Delays induced cluster synchronization in
chaotic networks

Cite as: Chaos 30, 121105 (2020); https://doi.org/10.1063/5.0030720
Submitted: 24 September 2020 . Accepted: 28 October 2020 . Published Online: 03 December 2020

Chad Nathe, "' Ke Huang, ) Matteo Lodi, '*' Marco Storace, "' Francesco Sorrentino, et al.

3 & ®

View Ualine Export Gitation CrossMark

ARTICLES YOU MAY BE INTERESTED IN

Phase and amplitude dynamics of coupled oscillator systems on complex networks

Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 121102 (2020); https://
doi.org/10.1063/5.0031031

Emergence of multistability and strongly asymmetric collective modes in two quorum sensing
coupled identical ring oscillators

Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 121101 (2020); https://
doi.org/10.1063/5.0029959

Do reservoir computers work best at the edge of chaos?
Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 121109 (2020); https://
doi.org/10.1063/5.0038163

Scilight

Summaries of the latest breakthroughs
in the physical sciences - Funisin

Chaos 30, 121105 (2020); https://doi.org/10.1063/5.0030720 30, 121105

© 2020 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1518041&setID=405123&channelID=0&CID=554244&banID=520431750&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3eb061b2135dae696921817a93aa61b893686d38&location=
https://doi.org/10.1063/5.0030720
https://doi.org/10.1063/5.0030720
https://aip.scitation.org/author/Nathe%2C+Chad
http://orcid.org/0000-0002-4291-5191
https://aip.scitation.org/author/Huang%2C+Ke
http://orcid.org/0000-0002-0753-7017
https://aip.scitation.org/author/Lodi%2C+Matteo
http://orcid.org/0000-0003-4958-074X
https://aip.scitation.org/author/Storace%2C+Marco
http://orcid.org/0000-0001-8899-1176
https://aip.scitation.org/author/Sorrentino%2C+Francesco
https://doi.org/10.1063/5.0030720
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0030720
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0030720&domain=aip.scitation.org&date_stamp=2020-12-03
https://aip.scitation.org/doi/10.1063/5.0031031
https://doi.org/10.1063/5.0031031
https://doi.org/10.1063/5.0031031
https://aip.scitation.org/doi/10.1063/5.0029959
https://aip.scitation.org/doi/10.1063/5.0029959
https://doi.org/10.1063/5.0029959
https://doi.org/10.1063/5.0029959
https://aip.scitation.org/doi/10.1063/5.0038163
https://doi.org/10.1063/5.0038163
https://doi.org/10.1063/5.0038163

Chaos ARTICLE

scitation.org/journal/cha

Delays induced cluster synchronization in chaotic

networks

Cite as: Chaos 30, 121105 (2020); doi: 10.1063/5.0030720
Submitted: 24 September 2020 - Accepted: 28 October 2020 -

Published Online: 3 December 2020

®

View Online

®

Export Citation CrossMark

Chad Nathe,' Ke Huang,' '/ Matteo Lodi,”

Marco Storace,?

and Francesco Sorrentino'-®

AFFILIATIONS

TDepartment of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA

2DITEN, University of Genoa, Via Opera Pia 113, 16145 Genova, Italy

2 Author to whom correspondence should be addressed: f<orrent@unm edu

ABSTRACT

We study networks of coupled oscillators and analyze the role of coupling delays in determining the emergence of cluster synchronization.
Given a network topology and a particular arrangement of the coupling delays over the network connections, different patterns of cluster
synchronization may emerge. We focus on a simple ring network of six bidirectionally coupled identical oscillators, for which with two
different values of the delays, a total of eight cluster synchronization patterns may emerge, depending on the assignment of the delays to the
ring connections. We analyze stability of each of the patterns and find that for large enough coupling strength and specific values of the delays,
they can all be stabilized. We construct an experimental ring of six bidirectionally coupled Colpitts oscillators, with delayed connections
obtained by coupling the oscillators via RF cables of appropriate length. We find that experimental observations of cluster synchronization
are in essential agreement with theoretical predictions. We also verify our theory in a fully connected network of fifty nodes for which
connections are randomly assigned to be either undelayed or delayed with a given probability.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0030720

Many studies have investigated cluster synchronization (CS) in
networks of coupled oscillators by focusing on the relationship
between the network topology and the emergence and stability of
synchronized clusters. However, the role of coupling delays has
remained relatively unexplored. Here, we show that in addition
to the pattern of connectivity between nodes, communication
delays over the network connections can be responsible for the
emergence of synchronized clusters.

I. INTRODUCTION

We study networks of coupled oscillators and focus on clus-
ter synchronization (CS), which occurs when the oscillators group
into clusters, with the nodes in the same cluster synchronizing but
those in different clusters not synchronizing. CS in networks has
been studied in a number of papers,>*** and the issue of stability of
the CS solution has been investigated in Refs. 11, 29, 34, 36, and 37.

In this paper, we focus on cluster synchronization in networks
in which the interaction between individual systems may not be
instantaneous but may be delayed due to finite propagation time
of signals. This is quite common in real-life systems: for instance,

coupling delays play a significant role on the dynamics of networks
of coupled lasers,” neuron networks, > and connected vehicle
systems.'®*° The effects of delays on the emergence of CS in arbitrary
networks have so far received little attention, with the exception of
one recent paper,”’ which assumes that each node/neuron commu-
nicates with others via connections of different types and each type
has an associated delay. Here, we lift this assumption and study how
coupling delays may affect cluster synchronization in simple net-
works with nodes all of the same type and connections all of the
same type.

Studies on cluster synchronization in networks with delays
have investigated symmetry-breaking bifurcations,'” the role of CS
for control purposes,”’ partial relay synchronization of chimera
states,”’ cluster and group synchronization and their stability,” appli-
cation to neural systems,”*>>»** and symmetric rings of delay-
coupled lasers® or crystal oscillators.” Despite these efforts, to the
best of our knowledge, up to now, a general picture about how
interaction delays may affect the emergence and the stability of
synchronized clusters in networks is lacking.

Cluster synchronization has been studied also experimen-
tally in networks of chaotic oscillators with connections either
undelayed” or delayed."® In some sense, using chaotic oscillators
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makes the analysis simpler than for periodic oscillators, as delay sys-
tems generically have families of periodic solutions, which reappear
for infinitely many delay times.'>** In particular, when the cou-
pled dynamics is periodic, it is possible that signals that propagate
with different transmission delays become indistinguishable from
each other.””’ Networks of periodic oscillators with ring topology
and delayed coupling have been studied analytically, numerically,
and in some cases also experimentally.'”""* Here, we focus on ring
topologies, just because they provide simple regular network topolo-
gies with constant degrees of the nodes, and as such they allow the
emergence of the complete synchronous solution, in the absence of
delays.

Notwithstanding its apparent simplicity, the ring network can
produce a variety of cluster synchronization patterns, depending on
the assignment of the delays over the ring connections, including the
pattern in which all the nodes are in the same cluster and the pattern
in which each node is in a cluster by itself. We obtain all the possible
CS patterns that are possible in a ring network with six nodes based
on the arrangement of two different delays and compute the Lya-
punov exponents that determine stability of each pattern. Though
not explicitly shown in this paper, our proposed approach is directly
generalizable to other more complex network topologies, such as
random networks or scale free networks with arbitrary assignments
of the delays over the network connections.

The rest of the paper is organized as follows. In Sec. 11, we
present a general approach to identify CS patterns, which under the
assumption of chaotic dynamics, applies to any network and to any
arbitrary assignment of the delays over the network connections. As
a proof of concept of the proposed approach, in Secs. I1I and IV, we
consider an undirected network of six Colpitts oscillators,'*”" with
ring topology. The individual oscillator parameters are set in order
to have chaotic dynamics. The emergence of synchronous clusters
is analyzed through numerical simulations in Sec. I1I and through
experimental measurements in Sec. I'V. In Sec. V, we present an
application of our method to a larger random network with 50
nodes.

Il. CLUSTER SYNCHRONIZATION IN NETWORKS WITH
DELAYS

We consider networks of coupled dynamical systems described
by the set of equations,

N
x() =Fxi(1) + o ZAz'j[H(Xj(t — 7)) —Hx@®)], (1)

j=1

i=1,...,N, where x;(t) € R" is the state of oscillator i at time t,
F: R" — R" indicates the dynamics of each uncoupled node, and
H: R" — R" indicates the coupling between nodes. The matrix A
= {A;;} represents the network connectivity; we call H(x;(t — 7;))
the signal received at node i from node j, where ; is the cou-
pling delay from j to i. Given the network topology A = {A;}
and the coupling delays {r;}, we determine (i) the existence of
cluster synchronization patterns and (ii) their dynamical stabil-
ity. We now assume each delay can assume a finite set of val-
ues 7; € {r',7%,...7¥}. Then, we rewrite the adjacency matrix A
=A'"4+ A%+ ...+ AKX such that each AF= {A§ = A8 (T ™),

scitation.org/journal/cha

where 8(i, ) is the Kronecker delta. We can thus rewrite Eq. (1) as
follows:

K N
x(t) = Fxi(t) + 0y Y ALHX(t— ) —H&x(®)], (@)

k=1 j=1

i=1,...,N.Consider a partition of the set of nodes V = 1,2,...,N
into M clusters C, /Ko, ..., Ky, KuNK, =0 for m=#n and
UM_ K, =V. Say N, is the number of nodes in cluster K,
ZX:I N,, = N. We call a cluster formed of only one node, i.e., with
N,, = 1, a trivial cluster. Formally, the set of Eq. (2) achieves clus-
ter synchronization when the node dynamics converge on a time
evolution such that x;(¥) = x;(f) = y.(t) if i,j belong to the same
cluster IC,,,.

Definition 1: A partition of the set of nodes V into M clusters
K1, Ky, . .., Ky identifies a coloring C of the nodes with M colors,
where each node in the network is assigned to a color. Then, each
cluster also is assigned to one and only one color.

In the rest of this paper, we focus on the case of chaotic
dynamics. Then, a necessary condition for the existence of a clus-
ter synchronized solution x;(f) = y,(f) for all nodes i € IC; that
evolve according to Eq. (1) is that each node belonging to cluster
K¢ receives the same overall input with delay T from the nodes
belonging to cluster /C,,, for any k, £, m. More compactly, denoting
this overall input as Q¥ , this condition can be expressed as

dYoA=q, viek, k=1,...K ®3)
jeKm

foré,m=1,...,M.

Definition 2: Satisfaction of Eq. (3) indicates that the color-
ing C is balanced, i.e., each node of color £ gets the same overall input
Q. with delay t* from the nodes of color m, for all colors £ and m
and for any delay t*withk=1,...,K

As described in Refs. 13, 14, and 41, the fact that a coloring C is
balanced [corresponding to satisfaction of Eq. (3)] provides a condi-
tion for the existence of a CS solution for Eq. (2). We call the M-node
network associated with the M-dimensional matrices Q* = {Q¥, },
k=1,...,K the quotient network. The CS evolution is, therefore,
governed by the dynamics of the quotient network,

K M

Ve = Fy®) + 0 > > Qf, [H(yu(t — ) — Hy, ()], (4)

k=1 m=1

t=1,...,M.

A. Computation of the minimal balanced coloring

Given the adjacency matrix A and the delays 7; (alterna-
tively, given the set of matrices A',A?%,...,AK), we can com-
pute the minimal balanced coloring, that is, the set of clusters
of minimum cardinality that can cluster synchronize." We use
an existing algorithm."'*** We proceed under the assumption of
chaotic dynamics. This guarantees that a necessary condition for
two nodes i,j to receive the same signal from another node k,
is that 7j; = 7.

Definition 3: A minimal balanced coloring is a balanced
coloring with the minimal number of colors.
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Definition 4: A coloring C' C C is a refinement of a coloring
C if two nodes that have the same color in C’ have the same color
also in C; in other words, C’ is a larger set of colors with respect
to C.

Definition 5: The input-driven refinement C’ of a coloring C
is obtained as follows. Consider a set of nodes that have color ¢ in
C,with £ € {1,..., M}. These nodes are assigned a new color if they
receive the same number of inputs with delay t* from all nodes with
the same color in C, for all the possible delays R withk e {1,...,K}
[see also condition (3)].

The algorithm for computing the minimal balanced coloring
consists of three steps:

A

scitation.org/journal/cha

1. color all nodes with the same color;

2. replace the current coloring C with the input-driven refinement
C’ of the current coloring; and

3. repeat step 2 until no new refinement is obtained.

. THE CASE OF THE HEXAGON NETWORK

Synchronization in ring topologies in the presence of delays
has been studied in many papers, with several of these works focus-
ing on the emergence of periodic rotating waves; see, e.g., Refs. 6,
30, and 43. We here focus on a ring topology but consider the
case of chaotic dynamics, for which by delaying some of the ring

C

FIG. 1. CS patterns corresponding to the minimal balanced coloring, labeled (a) to (h). Here, a gray edge represents a bi-directional undelayed connection. A red edge
represents a bi-directional delayed connection between two nodes. Clusters are represented by nodes of the same color.
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FIG. 2. For each CS pattern [(b)-(f) and (h)], the CS error E,, is compared to largest transverse Lyapunov exponent A. For all patterns, the error plot and the Lyapunov
exponent plot are placed on top of each other for direct comparison.
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FIG. 3. Experimental waveforms from the ring of coupled Colpitts oscillators coupled via configuration C: 71, = 73 = 615ns,and o = Rg~' = 0.0455 Q1.

connections, different patterns of cluster synchronization may arise.
We focus on the case study of a hexagon network, represented
in Fig. 1(a), with symmetric adjacency matrix A = {A;}, A; = A;
=8(li —jl, 1) + 8(li — jl,5)} (we recall that §(i, j) denotes the Kro-
necker delta) for which, in the presence of all equal delays 7; = 7,
a solution exists corresponding to complete synchronization. How-
ever, different patterns of cluster synchronization are possible for
different choices of the delays. For simplicity, we consider the exis-
tence of two types of connections, undelayed t' = 0 and delayed
72 = 1. Accordingly, we define two adjacency matrices, A4, which
contains only delayed connections, and A", which contains only
undelayed connections, A = Ad 4 A,

Because for the ring topology » ; A;; = 2 for each i, then we can
rewrite Eq. (1) as follows:

%) = Fxi(0) + 0 Y AH(x(t — 1), ©)
j

i=1,...,N, where F(x;(¥)) = F(x:()) — 20 H(x;(¢)) and Eq. (2) as
follows:

%i(f) = B(a(D) + 0 ) AFH(x(0) +0 ) AJH((t— 1)), (6)
J J

i=1,...,N.
With six, bi-directional connections, there are 64 possible com-
binations of delayed and undelayed connections. We refine these

64 combinations into eight unique configurations. These eight con-
figurations, shown in Fig. 1, can describe any delay arrangement
possible, assuming the position of specific nodes is irrelevant. From
here, we predict the existence of CS patterns using the approach
described in Sec. IT A. A minimal balanced coloring corresponds to
each one of the eight different configurations [labeled (a) to (h)],
which is shown in Fig. 1. In what follows, we refer to each such col-
oring as a CS pattern. In general, a CS pattern is not unique to a given
configuration. As an example of this, Figs. 1(a) and 1(h) show two
different arrangements of delays, to which corresponds the same CS
pattern (coloring of the nodes.)

A quotient network corresponds to each one of the cluster pat-
terns in Fig. 1. These are all shown in Sec. 2 in the supplementary
material.

A. Stability analysis

We linearize the system of Eq. (6) about the quotient network
dynamics,

8%,(t) = DE(x(0)8x(t) + 0 Y ASDH (x;(1)8%(1)
j

+0 ) ASDH(x(t — 1)8%i(t — 1), 7)
j
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FIG. 4. Experimentally computed synchronization errors between Colpitts pairs 1
and 3,4 and 6, and 2 and 5, vs o for configuration C. The synchronization errors
between Colpitts 1 and 3 and Colpitts 4 and 6 become small for o > 0.01. In
comparison, the error between Colpitts 2 and 5 (not synchronized, as expected)
is substantially larger and does not decrease for increasing o

i=1,...,N. The above set of equations can be rewritten in compact
form,

M M
5 = [ )i ® DEGw(6) + 0 A® Y Ji @ DHGw(5) |ox(t)

k=1 k=1
M
+0A" Y Ji ® DH(x(t — 1)8x(t — 1) (8)
k=1

in the vector 8x = [8x7,8x,...,8x%]", where the entries of the
diagonal matrix Ji are equal to

Jki = {1 ifi e C{O )
0 otherwise,
and 224:1 Ji = Iy is the identity matrix.

In order to reduce the dimensionality of Eq. (8), we intro-
duce an N-dimensional transformation matrix T.**” By applying the
transformation matrix T to Eq. (8), we obtain

M M
i) = [3 G ® DEC(0) + 0B' ® Iy Y G ® DAGk(0) |a(t)
k=1 k=1

M
¥ [aBd®1NZGkDﬁ(xk(t— r))]z(t— 0, (10)

k=1

where z = (T ® I,,)8x, the matrix T for each pattern can be derived
as described in Refs. 29 and 37, and the matrices Gy are equal to
Gy = TJ, T". The matrices B* = TA"T" and BY = TAYTT share the
same block-diagonal structure. Of these blocks, there is one that we

ARTICLE scitation.org/journal/cha

FIG. 5. All-to-all coupled network with N = 50 nodes. A red edge represents
a bi-directional delayed connection and a gray edge represents a bi-directional
undelayed connection. Clusters are represented by nodes of the same color. All
trivial clusters are represented by a light blue color.

call “parallel,” which describes the motion in the CS manifold and
a number of blocks which we call “transverse” that describe motion
orthogonal to the manifold. We are interested in the growth or decay
of the perturbations associated with these orthogonal blocks when
integrated in time. For each transverse block s = 1,.. ., S, given an
initial time ¢; and a final time # > t;, we compute the maximum
transverse Lyapunov exponent

As:m(nzs(tf)u) 1 o
2@l ) 4=t

to examine growth or decay. The condition for stability of the
given CS pattern is that all the transverse Lyapunov exponents
AL A2, ..., Ag are negative, or alternatively, that the largest transverse
Lyapunov exponent, A = max,—;,_ sAs; < 0.

B. Colpitts oscillators

We choose the Colpitts oscillator to describe the dynamics
of each individual oscillator. The Colpitts oscillator is an elec-
tronic oscillator with versatile characteristics, the most important
of which is its ability to oscillate chaotically. Colpitts oscillators
provide a good test bed for the study of cluster synchronization
in networks.” Following Ref. 4, we then consider Eq. (2) with
the choice of the adjacency matrix corresponding to the hexagon

Chaos 30, 121105 (2020); doi: 10.1063/5.0030720
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is consistent with Fig. 5.

network and

_Vce,i(t)
Vie,i(t)
B0

x;(t) =

CLI ULi(®) — Ic[Viei(D])

—(Vee+Vpe,i(1)
F(x) = | & (522 = L[Viei (0] = 1i(0)

| 3 (Vee = Veei(®) + Viei(t) — Ii(HRy)
1 0
H(x) = — | & Vee | » (12)
Rc 0
with

I — 0, Ve < Vins
B @) Vbe > V[h) (13)
Ic = B,

where L is the inductance, C; and C, are the capacitances of the
circuit components (see Fig. 1 in the supplementary material), Vg,
is the voltage drop between the collector and the emitter of the tran-
sistor, and Vj, is the voltage drop between the base and the emitter.
Ve and V,, are voltage sources or power supplies, and Iz and I,
are the current of the base and the collector, respectively. These
two currents are the nonlinear terms in the system; they are zero
below a threshold voltage and increase linearly above this cutoff. In
a bipolar junction transistor (BJT) these currents are related through
B = AIL./Al, =~ I./I,, where 8 is the BJT amplification factor.

In our experimental setup, we have Vj,;, =0.75V, R,
=200Q, B=220, V.,.=45V, R,=2209, V,=—45V,
C, = C, = 47nF, L = 56 uF, and transistor 2N222A.

For pattern A, we have verified that for R, = 23 Q and for a low
enough value of the resistance R¢ (namely, a large enough value of
the coupling strength ), e.g., Rc = 50 €2, all six oscillators converge
to a chaotic trajectory corresponding to the dynamics of an uncou-
pled oscillator.”® However, in what follows, we omit to present our
study of pattern A (none of the connections delayed), since that can
be performed using the classic master stability function approach of
Ref. 28.

In order to analyze the emergence of cluster synchronization
for patterns (b)-(h), we define for each pattern and each cluster
m =1,...,M the CS error below,

N Np

—1 r+tf
B = (02, = Nat) D030 [ e = Vil (1)

i=1 j=1"%T

m=1,...,M.

C. Stability of the CS patterns

We next use Eq. (11) to compute stability for each CS pattern
as a function of the coupling strength o for a fixed value of the delay
T = 615ns. Figure 2 shows for each pattern the numerically com-
puted CS errors E,,(c) (top) and the largest transverse Lyapunov
exponent A (o) (bottom) for direct comparison. For both cases, we
perform the computation by decreasing o from 0.02 to 0 in steps of
0.0005. The matrices T as well as the block-diagonal matrices B for
each one of the configurations [labeled (a) to (h)] are reported in
Sec. 3 in the supplementary material. For all patterns, we see excel-
lent agreement between the CS error and the largest transverse
Lyapunov exponent. Note that each pattern, with the only exception
of pattern G, which does not allow cluster synchronization, becomes
stable for o exceeding a threshold value, which is pattern specific.
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IV. EXPERIMENTAL VALIDATION

We constructed an experimental ring of six identical Colpitts
oscillators bidirectionally coupled via resistors. We focused on the
configuration C in Fig. 1, with two delayed connections. The two
delays are induced by connecting Colpitts 1 and 2 and Colpitts 2 and
3 with 400 ft RF cable (RG-58). The cables induce T = 615.8 ns delay
and 22 Q resistance, and the loss along the cable is about 6.6%. The
voltages from the collector port of each Colpitts oscillator are mon-
itored simultaneously using two synchronized oscilloscopes (TEK
TDS2024 B, four channels; TEK TDS1001B, two channels).

The experimental scheme for an individual Colpitts in the ring
is shown in Fig. 1 of the supplementary material. The parameter
values are nominally the same we used to run our simulations in
Fig. 2, and for which the dynamics of the six Colpitts oscillators
is found to be chaotic. The waveforms of the six coupled Colpitts
for 0 = R¢~! = 0.0455 are shown in Fig. 3, from which we see the
emergence of the expected cluster synchronization pattern, corre-
sponding to the minimal balanced coloring: cluster C; with Colpitts
1 and 3, cluster C, with Colpitts 4 and 6, and the remaining two Col-
pitts in trivial clusters. The waveforms of Colpitts 2 and 5 are clearly
distinguishable from the others; however from the figure, they also
appear to be qualitatively similar to each other. The synchronization
errors E,, for C; and C, vs o are plotted in Fig. 4, from which we see
that synchronization is achieved approximately for ¢ > 0.01. This
is in qualitative agreement with the results shown in Fig. 2, with
the difference that the transition in Fig. 2 occurs for a lower value
of 0. However, a higher threshold for synchronization is expected
due to the presence of noise and non-identicalities between the indi-
vidual oscillators in the experimental setup. In Fig. 4, we also show,
for comparison, the synchronization error between Colpitts 2 and
5, computed by setting N,, = 2, i = 2, and j = 5 in Eq. (14), from
which we see that though the waveforms for these two oscillators
appear similar by inspection, they do not synchronize for any o. This
is in agreement with the emergence of CS pattern C, with a cluster
formed of oscillators 1 and 3, another cluster formed of oscillators 4
and 6, and oscillators 2 and 5 in trivial clusters. A direct comparison
of the experimental waveforms for Colpitts 1 and 3, Colpitts 4 and
6, and Colpitts 2 and 5 is included in Sec. 4 in the supplementary
material.

V. A LARGER NETWORK

We now apply the method developed in this paper to a larger
all-to-all coupled network with N = 50 nodes and a random assign-
ment of undelayed and delayed connections. We randomly assign
each connection to be either undelayed or delayed with probability
0.02 of being delayed. Figure 5 shows a realization of such a network.
Nodes are colored according to the minimum balanced coloring,
obtained as described in Sec. IT A.

We see from Fig. 5 that there are a total of five clusters com-
posed of multiple nodes. We now simulate the dynamics of this
network using Eq. (1) and choosing the individual nodes to be Col-
pitts oscillators as described previously in this paper. We set the
delay 7 = 445ns. Analogously to Fig. 2, we see that all the Lya-
punov exponents become negative for large enough o, indicating
that all five nontrivial clusters will synchronize for large enough o.
Figure 6 shows the CS errors E,, defined in Eq. (14) vs o for all five
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nontrivial clusters. All E,, approach zero for o large enough, which
is in accordance with our prediction.

VI. CONCLUSIONS

In this paper, we have studied how coupling delays can deter-
mine the emergence of cluster synchronization in networks of cou-
pled chaotic oscillators. We considered a situation in which all the
systems are described by the same dynamics, and delays could be
chosen out of a finite set. Our main conclusion is that in addition to
the pattern of connectivity between nodes, communication delays
can be responsible for the emergence of synchronized clusters in
networks of coupled oscillators.

We focused on a simple ring network of coupled Colpitts oscil-
lators, which admits full synchronization in the absence of delays
and showed that by adding up to three delayed connections, we
could attain various CS patterns, which we were able to predict
by computing the “minimal balanced coloring” for each configura-
tion. We fixed the value of the coupling delay and found that for
all the configurations, the predicted CS pattern could be stabilized
for a sufficiently large value of the coupling strength. We validated
our theoretical predictions for configuration C in an experimental
ring of six bidirectionally coupled Colpitts oscillators, with delayed
connections obtained by coupling the oscillators via RF cables of
appropriate length. The experimental setting showed that the pat-
tern could be stabilized for large enough coupling o = R¢™!, though
the critical o was found to be higher than in simulations. Finally, we
also verified the theory in a fully connected network of 50 nodes for
which connections were randomly assigned to be either undelayed
or delayed with a certain probability.

Our work is generalizable to networks with arbitrary connec-
tivity and distribution of the delays over the connections. For each
delay configuration, we applied the stability analysis to the pattern
corresponding to the minimal balanced coloring, but the same anal-
ysis can be applied to other non-minimal balanced patterns.”” A
main limitation of this work is that it only applies to chaotic dynam-
ics; the case of periodic dynamics requires further investigation.

SUPPLEMENTARY MATERIAL

See the Supplementary material for a description of the experi-
mental scheme and setup, a presentation of all the quotient networks
corresponding to different configurations of the hexagon network,
the transformation into block-diagonal form for each one of the CS
patterns, and time traces from the experimental system.
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