .752 .699 .666

controls the relative importance between sensitivity and precision through the target level 𝛼.
We also remark that BWD is simple and does not require stringent model assumptions such
as sparsity.

5.2. Non-Gaussian Error
Performance of the change-point detection methods was evaluated under t-distributed noise.
BWD does not require the normality assumption and hence is not overly sensitive to the violation
of normality, whereas LRS does. Before applying LRS, we standardized the observations first
by using the sample mean and sample standard deviation. We remark that such naive estimates
should work fairly well for standardizing observation since the signals are very short compared
to the entire sequence of data. Table 3 displays the numerical performance of the methods
under consideration. The advantages of BWD are much clearer than in the previous setting with
normality. CBS failed to detect true signals when the signal strength is not very strong while the
backward procedure performed well in all the scenarios considered. Both WBS and LRS were
good in terms of sensitivity but they detect too many false signals in this case. Again, BWD2
outperformed BWD1 when the true signals were not strong.

5.3. Empirical Test Level
We numerically checked whether the backward procedure actually attains a target nominal
level 𝛼 under the null hypothesis that there exists no signal. Since the two versions of BWD
show similar results we report the results of only the original version to avoid redundancy. We
generated samples under the null hypothesis by letting 𝛿 = 0 and reported the proportion of
cases for which any signal is detected by each of the methods (Table 4). Recall that we have two
scenarios. The first scenario assumes normality and uses “cutoff1” for the cutoff value. Hence
the levels are correct if the data are indeed from a normal model but cannot satisfy the nominal
level if the data are from t-distribution. In this case, the ‘cutoff2’ can be used as an alternative
cutoff value and the results seem good enough to be used in practice. Note that there are a couple
of cases in which ‘cutoff2’ failed to produce the nominal level, which was partially caused by
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TABLE 4: Estimated level—cutoff1 performs well when the normality assumption is true and cutoff2 can
be used if the normality assumption is suspect.

Normal t(10) t(5)

Methods 𝛼 n = 1,000 n = 3,000 n = 5,000 n = 1,000 n = 1,000

BWD

cutoff1
0.01 .011 .013 .009 .032 .030

0.05 .051 .046 .058 .077 .065

cutoff2
0.01 .014 .018 .010 .007 .002

0.05 .065 .070 .053 .052 .022

CBS N/A .007 .011 .010 .003 .003

WBS N/A .016 .005 .004 .112 .395

LRS N/A .022 .028 .028 .388 .905

TVP N/A .966 .609 .600 .968 .925

TGUH N/A .030 .023 .019 .098 .210

the uncertainty about the null distribution. CBS seems very conservative about detecting signal
and both LRS and TGUH break down when the normality assumption is not valid. TVP failed
again to control the type I error. As mentioned before, it is another distinguishing advantage
of the proposed BWD to be able to control type I error. This is practically attractive since the
relative importance of sensitivity and precision varies depending on the application.

6. REAL DATA ILLUSTRATION

6.1. Trio Data from an SNP array
The BWD is demonstrated for the SNP array data collected from AGRE (Bucan et al., 2009).
The data set contains three parallel sequences of LRR for 547,458 SNPs over 23 chromosomes
of a father--mother–offspring trio.

All methods considered in Section 5 were applied except TVP and TGUH. For LRS, the data
were standardized by the sample mean and variance. We set 𝛼 = 0.05 and the corresponding
cutoff value was approximated from the log-linear relation between cutoff and sample size under
the normality assumption as described in Section 4. We applied each of the methods to each
chromosome. Figure 3 shows the results for the first two chromosomes (chromosomes 1 and 2)
of the offspring. The detect signals are marked as vertical lines. The parameter 𝜇t estimated by
three methods, CBS, LRS and BWD, is indicated by different line types and colours. Note that
LRS detected only very short or sparse signals. We would like to point out that although all of
CBS, WBS and BWD are developed under a similar framework, the results are quite different.
For example in chromosome 2 (Figure 3b), CBS detects no change point after around 54,000th
SNP position, while both the BWD and WBS detected several.

The complete CNV detection results for the trio data are summarized by a Venn diagram
in Figure 4 which reports the number of CNVs detected by different methods for each of
trio (father/mother/offspring) as well as the collapsed data. We consider CNVs to be detected
segments whose lengths in terms of the SNP index are between 2 and 200 bp. First, LRS
detected a much larger number of CNVs than other competing methods, while the majority
(237∕356 = 66.5%) were unique calls which are likely to be suspect as false signals. BWD called
121 CNVs which was more than those from CBS (84) and WBS (100), while the number of
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FIGURE 3: CNV detection results for chromosome 1 and 2 of offspring—All of CBS, WBS, and
BWD show quite different results. The vertical lines represent the signals detected by LRS.

unique calls by BWD was only 12.4% (15/121), fewer than any of the others (CBS: 34/82 = 41%;
WBS: 17/100 = 17%). This can be interpreted that BWD showed the best precision if we assume
that most CNVs uniquely called by a single method are false positives. Next, BWD missed only
2 CNVs that were identified by all other methods, while CBS, WBS and LRS missed 24, 8 and
6 such CNVs, respectively, meaning that BWD outperformed others in terms of sensitivity as
well. Finally, 25 CNVs identified by all the methods can be regarded as true CNVs and used in
Figure 1 in order to show that short CNVs are indeed common in real data.

The genetic information is inherited from parents to offsprings and can be utilized for
validation of the detected CNVs. Table 5 lists all the offspring’s CNVs that were detected from
one of both parents as well. All the CNVs in Table 5 are nearly, if not exactly, identical to the
corresponding ones detected from the parents and thus those CNVs are considered as true. We
would like to emphasize that most true CNVs are quite short and both of CBS and WBS miss
many of them while LRS and BWD missed only one and three, respectively. We claim that some
jointly detected CNVs from (at least one of) parents and offspring are still suspected to be false
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FIGURE 4: Venn diagram of detected CNVs (father/mother/offspring)—BWD identifies the
least number of unique CNVs most of which are likely to be false positives, while it missed only
2 CNVs that are identified by all the other methods, while CBS, WBS, and LRS missed 24, 8,

and 6 such CNVs, respectively.

if only a very minor portion of the detected CNVs overlapped compared to their entire length.
LRS detected nine such suspect CNVs while CBS WBS, and BWD detected one, one and two,
respectively.

In summary judging, from the real-data analysis for the trio SNP array, LRS tended to call
too many CNVs that included many false positives while CBS and WBS missed some true short
CNVs. We can conclude that the proposed BWD outperformed all the others. This is concordant
to the findings in the simulation studies in Section 5.

6.2. RD from NGS Sequencing Data
We further illustrate the BWD on the RD data from high-throughtput sequencing data on
chromosome 19 of a HapMap Yoruban female sample (NA19240) from the 1,000 Genomes
Project. The RD yi of the ith locus (i = 1,… , 54 361 060) was adjusted by the guanine-cytosine
content. Although the data can be used to analyze genomic variants in higher resolution
with the raw measure, as mentioned earlier the observed values highly fluctuate due to
complicated sequencing process and require a proper normalization/transformation. To handle
these difficulties, we considered a local-median transformation as motivated by Cai, Jeng & Li
(2012). In particular, we first partitioned the RD data into small bins of size M, and then applied
BWD to the sequence of the medians of observations in each bin. The transformed data sequence
is then well-approximated by a normal distribution regardless of the underlying distribution of
the original data. If M is large, the data are more accurately approximated by the normal model,
but a CNV shorter than M bp cannot be accurately identified. (i.e., M is a minimal resolution).
As shown in Section 5, BWD is not overly sensitive to violation of the normal assumption and
we set a relatively small number of M = 100 in the analysis.
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TABLE 5: Offspring’s CNVs detected from one/both of parents—for each of CNVs, starting SNP indices
are presented along with the size in parentheses.

I. With father

Index CBS WBS LRS BWD

1 22,369 (7) 22,369 (7) 22,369 (7)

2 76529 (3) 76529 (3)

3 163,327 (18) 163,331 (14) 163,331 (15)

4 252,509 (2) 252,509 (2) 252,509 (2)

5 325625 (6)

6 359,377 (11) 359,372 (14)

7 379,916 (2) 379,916 (2)

8 392,433 (5) 392,433 (5) 392,433 (4)

9 507,037 (6) 507,039 (4) 507,038 (5) 507,038 (122)

10 561,443 (2) 561,443 (2)

II. With mother

Index CBS WBS LRS BWD

1 130,814 (10) 130,814 (7)

2 228,119 (6) 228,119 (6)

3 277,328 (2) 277,328 (2)

4 363,744 (9) 363,744 (9) 363,744 (9) 363,744 (9)

5 414,247 (3) 414,247 (3) 414,247 (3)

6 457,597 (3) 457,597 (3)

7 519,555 (10) 519,555 (10) 519,555 (10)

8 532,211 (7) 532,210 (8) 532,211 (7) 532,210 (8)

III. With both father and mother

Index LRS BWD Comments

1 53,949 (2) 53,949 (2)

2 152,827 (2) 152,827 (2)

3 359,377 (11) 359,377 (9) CBS missed father.

4 442,247 (4) 442,243 (8) WBS missed mother.

5 547,470 (146) 547,459 (157) WBS missed mother.

For BWD we set 𝛼 = 0.05 and the cutoff value was computed under the normal assumption.
BWD called 15 CNVs. Figure 5 provides zoom-in plots of some of the CNVs identified by
BWD. The proposed method worked reasonably well for the NGS read-depth data as well as for
the data after a simple transformation.
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FIGURE 5: Zoom-in plots of the CNVs identified by the backward detection from the NGS
read-depth data: The CNVs can be detected directly from the NGS read-depth after simple local

median transformation.

Many existing CNV analysis tools for high-throughput NGS data employ CBS as a primary
tool for identifying CNVs. We would like to remark that BWD can be a desirable alternative
under the presence of short CNVs hardly detected by CBS.

7. DISCUSSION

We propose a BWD procedure for change-point detection and apply it to CNV detection. The
proposed BWD is a simple procedure that can be readily employed for high-dimensional data,
but it still performs very well, as illustrated with both simulated and real data, especially when
the true signals of interest are short, which is often the case in CNV detection problems. Similar
to CBS, BWD is a general approach for change-point detection problems that can be used in
various applications besides CNV detection from which it was originally motivated, since it does
not depend on any application-specific assumptions.

The simple idea of the proposed BWD provides a possibility for further extension in various
ways. First, the gain of a backward procedure compared to forward detection, including CBS, is
obvious for short signal detection. However, forward detection also has a clear benefit when the
true signal is long and the mean change is minor. Thus we can select either of the two depending
on application. Moreover, we can develop a method that hybridizes between forward and BWD
analogous to stepwise variable selection in a regression context. The idea is straightforward but
requires additional effort to improve computational efficiency, especially for CNV applications.
Next, we can extend BWD to loss functions other than squared L2 loss. For example, the absolute
deviance error can be used as a reasonable alternative in the presence of outliers. It is also
possible to generalize the idea to more complex structures such as a graph (Chen et al., 2015) by
introducing a proper loss function defined on the space of the complex data object. Finally, as
motivated by the trio data, the backward idea can be extended to detect common signals shared
by multiple sequences of observations.
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