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Abstract— The ability of a P2P network to scale its throughput
up in proportion to the arrival rate of peers has recently been
shown to be crucially dependent on the chunk sharing policy
employed. Some policies can result in low frequencies of a
particular chunk, known as the missing chunk syndrome, which
can dramatically reduce throughput and lead to instability of
the system. For instance, commonly used policies that nominally
“boost” the sharing of infrequent chunks such as the well-known
rarest-first algorithm have been shown to be unstable. We take
a complementary viewpoint, and instead consider a policy that
simply prevents the sharing of the most frequent chunk(s), that
we call mode-suppression. We also consider a more general
version that suppresses the mode only if the mode frequency is
larger than the lowest frequency by a fixed threshold. We prove
the stability of mode-suppression using Lyapunov techniques,
and use a Kingman bound argument to show that the total
download time does not increase with peer arrival rate. We then
design versions of mode-suppression that sample a small number
of peers at each time, and construct noisy mode estimates by
aggregating these samples over time. We show numerically that
mode suppression stabilizes and outperforms all other recently
proposed chunk sharing algorithms, and via integration into
BitTorrent implementation operating over the ns-3 that it ensures
stable, low sojourn time operation in a real-world setting.

Index Terms— Peer-to-peer networks, Lyapunov stability,
chunk selection policy, Kingman bound.
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I. INTRODUCTION

PEER-TO-PEER (P2P) file sharing networks such as
BitTorrent [1] have been studied intensely—using ana-

lytical models, simulation studies, and large scale field
experiments. After seeing much initial usage, declines of
P2P applications were seen as cloud-based HTTP streaming
services became available. However, with increasing fragmen-
tation of content libraries over a plethora of paid content
streaming services, yearly increases in P2P usage are being
seen again. Increases in BitTorrent usage are measurable in the
Asia-Pacific (APAC) and Europe-Middle-East-Africa (EMEA)
regions, while it is likely that such applications are moving
behind VPNs in the Americas according to a 2019 report
from Sandvine [2]. Measurements from this study comparing
BitTorrent and HTTP streaming, shown in Table I indicate
robust BitTorrent usage.

Interest in the analysis of BitTorrent stems from a desire
to understand the thought-provoking phenomenon of apparent
scaling up of throughput as the number of peers grows,
which enables it to effectively distribute content with low
file-download times during high demand situations called
flash-crowds. This scaling is related to the fact that a file is
divided into fixed-size chunks, and a peer possessing a set of
chunks can upload those chunks to other peers that need them.
Once a peer has downloaded all chunks, it could continue to
serve other peers or leave the system. A so-called seed server
that possesses all chunks and never leaves is often used to
ensure that no particular chunk ever goes missing. It is the
feature of integrating the upload capacity of each peer into
the system that is supposed to enable system-wide throughput
scaling up with the number of peers. However, since peers can
only share chunks that they possess, it is crucial to ensure the
wide availability of all chunks to enable maximum usage of
available upload capacity with each peer.

The problem of ensuring that all chunks are easily
obtainable—ideally by engendering equal numbers of copies
of each chunk over the network—was considered by the origi-
nal designers of P2P networks. For example, BitTorrent, which
is the most popular P2P network protocol, uses an algorithm
called rarest-first (RF) to try to achieve this goal [1]. Here,
the idea is to keep a running estimate of the frequency of all
chunks in the system. When a peer has a chance to download
a chunk, it chooses the least frequent (i.e., the “rarest”) among
all the chunks that it needs. In practice, peers keep track of the
frequency of chunks in local subsets. Intuition suggests that
such “boosting” of rare chunks might ensure a near-uniform
empirical distribution of chunks.
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TABLE I

TRAFFIC FRACTIONS OF BITTORRENT VS. HTTP STREAMING, 2019 [2]

Recent work has postulated that under some conditions,
the rarest-first policy used by BitTorrent actually does not
achieve its goal, and can actually be harmful to system
performance. In particular, [3] studied a chunk-level model
of P2P sharing under which new peers that do not possess
any chunks arrive into the system at some rate, contacts
between peers happen at random, and at each contact a
chunk is transferred to a requesting peer under a given policy.
Peers depart immediately after completing the file download.
The objective was to determine if the system is stable under
a given policy, i.e., at any time is the number of peers that
have not yet received the whole file finite or is it exploding to
infinity? The result was that under several policies including
rarest-first and random chunk selection, a particular chunk can
become very rare across the network—a phenomenon referred
to as the missing chunk syndrome. This causes the creation of
a large set of peers that are missing only that one chunk,
referred to as the one club. In turn, the seed server must serve
the missing chunk to almost all peers (which then depart),
which means that the system is unstable unless the upload
capacity of the seed server is of the order of the arrival rate of
peers into the system. Thus, the phenomenon largely negates
the value of the P2P system.

More recently, experimental studies have revealed that
the missing piece syndrome is an observable phenomenon
occurring in BitTorrent networks [4]. The results show that
when the seed server has low or intermittent upload capacity,
the throughput of the system saturates as the number of peers
grows. In turn, this causes lengthened stay of peers in the
system between arrival and completion, where an increasingly
large number of peers are waiting to obtain the final chunk
before leaving. In other words, designing policies that can
ensure stability of a P2P network under a fixed seed server
capacity for all peer arrival rates is practically relevant.

A. Related Work

There has been extensive work on P2P applications over the
past few years. There are many examples, including but not
limited to, content distribution [5], [6], crowd sensing [7], [8],
energy trading [9]–[11], video streaming [12], [13] and models
for peer selection [14]–[16]. In addition, with blockchain tech-
nology gaining a lot of traction, several works have focused
on leveraging the distributed nature of P2P networked systems
in its support [17]–[19].

Our specific problem relates to BitTorrent stability, and
we refer below only to those directly relating to the scaling
properties of a single swarm. A large system assumption was
made in [20]–[22], and the evolution of peers and seeds is
described using a system of differential equations. While [20],
[21] study the stationary regime and indicate the stability of
BitTorrent-like systems for all arrival rates, [22] considers the

transient regime and studies how much seed server capacity
is needed to attain a target sojourn time (the time between
the arrival of a peer and its completing the file download).
Results on stability and scaling here require that at least a fixed
fraction of the peers’ upload capacity can always be utilized—
an implicit assumption of chunk availability. As shown in [3],
this assumption need not hold for all chunk selection policies,
and a chunk-level model is needed for accurate analysis.

Chunk-level models have considered the missing chunk
problem from two angles. The first method is to explicitly
insist that peers that have completed the download should
stay in the system as servers for some period of time.
For example, [23] presents results on fairness vs. system
performance based on how long peers stay after completion.
In a more recent work [24], it was analytically shown that
the system is stable as long as peers stay long enough to
serve of the order of one additional chunk after completion.
Indeed, in the first BitTorrent implementation this often
happened naturally, since most users manually stopped
participation at some point after download was completed.
Enforcing cooperation among peers to alleviate this issue
has been proposed, typically using a specific initialization or
an application-specific implementation [25]–[29]. However,
the ability to leave after download has been available in
multiple BitTorrent implementations for over fifteen years as
a simple checkbox option. Given that users in many countries
are subject to upload and download quotas, strategic user
behavior by using this option suggests that the instability
observed in [4] could easily affect system performance.

The second method is to assume that peers would leave
immediately after completion, and to design the chunk sharing
policy such that the missing chunk syndrome is avoided. Some
algorithms of this nature are “boosting” policies that can be
thought of as modified versions of rarest-first. For example,
the rare chunk (RC) algorithm studied in [30]–[32] picks three
peers at random and chooses a chunk that is available with
exactly one of the selected peers (called a “rare” chunk). Also
studied in [32] is a variant of this algorithm called the common
chunk (CC) algorithm, which proceeds as in the RC algorithm
when the peer has no chunks, then follows a policy of sampling
a single peer with random selection among its required chunks
until it only needs one more chunk, and then proceeds by
sampling three peers and only downloading a chunk if every
chunk with it appears at least twice with the sampled peers.
However, although stable, these algorithms appear to have long
sojourn times in some settings [33].

More recent work on chunk sharing policies [33] describes
an algorithm called group suppression (GS), which is based on
observations made in [3]. The policy is based on computing
the empirical distribution of the states in the system, where a
state of a peer is the set of chunks available with that peer.
Peers that belong to the state with highest frequency are not
allowed to upload chunks to peers that have fewer chunks than
themselves, thus suppressing entry into the highest frequency
group. Although this policy appears to have low mean sojourn
times in simulations, it can have high variability. Also, this
policy is complex since it requires the knowledge of the entire
empirical state distribution. Furthermore, the authors are only
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TABLE II

COMPARISON OF CHUNK SELECTION POLICIES

able to prove stability in a P2P network with exactly 2 chunks,
while the stability of the general case is left as a conjecture.

B. Main Results

The nominal objective of Rarest-First is to ensure a uniform
chunk distribution across the network boosting low-frequency
chunks, which it actually does not achieve in all cases, causing
instability as shown in [3]. To support rarest-first, BitTorrent
implements a distributed algorithm for determining global
chunk frequencies so that peers can determine which chunks
are rarest. Our idea is to utilize the same chunk frequency
information, but to simply prevent the most frequent chunk(s)
from being shared, hence allowing less frequent chunks to
catch up and drive the empirical distribution of chunks towards
the desired uniform distribution. Implicitly, this would also
remove a small fraction of the upload capacity, keeping peers
in the system a little longer, and enabling them to share more
copies of rare chunks.

Following this intuition, we propose a policy that we call
mode-suppression (MS), which is based on terminology used
in statistics in which the mode is the most frequent value(s) in a
data set. In the basic version of this algorithm, we keep track
of the frequency of chunks in the system, and when a peer
contacts another peer, it is allowed to download any chunk
except the one(s) belonging to the mode. Any chunk may
be downloaded if all chunks are equally frequent (i.e., if all
chunks belong to the mode). We extend this idea to a more
general version where we do not insist on always suppressing
the mode, but only do so when the highest frequency is greater
than the lowest frequency by a fixed threshold.

We have two main analytical results under a random peer
selection model. First, we show using a Lyapunov drift analy-
sis that the general version of mode-suppression with any finite
frequency difference threshold is stabilizing under all peer
arrival rates in a system in which the file is divided into any
number of chunks. Second, we show using Kingman bound
arguments that for the general version of mode-suppression,
the sojourn time does not increase with peer arrival rate.
Hence, mode-suppression appears to be able to reduce chunk
sharing just enough to maintain stability, without negatively
affecting the sojourn time in a scaling sense.

We also construct two heuristic variants of the idea that
only depend on limited observations. The first variant is
mode-suppression that samples only one peer at a time and
uses the history of interactions to compute a noisy mode,
based on an exponentially weighted moving average estimate

of chunk frequency (MS-EWMA). The second variant, local
mode-suppression (LMS) samples 3 peers at a time, and uses
a noisy mode constructed from only those samples. It is
straightforward to show that LMS is stabilizing in the case
of a system with two chunks following the proof in [32].
We primarily study these heuristic variants via simulations.

We simulate all the algorithms by starting the system in
a corner case where one of the chunks is available only
at the seed server, and observe the evolution of the system
afterwards. An additional dimension that we explore is the
impact on chunk diversity engendered by being able to pick a
chunk from the set possessed across multiple peers, i.e., choice
of one chunk from one randomly chosen peer, versus choice of
one chunk from the chunk-set of three randomly chosen peers.
We empirically find that MS attains its lowest sojourn time
when we set the frequency difference threshold for suppression
T = 2m, where m is the number of chunks that the file is
divided into. We also find that the variants of MS preformed
the best overall, and the case of choosing a chunk from
the chunk-set of 3 random peers is near-optimal in terms of
sojourn time. A comparison is presented in Table II.

We then replace rarest-first with mode-suppression in
a BitTorrent implementation over the ns-3 simulation
environment. This is straightforward, since mode-suppression
uses exactly the same chunk frequency statistics as rarest-first,
and hence can be integrated into BiTorrent with about 20 lines
of code. The ns-3 experiments recover earlier instability issues
of rarest-first, demonstrate that mode-suppression is stabiliz-
ing, and that it results in good sojourn time performance.

A preliminary version of this work was presented in [34],
which only considered the stability of a basic version of mode-
suppression. The current work derives a stability result for
a generalized version of mode-suppression that has a fre-
quency difference threshold, empirically determines the right
threshold, and develops a Kingman-bound-based sojourn time
scaling result. In this work, we also present an implementation
of the main algorithm using BitTorrent over ns-3. It thus
generalizes and adds to the methodological contributions,
as well as to the empirical study.

II. SYSTEM MODEL

We consider a P2P file sharing system for a single file
divided into m chunks. This file sharing system has a unique
seed that has all m chunks, and the seed stays in the system
indefinitely. Peers arrive according to a Poisson process with
rate λ. Each incoming peer arrives without any chunks and
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stays in the system till it obtains all m chunks of the file.
In this model, a peer leaves as soon as it has all m chunks of
the file. The peers can receive the chunks in two ways, either
directly from the seed or from other peers.

A contact is said to occur whenever a seed or a peer contacts
another peer. Hence, each peer and the seed have individual
contact processes corresponding to the sequence of contact
instants. Upon contact, the seed or the peer immediately
transfers a missing chunk to the contacted peer, according to a
chunk selection policy. When chunk selection policy depends
solely on the current state of the system, it is said to be
Markovian.

A. Contact Processes

The time interval between two contacts are assumed to be
random, independent, and identically exponentially distributed,
i.e., all contact processes are independent and Poisson. The
Poisson contact rate for the seed is assumed to be U , and
each peer is assumed to have a common contact rate of μ. We
have also assumed that the transfer of chunk is immediate on
the contact. In practice, contact times are small, and download
times are significant. We have assumed random contact time
and instantaneous download, for the ease of exposition. Our
model is equivalent to random download time and instanta-
neous contact, where peers immediately contact once they have
finished downloading the chunk. Effectively, the time interval
between two contacts is modeling the chunk download time.

B. State Space

At any time t, the number of peers in the system with a
proper subset of chunks S ⊂ [m] is denoted by XS(t) ∈ N0 �
{0, 1, . . .}. The system state at time t can be represented by

X(t) = (XS(t) : S ⊂ [m]).

The total number of peers at any time t is denoted by

|X(t)| =
∑

S⊂[m]

XS(t).

For any Markov chunk selection policy, the continuous time
process (X(t), t � 0) is Markov with countable state space
X � N

P([m])\[m]
0 . The stability region is defined as the set of

arrival rates λ, for which the continuous time Markov chain
X(t) is positive recurrent.

C. State Transitions

The generator matrix for the process X(t) is denoted by Q.
For this continuous time Markov chain, there can only be
a single transition in an infinitesimal time. We denote the
system state as x ∈ X just before any transition, and let eS

be the unit vector in the direction corresponding to a proper
subset S ⊂ [m].

There are three types of possible transitions. The first type
of state transition is the arrival of a new peer, that leads
to an increase in the number of peers with no chunks. The
corresponding transition rate is denoted by

Q(x, x + e∅) = λ.

The second and third type of transitions occur when a peer
with S ⊂ [m] chunks receives a chunk j /∈ S from the
contacting seed/peer. In both these cases, the next state is
denoted by TS,j(x). The second type of state transition occurs
when the reception of new chunks doesn’t lead to a departure.
This transition is denoted by

TS,j(x) � x− eS + eS∪{j}, xS > 0, |S| < m− 1.

The third type of state transition occurs for a peer with m−1
chunks, which departs the system after getting the last chunk
upon contact. This transition is denoted by

TS,j(x) � x− eS , xS > 0, |S| = m− 1.

As all possible state transitions fall into one of the above
three cases, the rate of transition for any other pair of states
would be 0. At a system state x, if the contacting source has
B chunks and the contacted receiving peer has S chunks,
then the set of available chunks that can be transferred is
B \S. Selection of which chunk to transfer is called the chunk
selection policy, which governs the evolution of the process
X(t). In particular, the last two transition rates Q(x, TS,j(x))
can only be computed for a specific Markov chunk selection
policy. We describe the proposed chunk selection policy and
the corresponding transition rates in the following section.

D. Chunk Distribution Information and Chunk Selection

A chunk selection policy decides which chunk to download
from a given peer. It needs to have some information on
the chunk distribution in order to determine which chunks
to prioritize or suppress. Specifically, rarest-first assumes that
the chunk frequencies in the system are known to the peer.
This information is obtained through a distributed algorithm
in BitTorrent that samples a set of peers to obtain an esti-
mate [1]. Mode Suppression assumes the availability of the
same chunk frequency information available in BitTorrent
implementations. Group Suppression assumes that the full
joint state distribution is known to all peers [32], which might
be hard to acquire in practice. We also design “local” variants
of mode suppression, which estimate chunk frequencies by
sampling a few peers at each time.

According to the model, when the exponential clock of a
peer ticks, it chooses a target peer at random, obtains the list
of chunks that the target peer has in its possession, applies the
chunk selection policy to this set of chunks, selects at-most one
chunk, and downloads it instantaneously. We also simulate a
generalized version of this process where the peer can choose
several target peers when its clock ticks, so that it can make a
selection of at-most one chunk from among the chunk-set of
all the target peers contacted. This approach yields a higher
chunk diversity to choose from, in-spite of still having the
same bandwidth limitation of one chunk download per clock
tick, and so improves sojourn time performance considerably.
Specifically, we will consider the cases wherein the peer
selects one versus three target peers at each time.

Finally, we note that while the “local” mode suppression
policies use the same number (one or three) of targets for
both frequency estimation, as well as chunk-set to select from,
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rarest-first, mode-suppression and group-suppression have an
out-of-band algorithm for chunk distribution estimation as
described above.

III. MODE-SUPPRESSION POLICY

In this section, we describe the general version of the
Mode-Suppression (MS) policy (with a finite threshold T )
and derive its rate transition matrix. First, we establish some
notation. The set of allowable transfers from a peer with set
of chunks B to a peer with set of chunks S, is denoted by
A(x, B, S) ⊆ B \ S. The cardinality of this set is denoted
by h(x, B, S), and it takes integer values between 0 and m.
Recall that the seed has all the chunks, and hence the set of
allowable chunk transfers by the seed is A(x, [m], S). Below,
we describe the specifics of selecting the set of allowable
transfers.

If there are no peers in the system, there is no need for chunk
transfer. Hence, without loss of generality, we consider the
mode-suppression policy when there exist peers in the system,
or |x| > 0. Here, we assume that each peer has the knowledge
of all chunk frequencies in the system. The frequency of the
jth chunk is

πj(x) �
∑

j∈S xS

|x| . (1)

Let π(x) and π(x) denote the maximum and minimum
chunk frequencies, respectively, in a state x. Then we have

π(x) = max{πj(x) : j ∈ [m]} and

π(x) = min{πj(x) : j ∈ [m]}.

The chunk indices that attain the highest frequency
arg max{πj(x) : j ∈ [m]} are called the modes of the chunk
frequencies. The set of modes is defined as

M(x) � {j ∈ [m] : πj(x) = π(x)}.

We denote the number of peers with chunk j as

yj(x) �
∑

S:j∈S

xS = πj(x)|x|. (2)

We can also define the number of peers with the maximum
and the minimum chunk frequency by y(x) and y(x) respec-
tively. The number of chunks in the system is denoted by

r(x) �
∑

S⊂[m]

|S|xS =
∑

S⊂[m]

xS

∑
j∈[m]

1{j∈S} =
∑

j∈[m]

yj(x).

We can lower bound the total number of chunks by the
number of most popular chunk. Therefore,

r(x) =
∑

j∈[m]

yj(x) � y(x). (3)

For simplicity of presentation, we would drop the depen-
dence on the state x for y, π, r when the underlying state x is
clear from the context. We can find a bound on the fraction of
peers with least popular chunk from its definition in Lemma 4
in Appendix A in the supplementary material.

Now, we will describe the mode-suppression policy. The
mode-suppression policy restricts transmission of any chunk

that belongs to the set of modes if its count is greater than
count of the least frequent chunk by at least T > 0 units.
Denote the set of suppressed chunks in state x by DT (x) for
some threshold T ∈ N. According to MS DT (x) is given by

DT (x) =
{
k ∈M(x) : yk(x) � y + T

}
. (4)

The allowable transfer set for MS policy is

A(x, B, S) = B\(S ∪DT (x)). (5)

The steps of the mode-suppression policy are shown in
Algorithm 1 for a generic peer p.

Algorithm 1 Mode-Suppression Policy for Peer p

S ← Chunk profile of p
while S �= [m] do

t← t + τ, where τ ∼ exp(μ)
x← X(t)
∀j ∈ [m], compute yj(x) from (2) and DT (x) from (4)
Pick a source peer (B) randomly
Choose a chunk (j) randomly from B\

(
S ∪DT (x)

)
Update S ← S ∪ {j}

end while

The policy of the seed will be similar except for two
differences. First, since the contact rate is U , τ ∼ exp(U) and
second, seed pushes the chunk to the peer instead of pulling.

A. Properties of the Suppressed set

Note that if we set T = 1, the policy strictly suppresses
the mode, and as T becomes larger, we increasingly relax
suppression. When T →∞, MS is equivalent to the Random
Chunk selection policy as there will not be any suppression,
and chunks are chosen uniformly and at random. When the
difference in number of peers with different chunks are all
within threshold T , no chunks are suppressed. In this case,
DT (x) = ∅, and we can upper bound the fraction of peers
with most popular chunk in the Lemma 5 in Appendix A in
the supplementary material.

We would like to make two important observations
regarding the suppressed set DT (x). We first observe that
depending on the threshold T , either all modes are suppressed
or none of the modes are suppressed. WhenM(x) = [m], then
DT (x) = ∅ by definition. Hence, we consider M(x) ⊂ [m].
Since yk = ȳ for all k ∈ M(x), we have

DT (x) =

{
M(x), if y � y + T,

∅, otherwise.

We next observe that, using the definition of chunk fre-
quency, the set of suppressed states can be written as

DT (x) =M(x)1{π�π+ T
|x|} + ∅1{π<π+ T

|x|}.

That is, the mode-suppression threshold is a function of
the peer population. As the peer population |x| grows large,
the policy strictly suppresses the mode for |x| � T . Contrast-
ingly for small peer population |x| = 1, the policy is most
relaxed.
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B. Transition Rates of the Contact Process

From the superposition of independent Poisson contact
processes, the rate at which one of the peers with profile S
contacts any other peer is also Poisson with the aggregate
rate μxS . The probability of contacting a source peer with
profile B among all peers is xB

|x| . From the thinning of Poisson
process, we get that the Poisson contact process between any
recipient peer with profile S and a source peer with profile B
has rate μxS

xB

|x| .
The contact process between seed and the peers is an

independent Poisson process with rate U , where the seed
contacts any peer at random. Hence, the Poisson contact
process between seed and any peer with profile S occurs at
rate UxS

1
|x| .

Since source peer has B chunks, then it can transfer one out
of h(x, B, S) available chunks to the destination peer with S
chunks. The transition of type TS,j occurs when one of the
peers without chunk j /∈ S is contacted by seed or contacts a
peer with chunks B, and receives the chunk j among all the
possible choices. From the thinning and superposition of inde-
pendent Poisson processes, we can write for j /∈ S and xS > 0

Q(x, TS,j(x))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xS

|x|

(
U

h(x, [m], S)
+ μ

∑
B:j∈B

xB

h(x, B, S)

)

if j /∈ DT (x),
0 if j ∈ DT (x).

All other entries in the rate transition matrix other than the
diagonal entries are 0, and the diagonal entries are equal to
the negative sum of rest of the entries in that row.

It is difficult to work with exact transition rates for all
transitions from state x to state TS,j(x). We can lower bound
the system performance by lower bounding the transition rates
when S ⊂ {j}c. To this end, we look at the the Poisson contact
process of either the seed or one of the peers with chunk j
with any peer, with the aggregate rate

Rj(x) � U + μ
∑

B:j∈B

xB = U + μyj(x)

from the superposition of independent Poisson contact
processes. In Lemma 6 in Appendix A in the supplementary
material, We can find a lower bound on the transition rates
when S ⊂ {j}c, and the exact transition rate when S = {j}c,
in terms of the rate Rj = U + μyj .

IV. STABILITY REGION OF MODE-SUPPRESSION

In this section we characterize the stability region of mode-
suppression. To prove the positive recurrence of the asso-
ciated continuous time Markov chain X(t), we employ the
Foster-Lyapunov criteria.

Foster Lyapunov Criteria: Let φ be a time homogenous,
irreducible and continuous time Markov process and X be
its state space. If there exists a finite set of states F ⊂ X ,
a Lyapunov function V : X → (0,∞) and some constants
b > 0, ε > 0, such that

QV (x) � −ε + b1{x∈F} ∀x ∈ X ,

then φ is positive recurrent [33], [35].

We consider the following Lyapunov function,

V (x) �
m∑

i=1

(y − yi)2 + C1(|x| − y) + C2(M − r)+, (6)

where, C1, C2 and M are positive constants that satisfies the
constraints, C1 > (2T − 1)(m − 1), C2 � 2m2(C1λ+ε)

U ,
M > max {mN21, N22} , where ε > 0 and N21, N23 are
positive constants defined in the equations (17) and (18) in
the Appendix B of the supplementary material. Note that the
explicit dependencies of π(x) and y(x) on x are not shown
for simplicity.

The intuition behind this Lyapunov function is as follows.
The nominal objective of MS is to approximately attain
a uniform distribution of chunks (with the allowable error
being related to the threshold value T ). Hence, we should
expect that the policy should promote negative Lyapunov
drift whenever the current state differs from uniformity. Our
Lyapunov function is designed to penalize three cases, namely,
(i) where chunks have significantly differing frequency,
(ii) where some might have zero frequency, and (iii) where
all have zero frequency.

For a Markov process X(t) with associated generator matrix
Q, the expected rate of change of potential function from state
x is called the mean drift from this state, and is given by

QV (x) �
∑

y

Q(x, y)(V (y)− V (x)).

The mean drift from a state x for the Markov process X(t)
for the mode-suppression policy, in terms of its generator
matrix Q can be written as

QV (x) = Q(x, x + e∅)(V (x + e∅)− V (x))

+
∑

j∈[m]

∑
S:j /∈S

Q(x, TS,j(x))(V (TS,j(x)) − V (x)).

(7)

First, we compute the mean drift corresponding to a new
peer arrival. The arrival of a new peer does not change the
number of peers with chunk j ∈ [m]. However, it does lead to
a unit increase in the number of peers in the system. That is,

Q(x, x + e∅)(V (x + e∅)− V (x)) = λC1.

We observe that the set of chunks S such that j /∈ S is
identical to S ⊆ {j}c. Hence, we can write the mean drift
QV (x) from state x in (7) to be equal to

λC1 +
∑

j∈[m]

( ∑
S⊂{j}c

+
∑

S={j}c

)
Q(x, x′)(V (x′)− V (x)),

where x′ = TS,j(x).
We show in Theorem 13 in Appendix B in the supplemen-

tary material, that the Markov process X(t) corresponding
to the number of peers with different subsets of all chunk
set [m], is positive recurrent for all arrival rates λ > 0.
To this end, we employ the Foster-Lyapunov criteria [35]
for the Lyapunov function defined in (6). As a first step,
we upper bound the difference in Lyapunov function between
state TS,j(x) and x in Lemma 7 in the Appendix B of the
supplementary material. We can bound the aggregate transition
rate

∑
S⊂{j}c Q(x, TS,j(x)) by bounding the fraction of peers
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without single chunk
∑

S⊂{j}c
xS

|x| . This bound is presented in
Lemma 9 in the Appendix B of the supplementary material.

We note that when the set of suppressed chunks DT (x) �= ∅
in state x, transition to state TS,j(x) is possible only when the
chunk j /∈ DT (x) = M(x). That is, the chunk j /∈ M(x)
for any transition to state TS,j(x). When the set of suppressed
chunks DT (x) = ∅, transition to state TS,j(x) is possible for
all chunks j ∈ [m]. In particular, it is possible that the chunk
j ∈M(x). This leads to the Corollary 8 in the Appendix B of
the supplementary material that upper bounds the difference
between Lyapunov function evaluated at state TS,j(x) and
state x, for chunk set S ⊆ {j}c and peer j /∈ M(x) and
j ∈ M(x). From the bound on the Lyapunov difference
V (TS,j)(x)−V (x) and the bound on aggregate transition rate∑

S⊆{j}c Q(x, TS,j(x)), we can bound the mean drift for non-
empty and empty set of suppressed chunks in Proposition 10
and Proposition 11 in Appendix B of the supplementary
material, respectively. Next, we can show in Lemma 12 in
the Appendix B of the supplementary material that the mean
drift is strictly negative when the number of peers with the
most frequent chunk exceed a threshold. Together these results
suffice to show the Foster-Lyapunov criteria can be applied
to the Lyapunov function under consideration, and we can
conclude that the Markov process X(t) is positive recurrent.

V. SCALING OF SWARM SIZE AND SOJOURN TIME

Our next result is on the scaling properties of MS with
respect to the peer arrival rate λ. We use the following
Kingman moment bound to prove the properties.

Theorem 1 (Kingman Moment Bound [24]): Let X be a
continuous-time, irreducible Markov process on a countable
state space X with generator matrix Q. Suppose V, f, and g
are nonnegative functions over the state space X , and suppose
QV (x) � −f(x)+g(x) for all x ∈ X . In addition, suppose X
is positive recurrent, so that the means, f̄ = πf and ḡ = πg
are well defined. Then f̄ � ḡ.

We then have the following scaling result.
Theorem 2: Under the Mode-suppression policy, the follow-

ing statements are true.

1) (Scaling of Swarm Size) The average number of peers
in the system L � Cλ, where C is a constant.

2) (Scaling of Sojourn time) The average sojourn time of
the peers W, is bounded.

Proof: See Appendix C-A in the supplementary material.
The scaling result implies that for the proposed

mode-suppression policy, the average number of peers
is growing at most linearly with the peer arrival rate in the
system. That is, the average sojourn time of each peer remains
bounded. It follows that the proposed policy scales well for
all peer arrival rates. This also suggests that the sojourn time
will remain bounded for variable arrival rates, as long as the
arrival rate is finite at all times.

VI. LIMITED OBSERVATION BASED POLICIES

Mode-suppression is simple to integrate into BitTorrent
via utilizing the distributed approach to determining chunk
frequencies available within BitTorrent. The procedure used

by BitTorrent requires the sampling of many peers, and the
question arises as to whether approaches to determining chunk
frequencies that rely on a more limited set of observations can
be devised? We shed some light on this question below.

A. Local Mode-Suppression Policy

Under local mode-suppression (LMS), a peer contacts three
other peers at random, and among the chunks available with
more than one peer, we define the local mode to be the
chunk(s) with greatest frequency. The peer is allowed to
download any chunk that is not part of the local mode. Any
chunk may be downloaded if all chunks are equally frequent.

Let Bj , j = 1, 2, 3 denote the chunk profiles of three
selected peers and B =

{
B1, B2, B3

}
, then we can write

the modes

MLMS(x, B)

=

⎧⎨
⎩i ∈ [m]

∣∣∣∣
3∑

j=1

Bj
i � max

k∈[m]

3∑
j=1

Bj
k,

3∑
j=1

Bj
i > 1

⎫⎬
⎭, (8)

and we write the set of suppressed chunks (regardless of
whether the chunk is downloaded from the seed or another
peer) as

DLMS(x, B) =

{
MLMS if MLMS �= [m],
∅ if MLMS = [m].

(9)

The steps of the local mode-suppression policy are shown
in Algorithm 2.

Algorithm 2 Local Mode-Suppression for Peer p

S ← Chunk profile of p
while S �= [m] do

t← t + τ, where τ ∼ exp(μ)
x← X(t), S ← Chunk profile of p
Select three source peers (Bi) randomly
Compute DLMS(x, B) from (9)

Choose a chunk j randomly from ∪i=3
i=1Bi\

(
S ∪

DLMS(x, S)
)

Update S ← S ∪ {j}
end while

Theorem 3: The stability region of Local Mode-Suppression
(LMS) is λ > 0 if m = 2, μ > 0 and U > 0.

Proof: The proof for m = 2 chunks follows using the same
Lyapunov function and steps as the proof of the Rare Chunk
policy [32], and is hence omitted.

Stability for the case m > 2 chunks is left as a conjecture.

B. EWMA Mode-Suppression

Under this policy, each peer calculates the empirical mar-
ginal chunk frequencies based only on the chunks possessed
by all peers that it has met until (and including) the current
time. The marginal chunk frequency is calculated using an
Exponentially Weighted Moving Average (EWMA) taking into
account both history and present, and the mode of this estimate
is suppressed.
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Let n ∈ N denote the index of Poisson ticks of a peer.
We define empirical marginal chunk frequencies of a peer p
with π̃n(p) and are computed as below for each chunk j ∈ [m],

π̃0
j (p) = 0, π̃n

j (p) = (1− α)π̃n−1
j (p) + αBn

j , (10)

where Bn denotes the chunk profile of the source peer selected
at time slot n by peer p and α ∈ (0, 1) is the exponential
weighting parameter. The modes for this policy are defined as

Mn
EWMA(p) =

{
i|π̃n

i (p) ≥ max
j∈[m]

π̃n
j (p)

}
, (11)

and the set of suppressed chunks (regardless of whether the
chunk is downloaded from the seed or another peer) are
denoted by

Dn
EWMA(p) =

{
Mn

EWMA if Mn
EWMA �= [m],

∅ if Mn
EWMA = [m].

(12)

The steps of EWMA Mode-Suppression Policy is shown in
Algorithm 3.

Algorithm 3 EWMA Mode-Suppression for Peer p

S ← Chunk profile of p, n = 0
while S �= [m] do

t← t + τ, where τ ∼ exp(μ), n← n + 1
x← X(t)
Pick a source Peer (B) randomly
∀j ∈ [m], compute π̃n

j (p) from (10) and Dn
EWMA(p) from

(12)
Choose a chunk j randomly from B\

(
S ∪Dn

EWMA(p)
)

Update S ← S ∪ {j}
end while

While we have proposed algorithms in this section that only
exploit limited information, we have not provided their full
analysis. We will study them empirically in the simulation set-
ting to determine if they show sufficiently good performance
that warrants further analysis in the future.

VII. NUMERICAL EXPERIMENTS

In this section, we show the results from numerical sim-
ulations that illustrate the performance of different chunk
selection policies. Recall that our candidate policies are
(i) random chunk selection, (ii) rarest-first, (iii) rare chunk,
(iv) common chunk, (v) group suppression, (vi) mode-
suppression, (vii) local mode-suppression, and (viii) mode-
suppression-EWMA. Recall that the random chunk selection
and the rarest-first chunk selection policies are known to be
unstable [3] for large peer arrival rates, and hence we do not
study the random chunk policy. A description of these policies
can be found in Sections I, III, and VI. For all the simulations,
we set the peer contact rate U and seed contact rate μ as 1.
Each peer in the system, including the seed, generates an
exponential random variable with mean 1

μ = 1
U = 1, and the

one with the smallest value gets a chance to contact another
peer.

A. Chunk Frequency Evolution

A stable chunk selection policy has to be robust to the
one-club state. In other words, a stable policy should be
able to boost the frequency of a rare chunk. To see how
different policies handle the one-club situation, we start the
system with 500 peers that have all the chunks except first
chunk (i.e., all peers are part of the one-club). In Figure 1,
we plot the evolution of the chunk frequency for different
policies under this initial condition. We see that when using
the rarest-first policy, the rare chunk remains rare and abundant
chunks remain abundant, which is a clear sign of instability.
In all stabilizing policies, the rare chunk is made available
by giving priority to that chunk in some way. For instance,
in case of mode-suppression (T = 1), no other chunk will
be transmitted until the frequency of the rare chunk is equal
to the frequency of all other chunks. Once this happens,
the frequencies of the different chunks remain almost same,
and hence we only see a thin spread across the frequencies.
Other policies also manage to bring the rare chunk back into
circulation and the corresponding statistics become similar to
all other chunks. We also observe that the stabilization time to
increase the frequency of rare chunk to the same level as that
of other chunk frequencies, is shorter for mode-suppression
and local mode-suppression when compared to other
algorithms.

B. Sojourn Times

In a stable system, an important performance metric is the
sojourn time of a peer, which is defined as the amount of time a
peer spends in the system collecting all chunks before leaving.
For numerical illustration of sojourn time, we fix the peer
arrival rate at λ = 30, and we calculate the mean stationary
sojourn times of the peers under different policies, for different
values of the number of file chunks m. The stationary sojourn
times are obtained by running the system for a long period
of time and ignoring the first 2000 peers that left the system.
Our goal is to evaluate how effectively the algorithms use their
information on chunk statistics.

Our first result is on determining the value of threshold
T that minimizes the sojourn time under MS. Intuitively,
the threshold is a way of allowing “noisy” suppression of
the mode. It seems reasonable that as the number of chunks
increases, the amount of noise permitted should also be
allowed to increase in the interest of allowing more sharing
to take place. Thus, we numerically studied different values
of T that are increasing with the number of chunks m, and
found empirically that setting T = 2m appears to minimize
the sojourn time under MS.

We also wish to study the effect of chunk diversity provided
through the option to choose a chunk from the set of chunks
possessed by 1 versus 3 peers. Thus, we have two versions
of each algorithm that both use identical chunk statistics
(obtained through sampling some or all peers as per the
algorithm). However, the first version can obtain any one
chunk from those possessed by 1 randomly selected peer,
while the second can pick any one chunk from the set of
chunks possessed by 3 randomly selected peers.
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Fig. 1. Chunk frequency evolution in a system with m = 5 chunks under different policies when starting from the state of a “missing-chunk” (whose
frequency is indicated by a red/dashed line). Rarest-first is clearly unstable, since it cannot recover, whereas the other protocols manage to bring the chunk
back into peer circulation and stabilize the system. The time taken for a single chunk upload is taken as one second.

Recall that the qualitative comparison of sojourn time across
the different algorithms appears in Table II. In Figure 2,
we present a numerical comparison of sojourn times across
the different algorithms. The increased sojourn times of RC
and CC are visible, although increasing chunk diversity by
sampling 3 peers improves RC considerably. GS has good
performance, although the variability in sojourn time seen in
the error bars (standard deviation) is high, noticeable when
selection is from one peer or when m is large. The variants
of MS all perform well, with the MS (T = 2m), LMS, and
MS-EWMA, all showing low sojourn times. It is interesting
to note that in the example, since the contact rate is 1, the best
case sojourn time is equal to the number of chunks m. We see
that for the case of sampling 3 peers, the mode-suppression
variants MS (T = 2m), LMS, and MS-EWMA, attain a mean
sojourn time that is very close to m, indicating that they
achieve a near-optimal tradeoff between suppression (to keep
peers in the system) and sharing (to enable peers to gather
chunks).

VIII. BITTORRENT OVER NS-3 EXPERIMENTS

In this section, we present P2P experiments over the ns-3
simulator [36]. We selected an open-source modular BitTorrent
application model for ns-3 called VODSIM [37], which is fully
compliant with the protocol description [38]. The framework
of VODSIM over ns-3 allows us to easily collect micro
benchmarks for each simulation run. Our goal is a comparison
of the stability and sojourn time properties of rarest-first and
mode-suppression policies.

As mentioned in Section I, BitTorrent already imple-
ments a distributed algorithm for identifying the chunk fre-
quencies via observations from a subset of peers in the

Fig. 2. Stationary mean sojourn times of stable policies for different values
of m. The two regimes correspond to downloading a chunk from 1 peer,
or downloading one chunk from the chunk set of 3 peers. The time taken for
a single chunk upload is taken as one second.

swarm, which we can directly leverage. Experiments with
rarest-first are straightforward, since it is the default chunk
selection policy of BitTorrent, and uses the chunk frequency
observations to prioritize the lowest-frequency chunks for
sharing. Mode-suppression is our custom modification that
restricts the chunk set that may be shared at any time using
the same chunk frequency information, and requires only about
20 lines of source code changes to implement.

We note a few other elements of BitTorrent that are relevant
to our experiments. First, BitTorrent utilizes a Tit-for-Tat
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Fig. 3. Number of peers in the system when m = 10. Rarest-first becomes unstable for higher arrival rates, whereas mode-suppression is always stable.

mechanism that ensures strategic cooperation for chunk shar-
ing via a scheme for “unchoking” an appropriate peer set,
which we do not modify. Furthermore, it divides chunks into
sub-blocks for sharing. We set the size of a sub-block as
identical to that of a chunk for consistency with the analytical
model, and to allow easier measurement of system state.

With the above simulation setup, we initialize a single
seed that serves the file of interest, and a single Tracker
that acts as a controller. Depending on the scenario, we ini-
tialize a fixed number of peers holding a subset of chunks
of the file. Peers arrive at the BitTorrent swarm with an
exponentially distributed inter-arrival time, which allows us
to control the arrival rate of peers using a single parame-
ter. Chunks are shared according to the BitTorrent proto-
col over the simulated network with the appropriate chunk
sharing policy, and peers leave the system immediately after
completion.

A. Stability

We first demonstrate the instability of the rarest-first policy
for arrival rates larger than the seed service rate, and stability
of the mode-suppression policy for any arrival rate. As in the
previous section, we initialize the system state in one-club
for both the rarest-first and the mode-suppression policy to
observe the impact on the swarm size. Continual increase of
the swarm size will indicate instability.

For the experiments, we chose a file of size 320 kB divided
into 10 chunks of 32 kB each, and initialized the swarm
with 500 peers as members of one-club. We repeated the
experiment for values of the peer arrival rate into the swarm,
λ ∈ [0.02, 0.1, 0.2, 1, 2]. We set the seed upload rate 100 kbps
and the number of unchoked peers for the seed to 1. It follows
that each client in the one-club takes 32 × 8/100 seconds to
leave the system, which corresponds to an approximate service
rate of U ≈ 0.4 chunks per second.

We show the time evolution of number of peers in the
swarm under the rarest-first policy in Figure 3 (left). We
observe that the number of peers increases linearly in time,
when the peer arrival rate λ exceeds the seed service rate
U , indicating the instability. For lower arrival rates λ < U ,
the system is stable, as is evidenced by the gradual departure of
clients from the one-club. In Figure 3 (middle-right), we also

Fig. 4. Stationary mean sojourn times of stable policies for different values
of m.

present our results under strict mode-suppression (T = 1)
and mode-suppression with threshold T = 5, respectively
under identical system parameters. Unlike rarest-first policy,
mode-suppression is stable for all arrival rates.

B. Mean Sojourn Time

We next present our simulation results for mean sojourn
time. Here, we choose a peer arrival rate λ = 4, and the seed
upload rate of U = 1 chunk per second, and the peer upload
rate of μ = 1 chunk per second. We compute the mean sojourn
time for the mode-suppression policy with different thresholds
T ∈ {1, 5, 10} and the rarest-first policy, for varied values of
the number of file chunks m.

In Figure 4 we compare the corresponding mean sojourn
times for both algorithms. Under each policy, the increase in
mean sojourn times as the number of file chunks increase is
apparent. However, the mean sojourn time values achieved by
mode-suppression are generally smaller than those of rarest-
first. Note also that rarest-first is unstable here, and hence has
continually increasing sojourn times, implying the the “mean”
shown is simply the average of values observed thus far rather
than representing the statistics of a stationary distribution.
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So the error bars here keep increasing with the duration of
the simulation.

We also observe that although a threshold value of
T = 2m appears to be optimal from our numerical studies in
Section VII-B, such a choice might not always be reasonable
in the real BitTorrent system. The reason is that in BitTorrent,
the peer set of a client is limited to 50 peers. Recall that
the suppressed set is non-empty only when the condition
T � (π − π)|x| is satisfied, which in turn is limited by the
fact that |x| = 50 in this case. Hence, setting large values
of T as the number of chunks increases would imply no
suppression, resulting in erratic behavior. In practice, we found
that a values between T = 5 and T = 10 show good
performance.

IX. CONCLUSION

In this work, we analyzed the scaling behavior of a P2P
swarm with reference to its stability when subjected to an
arbitrary arrival rate of peers. It has been shown earlier that
not all chunk sharing policies are stable in such a regime,
and our goal was to design a simple and stable policy that
yields low sojourn times. Our main observation was that,
contrary to the traditional approach of boosting the avail-
ability of rare chunks, preventing the spread of chunk(s)
that are more frequent as compared to the lowest frequency
chunks (where the maximum allowed threshold is a parameter
of the algorithm) yields a simple and stable policy that
we entitled mode-suppression (MS). We analytically proved
its stability, and showed that the sojourn time under this
algorithm does not scale up with increasing demand (peer
arrival rate). Our results indicate that there is a delicate
trade-off between sharing (i.e., uploading a useful chunk if
at all possible) and suppression (i.e., trying to reduce chunk
transfers to keep peers in the system so that they can help
others). We showed in both numerical studies and simula-
tions of BitTorrent over ns-3 that MS with an appropriately
selected threshold results in stable behavior with low sojourn
times.
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