
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Learning to Cache and Caching to Learn:
Regret Analysis of Caching Algorithms

Archana Bura , Desik Rengarajan, Dileep Kalathil , Senior Member, IEEE,

Srinivas Shakkottai , Senior Member, IEEE, and Jean-Francois Chamberland , Senior Member, IEEE

Abstract— Crucial performance metrics of a caching algorithm
include its ability to quickly and accurately learn a popularity
distribution of requests. However, a majority of work on ana-
lytical performance analysis focuses on hit probability after an
asymptotically large time has elapsed. We consider an online
learning viewpoint, and characterize the “regret” in terms of the
finite time difference between the hits achieved by a candidate
caching algorithm with respect to a genie-aided scheme that
places the most popular items in the cache. We first consider
the Full Observation regime wherein all requests are seen by the
cache. We show that the Least Frequently Used (LFU) algorithm
is able to achieve order optimal regret, which is matched by
an efficient counting algorithm design that we call LFU-Lite.
We then consider the Partial Observation regime wherein only
requests for items currently cached are seen by the cache,
making it similar to an online learning problem related to
the multi-armed bandit problem. We show how approaching
this “caching bandit” using traditional approaches yields either
high complexity or regret, but a simple algorithm design that
exploits the structure of the distribution can ensure order optimal
regret. We conclude by illustrating our insights using numerical
simulations.

Index Terms— Caching algorithms, online learning, multi
armed bandits.

I. INTRODUCTION

CACHING is a fundamental aspect of content distribution.
Since it is often the case that the same content item is

requested by multiple clients over some timescale, replicating
and storing content in near proximity to the requesting clients
over that timescale can both reduce latency at the clients,
as well as enable more efficient usage of network and server
resources. Indeed, this is the motivation for a variety of cache
eviction policies such as Least Recently Used (LRU), First In
First Out (FIFO), RANDOM, CLIMB [1], Least Frequently
Used (LFU) [2] etc., all of which attempt to answer a basic
question: suppose that you are aware of the timescale of
change of popularity, what are the right content items to store?

Viewed from this angle, the problem of caching is simply
that there is some underlying unknown popularity distribution
(that could change with time) over a library of content items,

Manuscript received September 7, 2020; revised April 14, 2021 and July 7,
2021; accepted July 18, 2021; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor K. Jagannathan. This work was supported in
part by the National Science Foundation under Grant CNS-1955696, Grant
CRII-CPS-1850206, Grant NSF-Intel CNS-1719384, Grant ARO W911NF-
19-1-0367, and Grant ARO W911NF-19-2-0243. (Corresponding author:
Archana Bura.)

The authors are with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX 77843 USA (e-mail:
archanabura@tamu.edu; desik.rengarajan@tamu.edu; dileep.kalathil@
tamu.edu; sshakkot@tamu.edu; chmbrlnd@tamu.edu).

Digital Object Identifier 10.1109/TNET.2021.3105880

Fig. 1. Request forwarding with (a) full observation, and (b) partial
observation at the cache.

and the goal of a caching algorithm is to quickly learn which
items are most popular and place them in a location that
minimizes client latencies. Taking this viewpoint of “caching
equals fast online learning of an unknown probability distribu-
tion,” it is clear that it is not sufficient for a caching algorithm
to learn a fixed popularity distribution accurately, it must also
learn it quickly in order to track the changes on popularity
that might happen frequently.

Most work on the performance analysis of caching algo-
rithms has focused on the stationary (long term) hit prob-
abilities under a fixed request distribution. However, such
an approach does not account for the fact that request dis-
tributions change with time, and finite time performance is
a crucial metric. Suppose that all content items are of the
same size, a cache can hold C content items, and the request
process consists of independent draws (called the Independent
Reference Model (IRM)). Then a genie-aided algorithm that
is aware of the underlying popularity distribution would place
the top C most popular items in the cache to maximize the
hit probability. Yet, any pragmatic caching algorithm needs
to learn the popularity distribution as requests arrive, and
determine what to cache. The regret suffered is the difference
in the number of cache hits between the two algorithms. How
does the regret scale with the number of requests seen? We
have two main themes in this project that are illustrated in
the conceptual settings of Figure 1. Here, we have shown two
fundamentally different learning architectures using a single
cache, and a much larger “library,” which is a remote (possibly
distributed) database that contains all content in the system.
In both, there is a request process that is exogenous, and
learning involves using this process to determine which items
should be cached. Our learning themes are as follows.

A. Learning to Cache With Full Observations

One possibility is that there is a hierarchy of caches, with
requests passing from one to the next, and eventually to
the library. Applications of this model include hierarchical

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7897-2473
https://orcid.org/0000-0001-7968-5185
https://orcid.org/0000-0002-5882-6433
https://orcid.org/0000-0002-2983-9884

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

systems, such as chip-level L1, L2 caches leading up to the
main memory or storage [3], and sequences of content caches
beginning close to a user and leading up to a data center [4].
In the representative scenario where there is just a single
caching element in the hierarchy, it would see all requests
as illustrated in Fig. 1 (a). A cache hit would mean that the
item can be serviced from the cache, while a miss would mean
that the request would be forwarded to the library. Since the
cache sees all requests, whether they result in hits or misses,
the caching algorithm simply needs to quickly and efficiently
determine the top items to cache.

B. Caching to Learn With Partial Observations

In a cache routing approach, requests for content are routed
towards caches that are believed to possess the content (or
along a default path without any information). Such routing
might be done via a name server such as DNS redirect,
and a cache only sees requests that are directed towards it.
In turn, this depends on whether the cache has the content in
question. Applications of this model include caching at cellular
base stations [5], and content dissemination using a Global
Name Service [6] (similar to DNS) such as Mobility-First [7].
The representative single caching element scenario is shown
in Fig. 1 (b), and we refer to it as the partial observation
regime.

In a typical cache network, requests are seen at multi-
ple caches, but request information is either not aggregated,
or only partially. Specifically, only request summaries might
be disseminated over time. The availability of such summaries
implies that the content provider often has a good idea of
the nature of the arrival distribution, for instance the Zipf
parameter that it follows and the timescale at which changes
are observed. However, each cache does not see the hits and
misses of the other caches in realtime, nor does it know the
identity of the popular items in advance of the fact. Thus,
explicit caching actions must be taken in order for a cache
to learn what is popular. Hence, we have a regime in which
structural information about the distribution could be known,
but individual caches are not up to date on each other’s hits and
misses as they occur, and need to learn popularity as the arrival
process changes, corresponding to the partial observation case.

The goal of this work is to conduct a systematic analysis
of caching from the perspective of regret, with idea that a
low-regret algorithm implies fast and accurate learning in
finite time, and hence should be usable in a setting where
the popularity distribution changes with time. Can we design
regret optimal algorithms that apply to each of our learning
paradigms?

1) Main Results: In our analytical model, we consider a
system in which one request arrives at each discrete time unit,
i.e., the total number of requests is the same as the elapsed
time T . We begin with insight that, under the full observation
regime, the empirical frequency is a sufficient statistic of all
information obtained on the popularity distribution received
thus far. Here, there is no exploration problem, and the goal
is to simply exploit the observations received via estimating
the empirical frequencies. Hence, the appropriate use of this
estimate is to choose the top C most frequent items to cache.
This approach is identical to the LFU, since it evicts the item
with the least empirical frequency at each time. Our first result
is to show that LFU has an O(1) regret, not only with respect
to time T , but also with respect to library size. It can also be

shown that the regret of LRU provably high. Intuitively, LRU
does not learn the true popularity of the requests, rather it
keeps a track of the recently arrived requests. Thus it suffers a
constant regret at each time step, resulting in Ω(T) cumulative
regret.

While LFU is known to attain high hit rates, it suffers from
the fact that the number of counters is the same as the library
size, since every request must be counted. This is clearly
prohibitive, and has given rise to approximations such as
W-LFU [8], which only keeps counts within a moving win-
dow of requests, and TinyLFU [2] that uses a sketch for
approximate counting. Our next result is to show that these
approximations never entirely eliminate the error in estimating
the popularity distribution, leading to the worst possible regret
of Ω(T).

We then propose a variant of LFU that we term LFU-Lite,
under which we use a moving window of requests to decide
whether or not a particular item appears to be popular enough
to be counted accurately. Thus, we maintain a counter bank,
and only count those content items that meet a threshold
frequency in any window of requests thus far. The counter
bank size grows in a concave manner with time, and we find
its expected size to ensure O(1) regret for a target time T.
Thus, given a time constant of change in popularity, we can
decide on the ideal number of counters.

We next consider the partial observation regime, wherein
the cache can only see requests of items currently cached
in it. We relate this problem to that of the classical multi-
armed bandit (MAB) under which actions must be taken to
learn the value of pulling the different arms. Hence, explicit
exploration actions are needed in this regime. We first consider
an algorithm that builds up the correct posterior probabilities
given the requests seen thus far, and caches the most frequent
items in a sample of this posterior distribution. Although its
empirical performance is excellent, maintaining the full pos-
terior sampling (FPS) quickly becomes prohibitively difficult.

We then consider an algorithm that simply conducts a
marginal posterior sampling (MPS) by updating counts only
for the items that are in the cache. Here, counts of hits and
misses are awarded to the appropriate cached item, but a miss
(which manifests itself as no request being made to the cache)
is not used to update the posterior distribution of items not in
the cache. Clearly, we are not using the information effectively,
and this is reflected in the regret scaling as O(log T). This
result is similar to earlier work [5].

We then ask whether we can exploit the structure of the
problem to do better? In particular, suppose that we know
that requests will follow a certain probability distribution (e.g.,
Zipf), although we do not know the ranking of items (i.e.,
we do not know which ones are the most popular). We develop
a Structured Information (SI) algorithm that considers this
information about the distribution to reduce the regret to O(1).
We also describe a “Lite” version of the SI algorithm similar
to LFU-Lite to reduce the number of counters.

We first verify our analytical results via numerical simula-
tions conducted using an IRM model drawn from Zipf distri-
butions with different parameters of library and cache sizes.
We also find that Lite-type schemes appear to empirically
perform even better than predicted by the analytical results.

We then construct versions of the algorithms that are capable
of following a changing popularity distribution by simply “for-
getting” counts, which takes the form of periodically halving
the counts in the counters. The expectation is that a low

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURA et al.: LEARNING TO CACHE AND CACHING TO LEARN 3

regret algorithm, augmented with such a forgetting rule with
an appropriately chosen periodicity should be able to track a
moving popularity distribution accurately. We conduct trace-
based simulations using (non-stationary) data sets obtained
from IBM and YouTube, and compare hit performance against
the ubiquitous LRU algorithm. We show that the LFU variants
outperform LRU, and that incorporating forgetting enhances
their hit-rates.

Since the amount of change over time in the existing traces
is low, we stress test our algorithms by creating a synthetic
trace that has higher changes in popularity over time. Again,
we show that the versions of our algorithms that incorporate
forgetting are able to track such changing distributions, and
are still able to outperform LRU, which builds a case for their
eventual adoption. We further incorporate an online change
detection mechanism into our algorithms to detect the changes
in popularity on the fly. We show via a synthetic non-stationary
trace that the online change detection scheme, when combined
with the simple forgetting rule makes our algorithms robust to
the changes in the popularity under non-stationary traffic.

2) Related Work: Existing analytical studies of caching
algorithms largely follow the IRM model, with the focus
being on closed-form results of the stationary hit probabil-
ities of LRU, FIFO, RANDOM, and CLIMB [1], [9]–[11].
The expressions are often hard to compute for large caches,
and approximations have been proposed for larger cache
sizes [12]. Of particular interest is the Time-To-Live (TTL)
approximation [13]–[16] that associates each cached item with
a lifetime after which it is evicted. Appropriate choice of
this lifetime enables the accurate approximation of different
caching schemes [15].

Recent work on performance analysis of caching algorithms
has focused on the online learning aspect. For instance, [17]
propose TTL-based schemes to show that a desired hit rate
can be achieved under non-stationary arrivals. Other work
such as [18] characterize the mixing times of several simple
caching schemes such as LRU, CLIMB, k-LRU etc. with the
goal of identifying their learning errors as a function of time.
However, the algorithms studied all have stationary error (they
never learn perfectly) and so regret in our context would
be Ω(T).

An alternative approach is taken in [19], [20], where the
request arrival process is taken to be adversarial. These works
present asymptotic and non-asymptotic regret lower bounds
respectively, and show that a coded and an uncoded policy
respectively achieve this bound. As in many algorithm design
and analysis settings, the adversarial model and the stochas-
tic (Bayesian) model produce significantly different results that
are not directly comparable. For instance, [20] shows that the
LFU algorithm incurs an Ω(T) regret in the adversarial setting,
i.e., the bound suggests poor performance. In contrast, in the
stochastic arrival setting, we show among other results that the
LFU algorithm will achieve the best possible regret of O(1) in
the full observation regime. Our results are supported through
empirical trace-based (non-adversarial) simulations.

Information Centric caching has gained much recent inter-
est, and is particularly relevant to edge wireless networks. Joint
caching and routing is studied in [21] where the objective is to
show asymptotic accuracy of the placements, rather than finite
time performance that we focus on. Closest to our ideas on
the partial observation model is work such as [5], which draws
a parallel between bandit algorithms and caching under this
setting. However, the algorithms considered are in the manner

of the traditional Multi-Armed Bandit (MAB) approach that
does not account for problem structure, and hence can only
attain O(log T) regret.

With regard to the MAB problem, Lai and Robbins [22]
showed in seminal work the Ω(log T) regret lower bound
pertaining to any online learning algorithm. An index based
algorithm using the upper confidence idea (UCB1 algorithm)
was proposed in [23], which enabled a simple implementation
while achieving the optimal regret. The posterior sampling
approach, first proposed by Thompson in [24], has recently
been shown to attain optimal regret [25]. For a detailed
survey, we point to a monograph [26] and a recent book [27].
Another line of works in bandits is related to the best-arm
identification [28], [29], which can be considered as a pure
exploration problem. In our manuscript, the full observation
setting does not need to perform exploration. The exploration
vs. exploitation trade off naturally arises in the partial obser-
vation regime, hence, in that theme, we follow approaches
inspired from multi-armed bandit literature. Although there are
similarities, the basic approaches and theoretical guarantees
provided by MAB and the best arm identification problems
are different.

Much work also exists on the empirical performance eval-
uation of caching algorithms using traces gathered from
different applications. While several discover fundamental
insights [30]–[32], our goal in this work is on analytical per-
formance guarantees, and we do not provide a comprehensive
review.

II. SYSTEM MODEL

We consider the optimal cache content placement problem
in a communication network. The library, which is the set
of all files, is denoted by L = {1, . . . , L}. We assume for
expositional simplicity that all files are of the same size, and
that the cache has a capacity of C, i.e., it can store C files
at a given time. We denote the popularity of the files by the
profile μ = (μ1, μ2, . . . , μL), with

∑
i μ1 = 1. Without loss of

generality, we assume that μ1 > μ2 > · · · > μL. Let x(t) ∈ L
be the file request received at time t. We assume that requests
are generated independently according to the popularity profile
μ, i.e., P(x(t) = i) = μi.

Let C(t) denote the set of files placed in the cache by
the caching algorithm at time t. We say that the cache gets
a hit if x(t) ∈ C(t) and a miss if x(t) /∈ C(t). The
goal of the caching algorithm is to maximize the expected
cumulative hits over time, E[

∑T
t=1 �{x(t) ∈ C(t)}], where

the expectation is over the randomness in the requests and
the ensuing choices on C(t) made by the caching algorithm.
Clearly, if popularity distribution μ is known, the optimal
caching policy is to place the most popular items in the cache
at all times, i.e., C∗(t) = C, where C = {1, 2, . . . , C}.
However, in most real world applications, the popularity
distribution is unknown to the caching algorithm a priori.
So the goal of a caching algorithm is to learn the popularity
distribution (or part of it) from the sequential observations, and
to place files in the cache by judiciously using the available
information at each time in order to maximize the expected
cumulative hits.

In the literature on multi-armed bandits, it is common to
characterize the performance of an online learning algorithm
using the metric of regret, which is defined as the performance
loss of the algorithm as compared to the optimal strategy with
complete information. Since C∗(t) = C, the cumulative regret

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

of a caching algorithm after T time steps is defined as

R(T) =
T∑

t=1

�{x(t) ∈ C} − �{x(t) ∈ C(t)}. (1)

Let s(t) be the observation available to the caching algo-
rithm at time t and let h(t) = (s(1), . . . , s(t−1)) be the history
of observations until time t. The optimal caching problem is
defined as the problem of finding a policy π that maps h(t) to
C(t), i.e., C(t) = πt(h(t)), in order to minimize the expected
cumulative regret, E[R(T)].

The choice of the caching policy will clearly depend on
the nature of the sequential observations available to it.
We consider two different observation structures that are most
common in communication networks.

1) Full Observation: In the full observation structure,
we assume that the caching algorithm is able to observe
the file request at each time, i.e., s(t) = x(t). In the
setup of a cache and library, this regime corresponds
to all requests being sent to the cache, which can then
forward the request to the library in case of a miss.

2) Partial Observation: In the partial observation structure,
the caching algorithm can observe the request only in
the case of a hit, i.e., only if the requested item is in
the cache already. More precisely, we define s(t) =
x(t)�{x(t) ∈ C(t)} under this observation structure.
In the case of a miss, s(t) = 0. In the setup of a
cache and library, this regime corresponds to the context
of information centric caching, wherein requests are
forwarded to the cache only if the corresponding content
is cached.

Below, we propose different caching algorithms to address
the optimal caching problem under these two observation
structures.

III. CACHING WITH FULL OBSERVATION

We first consider the full observation structure where
the caching algorithm can observe every file request. Our
focus is on a class of algorithms following Least Frequently
Used (LFU) eviction, since it uses cumulative statistics of
all received requests (unlike other popular algorithms such
as Least Recently Used (LRU)), and so is likely to have
low regret. As indicated earlier, this is purely an exploitation
problem, since every request is seen at the cache, and so all
hits and misses are known regardless of the cached items. This
regime can be compared to a multi-armed bandit in which the
reward of every arm is revealed irrespective of the arm that is
pulled, i.e., no exploration is needed.

A. LFU Algorithm

At each time t, the LFU algorithm selects the top C
requested files until time t and places them in the cache.
More precisely, the LFU algorithm maintains an empirical
estimate of the popularity distribution, which we denote by
μ̂(t) = (μ̂1(t), . . . , μ̂L(t)). It is defined as

μ̂i(t) =
1
t

t∑
τ=1

�{x(τ) = i}, ∀i ∈ L.

The collection of files to be placed in the cache at time
t + 1, CLFU(t + 1), is then equal to

CLFU(t + 1) = arg max
C

(μ̂1(t), . . . , μ̂L(t))

where argmaxC indicates the indices of the top C elements of
the vector μ̂(t). Having established these notions, we present
below the finite time performance guarantee for the LFU
algorithm.

Theorem 1: The LFU algorithm has an expected regret of
O(1). More precisely,

E[R(T)] < min
(

16
Δ2

min

,
4 C(L− C)

Δmin

)

where Δmin = μC − μC+1.
Remark 1: We note that both terms of the regret upper

bound are distribution dependent, i.e., they depend on Δmin.
Roughly, if LC < 1/Δmin, then the second term dominates.

We will use the following Lemma for proving Theorem 1.
Lemma 2: For � > 0, we have

P(max
i
|μ̂i(t)− μi| > �) ≤ 2e−tε2/2.

The lemma is obtained through an application of the
Dvoretzky-Kiefer-Wolfowitz inequality [33]. We omit the
proof due to page limitation.

We proceed with the proof of Theorem 1.
Proof: We denote CLFU(t) just as C(t) for notational con-

venience. We first argue that if maxi |μ̂i(t) − μi| < Δmin/2,
then C(t) = C. Indeed, if maxi |μ̂i(t) − μi| < Δmin/2, for
any j ∈ C and for any k ∈ L \ C,

μ̂j(t) ≥ μj −Δmin/2 ≥ μC −Δmin/2
≥ μC+1 + Δmin/2 ≥ μk + Δmin/2 ≥ μ̂k(t)

and hence C(t) = C. The expected regret can then be bounded,
with

E[R(T)] = E

[
T∑

t=1

�{x(t) ∈ C} − �{x(t) ∈ C(t)}
]

≤ E

[
T∑

t=1

�{C(t) �= C}
]

=
T∑

t=1

P(C(t) �= C)

≤
T∑

t=1

P

(
max

i
|μ̂i(t)− μi| ≥ Δmin/2

)

≤
T∑

t=1

2e−tΔ2
min/8 ≤

∫ ∞

t=0

2e−tΔ2
min/8 ≤ 16

Δ2
min

. (2)

We can also upper bound E[R(T)] using a different
approach, to show the trade off between Δ2

min and Δmin, L,
and C. This approach makes use of Hoeffding’s inequality.

E[R(T)]

= E[
T∑

t=1

�{x(t) ∈ C} − �{x(t) ∈ C(t)}]

= E

[
T∑

t=1

E[�{x(t) ∈ C}|C(t)]− E[�{x(t) ∈ C(t)}|C(t)]

]

= E

⎡
⎣ T∑

t=1

⎛
⎝∑

j∈C
μj −

∑
k∈C(t)

μk

⎞
⎠

⎤
⎦ (3)

≤ E

⎡
⎣ T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k�{j /∈ C(t), k ∈ C(t)}
⎤
⎦ (4)

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURA et al.: LEARNING TO CACHE AND CACHING TO LEARN 5

≤ E

⎡
⎣ T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k�(μ̂k(t) > μ̂j(t))

⎤
⎦

≤ E

[
T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k (�{μ̂j(t)− μj ≤ −Δj,k/2}

+ �{μ̂k(t)− μk > Δj,k/2})
]
. (5)

Using the Hoeffding inequality [34], we obtain

P(μ̂j(t)− μj ≤ −Δj,k/2) ≤ e−tΔ2
j,k/2,

P(μ̂k(t)− μk > Δj,k/2) ≤ e−tΔ2
j,k/2.

Now, continuing form (6) and by taking expectation inside
the summation, we obtain

E[R(T)] ≤
C∑

j=1

L∑
k=C+1

T∑
t=1

Δj,k2e−tΔ2
j,k/2

≤
C∑

j=1

L∑
k=C+1

4
Δj,k

≤ 4C(L− C)
Δmin

(6)

Combining (2) and (6), we obtain the desired result. �

B. WLFU Algorithm

LFU achieves a regret of O(1), but its implementation is
expensive in terms of memory requirements. This cost arises
because LFU maintains a popularity estimate for each item in
the library (μ̂i(t)), and the library size L is extremely large
for most practical applications. Typically, allocating memory
to maintain the popularity distribution estimate for the whole
library is impractical.

There are many approaches proposed to address this
issue [2], [8]. However, most approaches rely on heuristics-
based approximations of the empirical estimate, often with a
tight pre-determined constraint on the memory. This leads to
non-optimal use of the available information, and could result
in poor performance of the corresponding algorithms.

In this article, we consider the Window-LFU (WLFU)
algorithm [8] that has been proposed as way to overcome
the expensive memory requirement of LFU. WLFU employs
a sliding window approach. At each time t, the algorithm
keeps track of only the past w file requests. This is equivalent
to maintaining a time window from t − w to t, denoted
by W [t − w, t). Caching decisions are made based on the
file requests that appeared within this window. In particular,
the items to be placed in the cache at time t, CWLFU (t),
are the top C files with maximum appearances in the
window W [t− w, t).

We now show that the expected cumulative regret incurred
by WLFU increases linearly in time (Ω(T)), as opposed to the
constant regret (O(1)) of the standard LFU. Since Ω(T) is the
worst possible regret for any learning algorithm, it suggests
that in practice there will occasionally be arbitrarily bad
sample paths with many misses.

Theorem 3: Under the WLFU algorithm, E[R(T)] = Ω(T).
Proof: This result can be established by finding a lower

bound on the probability that cache does not match the most

likely items. From the proof of Theorem 1 (c.f. (3)), we have

E[R(T)] = E

[
T∑

t=1

�{x(t) ∈ C} − �{x(t) ∈ C(t)}
]

=
T∑

t=1

⎛
⎝∑

j∈C
μj − E [�{x(t) ∈ C(t)}]

⎞
⎠

=
T∑

t=1

E

⎡
⎣ ∑

j∈C\C(t)

μj −
∑

k∈C(t)\C
μk

⎤
⎦

≥
T∑

t=1

E

⎡
⎣ ∑

k∈C(t)\C
(μC − μk)

⎤
⎦

=
T∑

t=1

E

⎡
⎣ ∑

k∈L\C
(μC − μk)�{k ∈ C(t)}

⎤
⎦

=
T∑

t=1

∑
k∈L\C

(μC − μk)P(k ∈ C(t))

≥
T∑

t=1

(μC − μC+1)P(C + 1 ∈ C(t)), (7)

where the last inequality follows by focusing on a sub-event.
Given that the probability of item C + 1 in non-zero, we can
establish the desired lower bound using window W [t−w, t),

P(C + 1 ∈ C(t)) ≥ P({x(τ) = C + 1 : τ ∈ [t− w, t)})
= (μC+1)w.

Combining this result with (7), we get expression

E[R(T)] ≥ (μC − μC+1)(μC+1)wT,

which has order T . Since the cost per stage is bounded,
we obtain the statement of the theorem. �

C. LFU-Lite Algorithm

We now propose a new scheme that we call the
LFU-Lite algorithm. Unlike the LFU algorithm, LFU-Lite
algorithm does not maintain an estimate of the popularity for
each item in the library. Instead, it maintains the popularity
estimate only for a subset of the items that it has observed.
This approach significantly reduces the memory required as
compared to the standard LFU implementation. At the same
time, we show that the LFU-Lite achieves an O(1) regret
similar to that of the LFU, and thus has a superior performance
compared to WLFU which suffers an Ω(T) regret.

We achieve this ‘best of both’ performance by a clever
combination of a window based approach to decide the items
to maintain an estimate, and by maintaining a separate counter
bank to keep track of these estimates. At each time t, LFU-
Lite selects the top C items with maximum appearances in
the window of observation W [t−w, t]. We denote this set of
files as A(t). Let B(t− 1) be the set of items in the counter
bank at the beginning of t. Then, if any item j ∈ A(t) is not
present in B(t − 1), it is added to the counter bank, and the
counter bank is updated to B(t). Once an item is placed in
the counter bank, it is never removed from the counter bank.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

LFU-Lite maintains an estimate of the popularity of each
item in the counter bank. The popularity estimate of item
i ∈ B(t), μ̂i(t), is defined as

μ̂i(t) =
1

(t− ti)

t∑
τ=ti+1

�{x(t) ∈ B(t)} (8)

where ti is the time at which the item i has been added to the
counter bank. The item to be placed in the cache at time t,
CLL(t), is then selected as

CLL(t) = argmax
C

(μ̂j(t), j ∈ B(t))

Description of the LFU-Lite is also given in Algorithm 1.

Algorithm 1 LFU-Lite
for t = 1, . . . , T do

Observe x(t)
Select A(t), the top C files with maximum appearances in
the window W [(t− w)+, t)
for Each j ∈ A(t) do

if (j ∈ A(t) is not in B(t− 1)) then
tj ← t
Add file j into B(t)

end if
end for
Select the files CLL(t) = argmaxC(μ̂j(t), j ∈ B(t)) and
place them in the cache

end for

We now present the performance guarantee for the LFU-Lite
algorithm.

Theorem 4: The expected regret under the LFU-Lite algo-
rithm is

E[R(T)] ≤ C(L− C)w
pmin

+
4 C(L − C)

Δmin
,

where Δmin = μC − μC+1, pmin =
∑w

n=μC+1w+1

(
w
n

)
μn

C(1− μC)w−n.
Proof: For each item i ∈ L, μ̂i(t) is defined as in (8)

for t > ti. Here, we also define μ̂i(t) = 0 for t ≤ ti, before
item i enters the counter bank. We note that this is only a
proof approach and doesn’t influence the implementation of
the algorithm. Now, from (4)

E[R(T)] ≤ E[
T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k�{j /∈ C(t), k ∈ C(t)}]

≤ E[
T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k�(μ̂k(t) > μ̂j(t))] (9)

≤ E[
T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k (�{μ̂j(t)−μj≤−Δj,k/2}

+ �{μ̂k(t)− μk > Δj,k/2})]. (10)

Note that the LFU-Lite algorithm incurs a regret at time
t if an item j ∈ C is not present in the counter bank B(t).
This is taken into account in the above expression (c.f. (9))
by defining μ̂j(t) = 0 for j /∈ B(t).

The first term in (10) can be bounded as

E[
T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k�{μ̂j(t)− μj ≤ −Δj,k/2}]

= E[
C∑

j=1

L∑
k=C+1

E[
T∑

t=1

Δj,k�{μ̂j(t)− μj ≤ −Δj,k/2}|tj]]

≤ E[
C∑

j=1

L∑
k=C+1

Δj,k(tj +E[
T∑

t=tj

�{μ̂j(t)−μj

≤ −Δj,k/2}|tj])]

≤ E[
C∑

j=1

L∑
k=C+1

Δj,k(tj +
T∑

t=tj

P(μ̂j(t)−μj ≤ −Δj,k/2|tj))]

≤ E[
C∑

j=1

L∑
k=C+1

Δj,k(tj +
T∑

t=tj

e−(t−tj)Δ
2
j,k/2]

≤
C∑

j=1

L∑
k=C+1

(Δj,kE[tj] +
2

Δj,k
). (11)

Similarly, the second term in (10) can be bounded as

E[
T∑

t=1

C∑
j=1

L∑
k=C+1

Δj,k�{μ̂k(t)− μk > Δj,k/2}]

= E[
C∑

j=1

L∑
k=C+1

E[
T∑

t=1

Δj,k�{μ̂k(t)− μk > Δj,k/2}|tk]]

= E[
C∑

j=1

L∑
k=C+1

Δj,k

T∑
t=tk

P(μ̂k(t)− μk > Δj,k/2|tk)]

≤ E[
C∑

j=1

L∑
k=C+1

Δj,k

T∑
t=tk

e−(t−tk)Δ2
j,k/2]

≤
C∑

j=1

L∑
k=C+1

2
Δj,k

. (12)

Combining (11) and (12) we obtain

E[R(T)] ≤
C∑

j=1

L∑
k=C+1

Δj,kE[tj] +
C∑

j=1

L∑
k=C+1

4
Δj,k

(13)

It only then remains to bound E[tj] for j ∈ C, which can
easily be shown to satisfy

E[tj] ≤
∞∑

t=1

(1− pj)�t/w� ≤
∞∑

k=1

w(1 − pj)k ≤ w/pj . (14)

where pj is the probability that item j is selected in a given
window.

Combining (15) and (14), we obtain

E[R(T)] ≤
C∑

j=1

L∑
k=C+1

wΔj,k

pj
+

C∑
j=1

L∑
k=C+1

4
Δj,k

≤ C(L− C)w
pmin

+
4C(L− C)

Δmin
. (15)

�
Proposition 5: The growth of the expected size of the

counter bank as a function of time is concave.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURA et al.: LEARNING TO CACHE AND CACHING TO LEARN 7

Proof: Let p̄t
j be the probability with which file i enters the

counter bank by time t. Note that p̄t
i = 1−(1−pi)�t/w�. Where

pi =
∑w

n=μC+1w+1

(
w
n

)
μn

i (1 − μi)w−n is the probability that
item i enters the counter bank in any given window.

E[B(t)]=E[
L∑

i=1

�{i∈B(t)}] =
L∑

i=1

p̄t
i =

L∑
i=1

1−(1− pi)�t/w�

(16)

Observe that 1− (1− pi)�t/w� is concave in t and E[B(t)]
is a sum of L concave functions, and is hence concave. �

Remark 2: Intuitively, the counter bank will keep the counts
only for more popular items. It is also straight forward to
show that the expected size of the counter bank decreases
with the window length w. To see this, consider two different
window length w1 and w2 such that w1 ≥ w2. Let pi(w)
be the probability that item i enters the counter bank in any
given window when the window of length is w. Then, for
i /∈ C, pi(w1) ≤ pi(w2). Intuitively, larger window length
leads to more observations and hence to smaller probability
of observing item i /∈ C more than the threshold μC+1w. Now,
(1−pi(w2))�t/w2� ≤ (1−pi(w1))�t/w2� ≤ (1−pi(w1))�t/w1�.
So, 1− (1− pi(w2))�t/w2� ≥ 1− (1− pi(w1))�t/w1�. Hence,
the contribution of i /∈ C to the expected size of the counter
bank according (16) is smaller for larger window length.
The exact dependence of E[B(t)] on w is cumbersome to
characterize. We, however, illustrate this through extensive
simulations in Section IV-C.

IV. CACHING WITH PARTIAL OBSERVATION

We now consider the problem of optimal caching under
the partial observation regime. As described earlier, here the
algorithm can observe a file request only if the requested file
is in the cache. Hence, the caching algorithm has to perform
active exploration by placing a file in the cache sufficiently
often to learn its popularity in order to decide if that file
belongs to the set of the most popular files. This procedure
is in sharp contrast to the full observation structure where the
popularity estimate of each file in the library can be improved
after each time step due to full visibility of all the requests.

However, the exploration is costly because the algorithm
incurs regret every time that a sub-optimal file is placed in the
cache for exploration. Hence, the algorithm also has to perform
an active exploitation, i.e., place the most popular items
according to the current estimate in the cache. The optimal
exploration vs exploitation trade-off for minimizing the regret
is at the core of most online learning algorithms. The Multi-
Armed Bandit (MAB) model is a canonical formalism for this
class of problems. Here, there are multiple arms (actions)
that yield random rewards independently over time, with
the (unknown) mean of arm i being μi. The objective is
to learn the mean reward of each arm by exploration and
maximize cumulative reward by exploitation.

We formulate the caching problem as a multi-player multi-
armed bandit problem, in which the content placement in the
cache is viewed equivalent to arm pulls. The request for an
item is considered as its reward, which is a {0, 1} random
variable, sampled from the popularity vector. We call this
formulation as “Caching Bandits”. Unlike in the multi-armed
bandit problem, the rewards in the caching bandit problem
are not independent, as the request for one item in the cache
indicate that there is no request for the other items.

A. Caching Bandit With Full Posterior Sampling

Posterior sampling based algorithms for MAB [25], [35]
typically use a Beta prior (with Bernoulli likelihood) or
Gaussian prior (with Gaussian likelihood) in order to exploit
the conjugate pair property of the prior and likelihood (reward)
distributions. Hence, the posterior at any time will have the
same form as the prior distribution, albeit with different para-
meters. This provides a computationally tractable and memory
efficient way to keep track of the posterior distribution evolu-
tion. However, in the optimal caching problem, the unknown
popularity vector μ has interdependent components through
the constraint

∑
i μi = 1. Hence, standard prior distributions

like Beta will not be able to capture the full posterior evolution
in the caching problem.

We use a Dirichilet prior on the popularity distribution
μ = (μ1, . . . , μL), parametrized by α = (α1, . . . , αL). More
precisely,

f0(μ; α) =
1

B(α)

L∏
i=1

μαi−1
i , where, B(α) =

∏L
i=1 Γ(αi)

Γ(
∑L

i=1 αi)
,

and Γ(·) is the Gamma function.
Let ft be the posterior distribution at time t with parameter

α(t). The posterior is updated according to the observed
information s(t). In the case of a hit, the file request x(t)
is observed and s(t) = x(t). It is easy to see that the correct
posterior update is α(t) = α(t)+ex(t), where ex(t) is the unit
vector with non-zero element at index x(t).

The posterior update is complex in the case of the cache
miss. In case of a miss, we code s(t) = 0. Given the
current parameter α(t) = α, we can show that the posterior
distribution in case of a miss can be computed as

ft+1(μ|s(t) = 0) ∝ P(s(t) = 0|μ)ft(μ; α)

=
1∑L

i=1 αi

∑
j /∈C(t)

αjft(μ; α + ej).

Algorithm 2 CB-FPS Algorithm
Initialize the prior distribution f0

for t = 1, . . . , T do
Sample μ̂(t) ∼ ft(·)
Select CFPS(t) = argmaxC μ̂(t)
Receive the observation s(t)
Update the posterior ft+1(μ) ∝ P(s(t)|μ)ft(μ)

end for

Hence, the posterior update in case of a miss is a com-
bination of (L − C) Dirichlet priors from the previous step.
With the first miss, the algorithm needs to store a set of size
(L − C) consisting of Dirichlet parameters. With each miss,
parameter sets of size (L − C) need to be stored, one such
set for each of the parameters at the previous step. Thus,
at the tth miss, the number of parameters that we need to
store are (L−C)t, growing exponentially in t. Hence, as the
number of misses increases, the memory required to store
these parameters will increase exponentially, rendering the full
posterior update algorithm infeasible from an implementation
perspective.

We present the CB-FPS in Algorithm 2. At each time t,
the algorithm takes a sample μ̂(t) according to the current

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

posterior ft(·). It places the top C items in the order of
decreasing μ̂(t) in the cache.

In Section IV-C, we will see that a Monte Carlo version
of this algorithm can be implemented for small values of L
and C, which seems to achieve an O(1) regret. A rigorous
proof that shows such regret, even in some special cases and
by neglecting computational tractability, is an interesting open
problem.

B. Caching Bandit With Marginal Posterior Sampling

We now propose an algorithm that only performs a marginal
posterior update. Instead of maintaining a Dirchlet prior for
the popularity vector μ, we use a Beta prior for the popularity
of each individual item μi. The CB-MPS is described in
Algorithm 3.

Algorithm 3 CB-MPS Algorithm

Initialize αi(0) = 1, βi(0) = 1, ∀i ∈ L.
for t = 1, . . . , T do

Generate samples μ̂i(t) ∼ Beta(αi(t), βi(t))
CMPS(t)← argmaxC μ̂(t)
if x(t) ∈ CMPS(t) then

αx(t)(t + 1)← αx(t)(t) + 1
βi(t + 1)← βi(t) + 1, ∀i ∈ CMPS(t), i �= x(t)

end if
end for

The CB-MPS algorithm generates samples for each item
from an independent beta distribution, and places the C items
with the largest samples into the cache. The algorithm then
updates independent beta posteriors for each item in the
library. However, it updates the posterior for only those items
currently in the cache. The posteriors for all the other items
remain the same.

We now provide a performance guarantee for the CB-MPS
algorithm.

Theorem 6: Under marginal posterior sampling algorithm,
E[R(T)] = O((L − C)C log T).

It is clear that CB-MPS algorithm disregards the inherent
structure in the Caching Bandit formulation, by choosing not
to update the non-cache items. Note that, in the caching formu-
lation, the popularity vector has inter dependent components
(it is a probability distribution), a cache miss means that
one of the non-cache items is surely requested. Hence, the
CB-MPS algorithm views the caching bandit problem almost
like a multi player multi armed bandit problem, regardless
of the additional structure imposed by the caching ban-
dit. But we emphasize that this loss of information in the
CB-MPS algorithm is unavoidable due to the partial obser-
vation structure limiting the observations to the cached items.
Note that the beta posterior in CB-MPS will be corrupted if
we update the missed requests for the non cache items in any
heuristic way.

We omit the proof of this theorem because the analysis is
similar to that of multi-payer multi-armed bandit algorithm.
In particular, the posterior sampling method proposed in [36]
can be used with small modifications to show the above result.

C. Caching Bandit With Structural Information

Even though the CB-MPS algorithm is easy to implement,
it suffers an O(log T) regret, which is much worse than the

O(1) regret incurred by LFU and LFU-Lite. This is due to
the partial observation structure that limits the rate of learning.
We now propose an algorithm that we call Caching Bandit with
Structural Information (CB-SI). We show that with a minimal
assumption on the availability of the structural information
about the popularity distribution, CB-SI can achieve an O(1)
regret even in the partial observation regime.

We assume that the algorithm knows the value of μC and
Δmin, the popularity value of the Cth most popular item and
the optimality gap. Note that we do not assume knowledge
of the identity of the Cth most popular file. We note that
our proof approach follows the techniques developed in [37],
which can be considered as a special case with C = 1. CB-SI
algorithm is given in Algorithm 4.

The algorithm maintains an empirical estimate for each
item, and places into cache the items whose empirical estimate
crosses a certain threshold decided by μC , and Δmin. If there
are not enough items that cross this threshold, the algorithm
samples the rest of the items without replacement, according to
the probability inversely proportional to the square of items’
gap from the Cth most popular item. The intuition is that
with the knowledge of the threshold, one can reduce the
amount of exploration needed, and hence reduce the regret.
To see this, once an item’s empirical estimate is more than
μC − Δmin

2 , we do not need to explore other items to resolve
the uncertainty about the item in question, as this item belongs
to the C most popular items. We still need to explore to
observe the other popular items. In this way, the algorithm
reduces the exploration of less popular items, while exploiting
the information accrued so far about the popular items, by the
knowledge of the threshold. As shown in theorem below, this
directed exploration suffers only a constant regret.

Theorem 7: The expected cumulative regret of CB-SI Algo-
rithm is,

E[R(T)] ≤ C
∑

j∈L\C
(

2
Δ2

+
4

Δ2
[4 +

32
Δ2

exp(−Δ2

8
)]),

where Δ = μC − μC+1.
Proof: We denote Δj = μC − μj . In this proof, we will

show that the expected regret of CB-SI algorithm is bounded
above by a constant. From the proof of Theorem 1 (c.f. (6)),
we get that the expected regret is bounded as below.

E[R(T)]

≤ E[
T∑

t=1

C∑
i=1

L∑
j=C+1

Δj,k�{i /∈ C(t), j ∈ C(t)}]

≤ C E[
T∑

t=1

L∑
j=C+1

�{j ∈ C(t)}] = C
L∑

j=C+1

T∑
t=1

P(j ∈ C(t))

= C

L∑
j=C+1

T∑
t=1

(P(μ̂j(nj(t)) > μC −Δj/2, j ∈ C(t))

+P(μ̂j(nj(t)) ≤ μC −Δj/2, j ∈ C(t))). (17)

We address each term in the above summation separately.
First, observe that for any j ∈ {C + 1 . . . L}, the following

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURA et al.: LEARNING TO CACHE AND CACHING TO LEARN 9

Algorithm 4 CB-SI Algorithm

Initialize αi(0) = 0, βi(0) = 0, μ̂i(0) = 1/L, ∀i ∈ L.
Initialize ni(t) = 0, ∀i ∈ L
for t = 1, . . . , T do

Compute the set A(t) = {i ∈ L : μ̂i(ni(t)) ≥ μC − Δ
2 }

if |A(t)| ≥ C then
CSI(t) = argmaxC μ̂j(nj(t), j ∈ A(t))
Zt ← 1

else
For each i ∈ L \A(t), compute

pi(t) = c/(μC − μ̂i(ni(t)))2

c =
∑

i∈L\C(t) 1/(μC − μ̂i(ni(t)))2

Sample C − |A(t)| elements from the set L \ A(t)
according to the probability pi(t). Denote these elements
as B(t)
CSI(t) = A(t) ∪B(t)
Zt ← 2

end if
Place the files CSI(t) in the cache
if x(t) ∈ C(t) then

αx(t)(t + 1)← αx(t)(t) + 1
βi(t + 1)← βi(t) + 1, ∀i ∈ C(t), i �= x(t)

end if
ni(t + 1) = αi(t + 1) + βi(t + 1)
μ̂i(ni(t + 1)) = αi(t + 1)/ni(t + 1)

end for

inequality holds.

T∑
t=1

P(μ̂j(nj(t)) > μC −Δj/2, j ∈ C(t))

≤
T∑

t=1

P(μ̂j(nj(t)) > μj + Δj/2, j ∈ C(t))

≤
T∑

t=1

P(μ̂j(t) > μj + Δj/2)
(a)

≤
T∑

t=1

e−Δ2
j t/2 ≤ 2

Δ2
j

,

(18)

where the inequality (a) follows from Hoeffding’s inequality.
For bounding the second term in (17), we use the policy

definition. Since Δj ≥ Δ, the first inequality follows trivially.
The equality(b) follows from the fact that when the mean
estimate of the jth item is smaller than μC − Δ

2 , the only
means by which it can enter the cache is through exploration
part of the algorithm, which is denoted by Zt = 2.

P(μ̂j(nj(t)) ≤ μC − Δj

2
, j ∈ C(t))

≤ P(μ̂j(nj(t)) ≤ μC − Δ
2

, j ∈ C(t))

(b)
= P(μ̂j(nj(t)) ≤ μC − Δ

2
, j ∈ C(t), Zt = 2)

(c)
= P(j ∈ C(t)|μ̂j(nj(t)) ≤ μC − Δ

2
, Zt = 2)

P(μ̂j(nj(t)) ≤ μC − Δ
2

, Zt = 2)

= pj,tP

(
μ̂j(nj(t)) ≤ μC − Δ

2
, Zt = 2

)

= E

[
pj,t�{μ̂j(nj(t)) ≤ μC − Δ

2
, Zt = 2}

]

= E

[
pj,t

pi,t
pi,t�{μ̂j(nj(t)) ≤ μC−Δ

2
, Zt = 2}

]
,

for any i ∈ C. Note that, in the equality(c), we used the
definition of pj,t. Now, substituting the value for the sampling
probability pi,t, we obtain,

≤ E

[
|μC−μ̂i(ni(t))|2

(Δ
2)2

pi,t1{μ̂j(nj(t))≤μC−Δ
2

, Zt = 2}
]

≤ 4
Δ2

E
[|μC − μ̂i(ni(t))|2 pi,t�{Zt = 2}]

≤ 4
Δ2

E
[|μC − μ̂i(ni(t))|2

P

(
i ∈ C(t)|μ̂i(ni(t)) ≤ μC − Δ

2
, Zt = 2

)]

=
4

Δ2
E

[|μC − μ̂i(ni(t))|2

E

[
�{i ∈ C(t)}|μ̂i(ni(t)) < μC − Δ

2
, Zt =2

]]

=
4

Δ2
E

[|μC − μ̂i(ni(t))|2

E

[
�{i ∈ C(t), μ̂i(ni(t))<μC−Δ

2
}|

{μ̂i(ni(t)) < μC − Δ
2

, Zt = 2}
]]

=
4

Δ2
E

[|μC − μ̂i(ni(t))|2

�{i ∈ C(t), μ̂i(ni(t)) < μC − Δ
2
}
]

. (19)

Here, the inequalities follow from the properties of condi-
tional expectation. Now, we obtain a bound for the second
term in (17), using (19), as below.

T∑
t=1

E

[
|μC − μ̂i(ni(t))|21{μ̂i(ni(t)) < μC − Δ

2
, i ∈ C(t)}

]

≤
T∑

t=1

E

[
|μC − μ̂i(t)|21{|μ̂i(t)− μC | > Δ

2
}
]

=
T∑

t=1

∫ ∞

0

P(|μC − μ̂i(t)|21{|μ̂i(t)− μC | > Δ
2
} ≥ x)dx

=
T∑

t=1

∫ ∞

0

P(|μC − μ̂i(t)|21{|μ̂i(t)− μC |2 >
Δ2

4
} ≥ x)dx

=
T∑

t=1

[∫ Δ2
4

0

P
(|μC − μ̂i(t)|2

1{|μ̂i(t)−μC |2 >
Δ2

4
}≥x

)
dx

+
∫ ∞

Δ2
4

P(|μC−μ̂i(t)|21{|μ̂i(t)−μC |2 >
Δ2

4
}≥x)dx

]

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

=
T∑

t=1

[∫ Δ2
4

0

P(|μC − μ̂i(t)|2 ≥ x, |μ̂i(t)− μC |2 >
Δ2

4
)dx

+
∫ ∞

Δ2
4

P(|μC−μ̂i(t)|21{|μ̂i(t)−μC |2 >
Δ2

4
}≥x)dx

]

=
T∑

t=1

[∫ Δ2
4

0

P

(
|μ̂i(t)− μC |2 >

Δ2

4

)
dx

+
∫ ∞

Δ2
4

P

(
|μC−μ̂i(t)|21{|μ̂i(t)−μC |2 >

Δ2

4
}≥x

)
dx

]

=
T∑

t=1

[
Δ2

4
P

(
|μ̂i(t)− μC |2 >

Δ2

4

)
+

∫ ∞

Δ2
4

P

(
|μC−μ̂i(t)|21{|μ̂i(t)−μC |2 >

Δ2

4
}≥x

)
dx

]

=
T∑

t=1

[
2
Δ2

4
e−

tΔ2
8 +

∫ ∞

Δ2
4

Pr{|μC − μ̂i(t)|2 ≥ x}dx

]

≤ 4 +
32
Δ2

exp(−Δ2

8
). (20)

Combining equations (17),(19),(18),(20), we observe:

E[R(T)] ≤ C
∑

j∈L\C

[
2

Δ2
+

4
Δ2

[4 +
32
Δ2

exp(−Δ2

8
)]
]

�
Remark 8: We introduce another version of CB-SI algo-

rithm, which is similar in spirit to LFULite. Following a
similar rule to LFULite, we maintain a window of the W
past observations, and at each time, the C most frequently
requested items in the window are added to the counter bank,
if those items are not already present in it. The mean estimates
of CB-SI are calculated only for items in the counter bank.
We call this algorithm as CB-SILite. In Section V-B, we will
observe that CB-SILite drastically reduces the number of
counters needed to give a similar hit performance to CB-SI.

We now compare the performance of CB-MPS and
CB-SI via a lower bound argument. The known lower bound
on the regret of a classical multi-player multi-armed ban-
dit is Ω(log T), and the Thompson sampling algorithm is
known to achieve this. As discussed previously, the CB-MPS
algorithm is equivalent to the Thompson sampling algorithm
for the multi-player multi-armed bandit formulation. Clearly,
the multi-player multi-armed bandit is at least as hard as the
classical multi-armed bandit problem and will have a regret
Ω(log T). Thus, we argue that the performance of CB-MPS is
worse than CB-SI, which achieves O(1) regret.

V. SIMULATIONS

In this section, we start by conducting simulations with
requests generated under the IRM model to verify our insights
on regret obtained in the earlier sections. In each instance,
we present results averaged over ten runs of the algorithm
under test. We then use two data traces to compare the per-
formance of our proposed algorithms when exposed to a non-
stationary arrival process. Since these requests change with
time, we modify the algorithms to “forget” counts, by halving
the counts at a fixed periodicity. In the full observation regime,
we also compare the performance against LRU, which is

Fig. 2. Regret of LFU, WLFU, LFU-Lite.

Fig. 3. Growth of counters for LFU, LFU-Lite.

Fig. 4. Regret of LFU-Lite for varying W.

widely deployed and implicitly has a finite memory (i.e.,
it automatically “forgets”). We also further explore the reaction
of our approaches to non-stationary requests by creating a
synthetic trace that exhibits changes at a faster timescale than
the data traces. We also test an online change detection mech-
anism, along with the forgetting rule, under non-stationary
request arrival process.

A. IRM Simulations

1) Full Observation: We first conduct simulations for an
IRM request process following a Zipf distribution with para-
meter β under the full observation setting. Figure 2 com-
pares the regret suffered by LFU, WLFU and LFU-Lite for
C = 10, L = 1000, W = C2 log L [8] and β = 1.
As expected, the regret suffered by the WLFU algorithm grows
linearly with time, while LFU and LFU-Lite suffer a constant
regret. Figure 3 shows the growth of the number counters used
to keep an estimate of files. The merits of LFU-Lite are clearly
seen here, as it uses approximately 35 counters to achieve a
constant regret, while LFU uses 1000.

The growth of counters and the regret suffered by LFU-Lite
depends on W , the window of observation. In Figures 4 and 5,
we compare the growth of regret and counters with W for
L = 1000, C = 10, β = 1. We see that the number of counters

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURA et al.: LEARNING TO CACHE AND CACHING TO LEARN 11

Fig. 5. Growth of counters for varying W.

Fig. 6. Regret of LFU-Lite for varying L.

Fig. 7. Growth of counters for varying L.

is essentially unchanged for a wide range of W, indicating a
robustness to windowing as long as it is sufficiently large.

The key advantage of the LFU-Lite algorithm is that it
suffers a constant regret, while keeping track of fewer items
even for large library sizes. This is clearly seen in Figure 6
and 7. LFU-Lite only keeps track of approximately 45 items
while the LFU algorithm keeps track of almost all items.

2) Partial Observation: Figure 8 shows the regret perfor-
mance for CB-SI, CB-MPS and CB-FPS algorithms. We see
that both FPS and SI versions have constant regret, whereas
the MPS approach has increasing regret consistent with our
analysis. While we are forced to keep L and C low in Figure 8
due to the complexity of the FPS approach, Figure 9 shows the
cumulative regret performance for L = 1000, 10000, for CB-
MPS, CB-SI and CB-SILite algorithms. As expected, the SI
approach has constant regret. CB-SILite also suffers constant
regret, while being a little worse compared to CB-SI. CB-MPS
algorithm has logarithmic regret.

Finally, Figure 10 shows the number of counters used by
CB-SI and CB-SILite algorithms for L = 1000, 5000, 10000,
with C = 10, β = 1. The number of counters used by
CB-SILite is very less even for large library sizes, compared
to CB-SI.

Fig. 8. Cumulative regret performance comparison for L = 100,
C = 1, β = 2.

Fig. 9. Regret of CB-SI, CB-SILite, CB-MPS for C = 10, β = 1.

Fig. 10. Growth of counters for varying L.

B. Trace-Based Simulations

We next conduct trace-based simulations using real world
data. The description of the traces that we use in this work is
given below.

1) IBM Trace: This trace is obtained from [38]. It contains
a total of 1 million requests to an IBM web server for
a library of size 43857.

2) YouTube Trace: This trace is obtained from [39].
It contains information about the requests made for
161085 newly created YouTube videos each week over
20 weeks. From the data, we compute the popularity
distribution of the videos for each week, and obtain
50000 samples from each week’s distribution. IN this
manner, we create an access trace in which the request
distribution changes over each set of 50000 requests.
We run this trace for 1 million requests.

3) Synthetic Trace for Changing Popularity Distribution:
We observe that the content popularities in the real
world traces change quite slowly. Our goal is also to
understand the impact of non-stationarity in the request
arrival process on the hit rate performance of the pro-
posed algorithms. To obtain a reasonable amount of non-
stationarity in the popularity of items, we generate a
synthetic access trace that changes the popularities peri-
odically. To create this trace, we use a Zipf distribution
with parameter 1 to sample 1 million requests in the

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Hit rates for full observation for IBM trace.

Fig. 12. Hit rates for full observation for YouTube trace.

Fig. 13. Hit rates for full observation for change trace.

TABLE I

COUNTER BANK SIZE FOR LFULITE, FULL OBSERVATION

following manner. For every 100000 requests, we swap
the probabilities of top 10000 items in the access distri-
bution cyclically, in steps of 500. This approach results
in considerable change in the distribution of the request
arrivals for the top 10000 items in the library.

1) Full Observation: We compare the hit rates of LRU,
LFU, and LFULite algorithms on the three traces. The size
of the window for LFULite is chosen O(C log L), following
the suggestions in [8]. Figure 11 shows the hit rates of LRU,
LFU and LFULite on the IBM trace. We observe that LFU and
LFULite outperform LRU. Moreover, LFULite gives the same
performance as LFU, while using only a fraction of counters.

For the YouTube trace (Figure 12), in addition to the
three algorithms, we implement heuristic versions of LFU
and LFULite that account for the change in distribution.
We halve the counts of LFU and LFULite every 50000
requests. We observe that LFU and LFULite outperform
LRU, while the change versions do slightly better. The small

Fig. 14. Hit rates for partial observation, IBM trace.

Fig. 15. Hit rates for partial observation, YouTube trace.

Fig. 16. Hit rates for partial observation, change trace.

TABLE II

COUNTER BANK SIZE FOR CB-SILITE, PARTIAL OBSERVATION

performance gain in LFUCHANGE and LFULiteCHANGE is
due to the slowly varying popularities in the YouTube trace.

Next, we show the performance of all the five algorithms
on the synthetic change trace (Figure 13). We observe that
LRU dominates LFU and LFULite for small cache sizes,
while LFU and LFULite outperforms LRU as the cache size
grows. We also observe that the heuristic versions of LFU and
LFULite outperforms LRU for all cache sizes.

2) Partial Observation: Figure 14 shows the hit rates for
CB-SI,CB-SILite, and CB-MPS algorithms for the IBM trace.
We observe that the CB-SI algorithm clearly outperforms CB-
SILite and CB-MPS algorithms. Figure 15 shows the hit rate
performance of these algorithms for the YouTube trace. Even
here, the performances of CB-SI and CB-SILite are superior
to the CB-MPS algorithm.

For the synthetic change trace, we also implement change
versions of all the three algorithms by halving the counts peri-
odically every 50000 requests. We notice that CB-SICHANGE
outperforms all the other algorithms. We observe that CB-

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BURA et al.: LEARNING TO CACHE AND CACHING TO LEARN 13

Fig. 17. Change point detection.

Fig. 18. Hit rates for full observation model.

Fig. 19. Hit rates for partial observation model.

SILite uses small counter bank for all the traces as shown in
see Table II.

C. Online Change Detection for Non-Stationary Requests

In this section, we use an online change detection algorithm
to find if there is any change in the request arrival distribution.
We augment our caching algorithms with this online change
detection mechanism to adapt it to the scenarios where the
requests are non-stationary. We devise this mechanism in
such a way that it works independent of the specific caching
algorithm we use.

The detection mechanism is based on a two-window para-
digm proposed in [40]. It maintains a reference window, and
a current window. The current window slides forward with
each incoming data point, and the reference window is updated
whenever a change is detected. Our scheme compares requests
in the reference window to the requests in the current window.
We measure the total variation distance between the empirical
distribution of requests in the reference window and of that in
the current window. If this distance is greater than a threshold,
a change detection is announced. When a change is detected,
it signals the caching algorithm, which employs a heuristic to
reduce its counters by half. This reduction ensures that the
algorithms reflect the changes in the request distribution.

To evaluate the performance of our approach, as in the
previous subsections, we first create a synthetic trace of 1 mil-
lion requests with a library size of 50000. These requests are
generated by sampling a Zipf distribution, with parameter 1.
We then induce non-stationarity in this trace by cycling the

popularities at the change points, i.e., at each change point,
we cyclically left-shift the components of the popularity vector
by 500 positions. We follow the same procedure at all the 10
randomly generated change points in the trace. In this way,
we ensure that the resulting trace contains requests with
changing distribution at random points in the trace, modeling
a real world non-stationary behavior.

Figure 17 illustrates the performance of our change point
detection scheme. We note that the scheme indeed is able
to detect changes accurately. Figure 18 illustrates the perfor-
mance of our algorithms with the change detection mechanism
in the full information setting. We observe that LFU and LFU-
Lite (with the heuristic) outperform all the other algorithms
in all cases. Similarly, Figure 19 illustrates the performance
of our algorithms for partial information setting, where we
observe that CB-SI with the embedded CHANGE heuristic
performs the best.

VI. CONCLUSION

We considered the question of caching algorithm design and
analysis from the perspective of online learning. We focused
on algorithms that estimate popularity by maintaining counts
of requests seen, in both the full and partial observation
regimes. Our main findings were in the context of full
observation, it is possible to follow this approach and obtain
O(1) regret using the simple LFU-Lite approach that only
needs a small number of counters. In the context of partial
observations, our finding using the CB-SI approach was that
structure greatly enhances the learning ability of the caching
algorithm, and is able to make up for incomplete observa-
tions to yield O(1) regret. We verified these insights using
both simulations and data traces. In particular, we showed
that even if the request distribution changes with time, our
approach (enhanced with a simple “forgetting” rule) is able to
outperform established algorithms such as LRU. We have also
augmented our algorithms with an online change detection
mechanism, independent to the proposed algorithms. This
approach enhanced our algorithms to detect changes in the
distributions on the fly. When we enabled the algorithms with
this approach along with a simple forgetting rule, we were able
to achieve a good empirical performance under non-stationary
traffic.

REFERENCES

[1] E. G. Coffman and P. J. Denning, Operating Systems Theory. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1973.

[2] G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A highly efficient
cache admission policy,” ACM Trans. Storage, vol. 13, no. 4, p. 35,
2017.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[4] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and
K. J. Worrell, “A hierarchical internet object cache,” in Proc. USENIX
Annu. Tech. Conf., 1996, pp. 153–164.

[5] P. Blasco and D. Gunduz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 1897–1903.

[6] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and
A. Yadav, “A global name service for a highly mobile internetwork,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 247–258,
2015.

[7] A. Venkataramani, J. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,
and S. Banerjee, “MobilityFirst: A mobility-centric and trustworthy
internet architecture,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 74–80, Jul. 2014.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[8] G. Karakostas and D. N. Serpanos, “Exploitation of different types of
locality for web caches,” in Proc. 7th Int. Symp. Comput. Commun.
(ISCC), Jul. 2002, pp. 207–212.

[9] W. F. King-III, “Analysis of demanding paging algorithms,” in Proc.
IFIP Congr. Amsterdam, The Netherlands: North-Holland, 1971,
pp. 485–490.

[10] E. Gelenbe, “A unified approach to the evaluation of a class of replace-
ment algorithms,” IEEE Trans. Comput., vol. C-22, no. 6, pp. 611–618,
Jun. 1973.

[11] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Perform. Eval., vol. 46, nos. 2–3, pp. 125–137, Oct. 2001.

[12] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[13] R. Fagin, “Asymptotic miss ratios over independent references,” J. Com-
put. Syst. Sci., vol. 14, no. 2, pp. 222–250, 1977.

[14] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE J. Sel.Areas Commun.,
vol. 20, no. 7, pp. 1305–1314, Sep. 2002.

[15] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Perform. Eval., vol. 79, pp. 2–23, Sep. 2014.

[16] N. Gast and B. Van Houdt, “Asymptotically exact TTL-approximations
of the cache replacement algorithms LRU(m) and h-LRU,” in Proc. 28th
Int. Teletraffic Congr. (ITC), Sep. 2016, pp. 157–165.

[17] S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,
“Adaptive TTL-based caching for content delivery,” IEEE/ACM Trans.
Netw., vol. 26, no. 3, pp. 1063–1077, Jun. 2018.

[18] J. Li, S. Shakkottai, J. C. S. Lui, and V. Subramanian, “Accurate learning
or fast mixing? Dynamic adaptability of caching algorithms,” IEEE J.
Sel. Areas Commun., vol. 36, no. 6, pp. 1314–1330, Jun. 2018.

[19] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning
to cache with no regrets,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., Apr. 2019, pp. 235–243.

[20] R. Bhattacharjee, S. Banerjee, and A. Sinha, “Fundamental limits on
the regret of online network-caching,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 4, no. 2, pp. 1–31, Jun. 2020.

[21] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1258–1275, Jun. 2018.

[22] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, Mar. 1985.

[23] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[24] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, nos. 3–4, pp. 285–294, 1933.

[25] S. Agrawal and N. Goyal, “Further optimal regret bounds for Thompson
sampling,” in Artificial Intelligence and Statistics. Scottsdale, AZ, USA:
PMLR, 2013, pp. 99–107.

[26] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[27] N. Cesa-Bianchi and G. Lugosi, “Combinatorial bandits,” J. Comput.
Syst. Sci., vol. 78, no. 5, pp. 1404–1422, Sep. 2012.

[28] K. Jamieson and R. Nowak, “Best-arm identification algorithms for
multi-armed bandits in the fixed confidence setting,” in Proc. 48th Annu.
Conf. Inf. Sci. Syst. (CISS), Mar. 2014, pp. 1–6.

[29] D. Shah, T. Choudhury, N. Karamchandani, and A. Gopalan, “Sequential
mode estimation with Oracle queries,” in Proc. AAAI Conf. Artif. Intell.,
vol. 34, no. 4, 2020, pp. 5644–5651.

[30] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2014, pp. 2040–2048.

[31] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local:
Youtube network traffic at a campus network: Measurements and impli-
cations,” Proc. SPIE, vol. 6818, Jan. 2008, Art. no. 681805.

[32] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. FAST, 2003, pp. 115–130.

[33] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax charac-
ter of the sample distribution function and of the classical multinomial
estimator,” Ann. Math. Statist., vol. 27, no. 3, pp. 642–669, 1956.

[34] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works Wassily Hoeffding. New York, NY,
USA: Springer, 1994, pp. 409–426.

[35] S. Agrawal and N. Goyal, “Thompson sampling for contextual ban-
dits with linear payoffs,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 127–135.

[36] J. Komiyama, J. Honda, and H. Nakagawa, “Optimal regret analy-
sis of Thompson sampling in stochastic multi-armed bandit problem
with multiple plays,” 2015, arXiv:1506.00779. [Online]. Available:
http://arxiv.org/abs/1506.00779

[37] S. Bubeck, V. Perchet, and P. Rigollet, “Bounded regret in stochastic
multi-armed bandits,” in Proc. Conf. Learn. Theory, 2013, pp. 122–134.

[38] P. Zerfos, M. Srivatsa, H. Yu, D. Dennerline, H. Franke, and D. Agrawal,
“Platform and applications for massive-scale streaming network analyt-
ics,” IBM J. Res. Develop., vol. 57, nos. 3–4, pp. 1–11, 2013.

[39] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of Youtube
videos,” in Proc. 16th Interntional Workshop Qual. Service, Jun. 2008,
pp. 229–238.

[40] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proc. VLDB, vol. 4. Toronto, ON, Canada, 2004,
pp. 180–191.

Archana Bura is currently pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering, Texas A&M University. Her research
interests include reinforcement learning, optimization, and their applications
to wireless networks.

Desik Rengarajan is currently pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, Texas A&M University. His research
interests include reinforcement learning and game theory, with a focus on their
application to the real world.

Dileep Kalathil (Senior Member, IEEE) received the Ph.D. degree from the
University of Southern California (USC) in 2014. From 2014 to 2017, he was
a Post-Doctoral Researcher with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley. He is currently
an Assistant Professor with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX, USA. His research
interests include reinforcement learning, with applications in communication
networks, power systems, and intelligent transportation systems. He was
a recipient of the NSF CAREER Award in 2021, the NSF CRII Award
in 2019, the Best Ph.D. Dissertation Award from the Department of Electrical
Engineering, USC, from 2014 to 2015, and the Best Academic Performance
Award from the EE Department, IIT Madras, in 2008.

Srinivas Shakkottai (Senior Member, IEEE) received the Ph.D. degree
in electrical and computer engineering from the University of Illinois at
Urbana–Champaign in 2007. He was a Post-Doctoral Scholar in management
science and engineering with Stanford University in 2007. He joined Texas
A&M University in 2008, where he is currently a Professor of computer
engineering with the Department of Electrical and Computer Engineering.
His research interests include caching and content distribution, wireless
networks, multi-agent learning and game theory, and network data collection
and analytics. He was a recipient of the Defense Threat Reduction Agency
Young Investigator Award (2009), the NSF Career Award (2012), and the
Research Awards from Cisco (2008) and Google (2010). He also received
an Outstanding Professor Award (2013), the Select Young Faculty Fellowship
(2014), and the Engineering Genesis Award (2019) at Texas A&M University.

Jean-Francois Chamberland (Senior Member, IEEE) received the Ph.D.
degree from the University of Illinois at Urbana–Champaign. He is currently a
Professor with the Department of Electrical and Computer Engineering, Texas
A&M University. His research interests include computing, information, and
inference. He was a recipient of the IEEE Young Author Best Paper Award
from the IEEE Signal Processing Society and the Faculty Early Career Devel-
opment (CAREER) Award from the National Science Foundation. He served
as an Associate Editor for the IEEE TRANSACTIONS ON INFORMATION

THEORY from 2017 to 2020.

Authorized licensed use limited to: Texas A M University. Downloaded on September 20,2021 at 22:12:13 UTC from IEEE Xplore. Restrictions apply.

