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ABSTRACT
We study networks with linear dynamics where the presence of symmetries of the pair (A, B), induces a
partition of the network nodes in clusters and the matrix A is not restricted to be in Laplacian form. For
these networks, an invariant group consensus subspace can be defined, in which the nodes in the same
cluster evolve along the same trajectory in time. We prove that the network dynamics is uncontrollable in
directions orthogonal to this subspace. Under the assumption that the dynamics parallel to this subspace
is controllable, we design optimal controllers that drive the group consensus dynamics towards a desired
state. Then, we consider the problemof selecting additional control inputs that stabilise the group consen-
sus subspace and obtain bounds on theminimumnumber of additional inputs and driver nodes needed to
this end. Altogether, our results indicate that it is possible to independently design the control actions along
and transverse to the group consensus subspace.
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1. Introduction

The number of real-word systems modelled as complex net-
works is ever increasing, and ranges from natural (Sethi
et al., 2009; Van Vreeswijk & Sompolinsky, 1996), technologi-
cal, Stegink et al. (2016) and Yu et al. (2012) and social systems
(De Lellis et al., 2018; Proskurnikov et al., 2015) to epidemic
spreading (Gatto et al., 2020). The ultimate goal of being able
to arbitrarily affect the behaviour of these systems has spurred
researchers across different scientific communities to investigate
the controllability properties of linear complex networks (Lo
Iudice et al., 2019; Pasqualetti et al., 2014; Yuan et al., 2013).
In this framework, several works (Liu et al., 2011; Lo Iudice
et al., 2015) have revisited the classical tools of structural con-
trollability (Lin, 1974) from the viewpoint that in order to
control complex networks, controllability must be guaranteed
by a proper selection of the set of nodes, the drivers, in which
control signals are injected. If the selection of the driver nodes
ensures structural controllability, then the network will also be
controllable in Kalman’s sense for all possible edge weights but
for a set of Lebesgue measure zero. Among the combinations
of edge weights inside this set, there are those that induce the
emergence of symmetries (Chapman&Mesbahi, 2014, 2015) or
equitable partitions (Gambuzza & Frasca, 2019) in the network
graph. In the presence of symmetries, there exist permutations
of the network nodes that leave the graph unchanged, and these
symmetries induce a partition of the network in clusters. On
the other hand, an equitable partition (Godsil, 1997) clusters
the network nodes such that the sum of the incoming edges in
any node of the same cluster from nodes in any cluster is the
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same. While symmetries and equitable partitions cause loss of
controllability (Aguilar & Gharesifard, 2017), they also induce
the emergence of group consensus and cluster synchronisa-
tion(Blaha et al., 2019; Klickstein et al., 2019; Pecora et al., 2014),
i.e. solutions in which the state of each node in the same clus-
ter is the same. It has been shown that many real world systems
such as power grids (Della Rossa et al., 2020), yeast protein net-
works, or social systems (see Table 1 in MacArthur et al., 2008)
share this degeneracy. Notably, these systems usually exhibit
collective behaviour, and thus can achieve cluster consensus or
synchronisation in the presence of symmetries.

In this work, we focus on developing tools allowing to
enforce group consensus in networks with symmetries. Group
consensus arises when some members, or agents, of the net-
work reach consensus with each other, but not necessarily with
the other members of the network (Klickstein et al., 2019;
Qin et al., 2016; Qin & Yu, 2013; Sorrentino et al., 2020; Yu
&Wang, 2009, 2010, 2012).

Group consensus is desirable whenever the apparently con-
flicting control goals of achieving different consensus values
in groups of agents and of maintaining the network topology
connected arise. Think for instance of a feet of autonomous
vehicles attempting to rendezvous in groups at different times
while maintaining the communication topology connected for
safety. Differently from the existing literature (Chapman&Mes-
bahi, 2014, 2015), here we cope with the general case in which
the network dynamics is not constrained to be in Laplacian
form. The assumption that the network connectivity is in Lapla-
cian form is prevalent in the existing literature. However, this
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assumptionmay be relaxed in applications in various fields, such
as opinion dynamics, social interaction systems, and election
campaign strategies (Acemoglu &Ozdaglar, 2011; Galam, 2004;
Hołyst et al., 2001), for which the connectivity between agents
may not be necessarily in Laplacian form, ormay include antag-
onistic interactions (Altafini & Lini, 2014). Under these more
general conditions, we show that loss of controllability and
emergence of group consensus are different sides of the same
coin. Both are due to the presence of symmetry-induced invari-
ant subspaces that are smaller than the entire state space. While
the dynamics orthogonal to the group consensus subspace is
not controllable, it is possible that the dynamics along this
subspace can be controlled. If this is the case, control of the con-
sensus solution can be achieved by designing controllers on a
reduced network, whose nodes correspond to clusters of nodes
of the original network, yielding a substantial computational
advantage in the control design.

Stabilisability of the dynamics orthogonal to the group con-
sensus subspace is a necessary requirement to achieve group
consensus. When the network dynamics is not described by a
Laplacian matrix (which is the case considered in this paper),
stabilisability is not guaranteed. This indicates the need for
enforcing specific stabilisation conditions in order to obtain
convergence of the dynamics on the group consensus subspace.
In this paper we show how to add inputs to the network with the
specific goal to stabilise the group consensus subspace. More-
over, we show how to independently design the control action
on the group consensus subspace and the stabilising action
transverse to the subspace. We also give bounds on the num-
ber of independent control inputs and on the number of nodes
where these inputs are injected to achieve stabilisability of the
group consensus subspace.

2. Mathematical preliminaries and network dynamics

We denote by G(V , E) an undirected graph with V = {vi, i =
1, . . . ,N} the set of N nodes, and E ⊆ V × V the set of edges
defining the interconnections among the nodes. The symmet-
ric matrix A ∈ RN×N is the adjacency matrix of the graph, that
is, a matrix whose elements are Aij = Aji �= 0 if (i, j) ∈ E and
Aij = Aji = 0 otherwise. A permutation π(V) = Ṽ is an auto-
morphism (or symmetry) ofG if (i)V = Ṽ , i.e.π does not add or
remove nodes, and (ii) (i, j) ∈ E , then (π(i),π(j)) ∈ E . The set
of automorphisms of a graph with adjacency matrix A, with the
operation composition, is the automorphism group, aut(G(A)).
Any permutation of this group can be represented by a permu-
tation matrix P that commutes with A, i.e. such that PA = AP.
The set of all automorphisms in the groupwill only permute cer-
tain subsets of nodes (the orbits or clusters) among each other.
For any two nodes in the same orbit there exists a permutation
that maps them into each other. Moreover, the coarsest orbital
partition is defined as the partition of the nodes corresponding
to the orbits of the automorphism group. Given a partition �

of the set V of the network nodes V into s subsets {S1, S2, . . . Ss},
such that∪s

i=1Si = V , Si ∩ Sj = ∅ for i �= j, we can introduce the
N × s indicator matrix E�, such that E�

ij = 1 if node i belongs
to Sj and E�

ij = 0 otherwise. A simple example of a networkwith

symmetries is reported in the left panel of Figure 1. The auto-
morphism group of the network is composed of four elements,
aut(G(A)) = {π0,π1,π2,π1π2}, where

• π0 is the trivial permutation (π0(i) = i, i = 1, . . . , 8);
• π1 is the horizontal symmetry of the network (π1(1) =

2,π1(2) = 1, π1(3) = 4, π1(4) = 3, π1(5) = 5, π1(6) = 6,
π1(7) = 8, π1(8) = 7);

• π2 is the vertical symmetry of the network (π1(1) =
3,π1(2) = 4, π1(3) = 1, π1(4) = 2, π1(5) = 6, π1(6) = 5,
π1(7) = 7, π1(8) = 8);

The axes of π1 and π2 are the dashed lines in Figure 1. The
automorphism group partitions the network nodes into three
subsets (S1 = {1, 2, 3, 4}, S2 = {5, 6}, and S3 = {7, 8}).

We consider a linear dynamical network described by

ẋ = Ax + Bu. (1)

where x ∈ X = RN is the stack vector of the states of the N
network nodes and u is the stack vector of the M input sig-
nals injected in the network. Consistently, theN × N symmetric
matrixA defines the network topology, while theN × Mmatrix
B describes the way in which theM input signals affect the net-
work dynamics. Namely, if the j-th input is injected in the i-th
node then Bij = 1, while Bij = 0 otherwise.

3. Controllability properties of networks with
symmetries

In this section, we will show how the presence of symmetries in
the controlled network (1) affects controllability.

Lemma 3.1: The subset of automorphisms of G(A) given by
the set of matrices P := {Pi : PiA = APi and PiB = B} forms a
subgroup of aut(G(A)).

Proof: For the set P to be a subgroup, the following four
properties must be true:

(i) Pi(PjPk) = (PiPj)Pk ∀(Pi,Pj,Pk)∈ P ;
(ii) Pi ∈ P is non-singular ∀ i;
(iii) I ∈ P ;
(iv) given any two matrices Pi ∈ P and Pj ∈ P , then PiPj ∈ P .

Proving that the matrices in P satisfy property (i) and (ii)
is trivial as (i) is true for any three square matrices with the
same dimensions (Pi,Pj,Pk) ∈ P regardless of whether these
are, or are not, inP , while (ii) is true as permutationmatrices are
not singular. Moreover, (iii) holds as IA = AI = A, and IB = B.
Moreover, property (iv) is proved as

(PiPj)A = Pi(PjA) = Pi(APj) = APiPj = A(PiPj)

from which we see that PiPjA = APjPi for all (Pi,Pj) ∈ P . The
proof is finally completed by noting that, as from our hypothe-
ses PjB = PiB = B for all (Pi,Pj) ∈ P , it follows that PiPjB =
PiB = B. �

We will denote as aut(G(A,B)) the group represented by the
permutation matrices P such that PA−AP = 0 and PB−B = 0.
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Figure 1. A simple 8 node network, with edge weights all equal to one. The coarsest orbital partition of the network shown in the figure has three clusters C1 = {5, 6},
C2 = {1, 2, 3, 4}, and C3 = {7, 8}.

Similarly to aut(G(A)), aut(G(A,B)) partitions the set of net-
work nodes into orbits or clusters, where an orbit is a subset
of symmetric nodes. Hence, we can define the coarsest orbital
partition � into clusters corresponding to the orbits of the
automorphism group aut(G(A,B)), C1,C2, . . . ,CK , such that
∪K
i=1Ci = V , andCi ∩ Cj = 0 for i �= j.Wewill use the indicator

matrix E� to keep track of the orbit to which each node belongs.

Lemma 3.2: Each orbit of the coarsest partition � induced by
aut(G(A,B)) is a subset of an orbit of the coarsest partition
induced by aut(G(A)).

Proof: The thesis follows from the observation that if two
(or more) nodes are permuted by a permutation matrix P in
aut(G(A,B)) and thus belong to the same orbit, then they
also belong to the same orbit of the coarsest orbital partition
induced by aut(G(A)), as the same matrix P also belongs to
aut(G(A)). �

Theorem 3.1: If there exists a permutation matrix P �= I such
that PA−AP = 0 and PB−B = 0, then

(i) the set of statesXor := {x : xi = xl ∀ i, l ∈ Cj, ∀j} ⊂ X , is an
invariant subspace of the matrix A, i.e. ∀x ∈ Xor, Ax ∈ Xor;

(ii) if xi = xl then ẋi = ẋl for all (i, l) ∈ Cj and for all j.

Proof: Let us start by showing that if there exists a permutation
matrixP such thatPA = AP andPB = B, then the network state
x and the permuted state vector y: = Px share the same dynam-
ics. Indeed, by left multiplying both sides of Equation (1) by P
we get

Pẋ = PAx + PBu.

Then, as PA = AP and PB = B, we get

ẏ = Ay + Bu.

Moreover, as there always exists a permutation matrix P ∈
aut(G(A,B)) that maps any two nodes belonging to the same
clusters into each other (Klickstein et al., 2019), then statement
(ii) follows, i.e.nodes in the same clusters share the same dynam-
ics, and thus if xi = xl for all i and l in the same cluster, then also
ẋi = ẋl. Moreover, this also ensures that the subspace made of
all the points of the state-space such that xi = xl ∀i, l ∈ Cj and
∀j = 1, . . . ,K is A-invariant (statement (i)). �

Theorem 3.1 establishes the existence of the group consensus
subspaceXor for network (1).Hence, to tackle consensus control
problems, it is useful to introduce a transformation that allows
us to separate the dynamics along Xor from that orthogonal to
Xor itself. This task is accomplished by the Irreducible Represen-
tation (IRR) of the symmetry group through a transformation
in a new coordinate system (Pecora et al., 2014) zor = Torx. The
transformation matrix

Tor =
[
T‖
T⊥

]
∈ RN×N (2)

is orthogonal, and the elements of the block T‖ ∈ RK×N are
such that

T‖
ij =

√
|Ci|−1

(3)

if node j is in cluster i and 0 otherwise. Note that the K rows
of the matrix T‖ are a basis of Xor while the rows of the matrix
T⊥ ∈ R(N−K)×N are a basis of the orthogonal complement to
the group consensus subspace. Notably, each of the rows of the
matrix T⊥, say the j-th, can be associated to a single cluster say
Ci. Namely, each element T⊥

jl is non-zero only if node l belongs
to the cluster Ci. Consistently, the dynamic matrix Ã = TorATT

or
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has the following structure:

Ã = TorATT
or =

[
A‖ 0
0 A⊥

]
. (4)

From Equation (4), we see that the IRR decouples the dynamics
along the consensus subspace governed by the block A‖ from
that orthogonal to the group consensus subspace governed by
the block A⊥. In this new coordinate system, the dynamics of
network (1) can be rewritten as

żor = Ãzor + B̃u, (5)

and

B̃ = TorB =
[
B‖
B⊥

]
. (6)

Indeed, the pair (A‖,B‖), which we will denote as the quotient
pair, determines the controllability properties of the dynamics
along the subspace Xor and thus our ability to control the con-
sensus state, while the pair (A⊥,B⊥) determines our ability to
stabilise Xor. We are interested in studying the controllability
properties of the two pairs (A‖,B‖) and (A⊥,B⊥). Before doing
so, we will present a few more details on this representation.
First of all, let us point out that the block T‖ of the matrix Tor is
such that T‖ = E�†, where E� ∈ RN×K is the indicator matrix
corresponding to the coarsest orbital partition �. Consistently,
the state of the quotient network, the network associated to pair
(A‖,B‖), can be computed as

z‖ = E�†x ∈ RK

and thus we have that A‖ = E�†AE� and B‖ = E�†B.
Now, we are ready to give the following theorem.

Theorem 3.2: If there exists a matrix P �= I such that PA = AP
and PB = B, then Xor, the invariant subspace of the matrix
A associated to the cluster consensus solution, encompasses the
controllable subspace.

Proof: Toprove the statementwemust show that ifPB = B,Xor
encompasses the range of B. Indeed, if PB = B, then B is such
that bil = bjl for all l and for all i, j in the same cluster, due to the
fact that left-multiplying a vector by the matrix P only permutes
the elements associated to nodes of the same cluster. Hence, all
the columns of B and thus its range, are encompassed inXor . As
the controllable subspace is defined as the smallest A-invariant
subspace encompassing the range of B, the thesis follows. �

Corollary 3.1: B⊥ = 0(N−K)×M.

Proof: The statement is a direct consequence of the statement
of Theorem 3.2 and of the definition of B⊥. �

4. Controlling group consensus

In Section 3 we have established some controllability limitations
of networks with symmetries. Here, we show how to operate
within these limitations in order to control group consensus.

Corollary 4.1: Consider a graph G(A,B) with coarsest orbital
partition �. If the pair (A‖,B‖) is controllable, then for any cost
function J(u(t)) the optimal control problem

min
u

∫ tf

0
J(u(t)) dt (7a)

s.t. ẋ = Ax + Bu (7b)

x(0) = x0 (7c)

x(tf ) = xf (7d)

admits solution u∗(t) := argmin
∫ tf
0 J(u(t)) dt if and only if x0

and xf are such that Torx0 = [z‖0 0]T and Torxf = [z‖f 0]T, i.e.

z⊥
0 = z⊥f = 0. Moreover, if Torxf = [z‖f 0], then u

∗ = u∗∗, where
u∗∗ is the solution of the following optimal control problem

min
u

∫ tf

0
J(u(t)) dt (8a)

s.t. ż‖ = A‖z‖ + B‖u (8b)

z‖(0) = T‖x0 (8c)

z‖(tf ) = T‖xf . (8d)

Proof: From Theorem 3.2, if xf is such that z⊥
f �= 0 then xf is

not reachable, while if x0 is such that z⊥0 �= 0 then xf is not
reachable from x0. Hence, in both cases problem (7a) is not fea-
sible. On the other hand, if x0 and xf are such that z⊥

0 = z⊥f = 0,
then both x0 and xf belong to Xor, which we know coincides
with the controllable subspace from Theorem 3.2 and from
the hypotheses. Then, reaching z‖f is equivalent to reaching the
point xf . Hence, to prove our thesis, we are left with showing that
u∗ = u∗∗. We will do so by showing that problems (7a) and (8a)
share the samedecision variables, cost function, and constraints.
Indeed, the decision variables are the same by definition, as
well as the cost function as input signals are not affected by
equivalent transformations. Finally, to prove that problems (7a)
and (8a) share the same constraints, let us show that by left
multiplying both sides of Equations (7b)–(7d), we obtain Equa-
tions (8b)–(8d) together with a set of Equations that are always
verified independently of u. Indeed from the hypotheses this
is true for Equations (7c) (7d), as left multiplying both by the
matrix Tor we obtain Equations (8c) and (8d) together with two
sets of N−K equations of the type 0 = 0. Finally, from Equa-
tions (4), (6), and Corollary 3.1 we know that left-multiplying
Equation (7b) by Tor yields

ż‖ = A‖z‖ + B‖u (9a)

ż⊥ = A⊥z⊥. (9b)

As z⊥(0) = 0, fromEquation (9b) we have that z⊥(t) = 0 for all
t, and thus Equation (9a), which coincides with Equation (8b),
captures completely the dynamics in Equation (7b) indepen-
dently of u. Hence, problem (7a) and the reduced order problem
in (8a) share the same decision variables, cost function, and
constraints which implies that u∗ = u∗∗. �
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Remark 4.1: Note that Corollary 4.1 provides an approach to
design an input to control group consensus. A viable alternative
is to solve

min
u

∫ tf

0
J(u(t)) dt (10a)

s.t. ẋ = Ax + Bu (10b)

y = E�Tx (10c)

x(0) = x0 ∈ Xor (10d)

y(tf ) = yf . (10e)

with E� being the indicator matrix corresponding to the parti-
tion � of the network nodes, and

yi
|Ci|

being the consensus value for all the nodes of the cluster Ci.
Remark 4.2: Corollary 4.1 provides an approach to control the
consensus solution. The stability properties of the group con-
sensus subspace are determined by the eigenvalues of the block
A⊥ of thematrix Ã in Equation (4). However this solution is not
stabilisable, as the dynamics orthogonal to the group consensus
subspace are uncontrollable (see Theorem 3.2).

Motivated by the considerations in Remark 4.2 which are
consistent with the statement of Theorem 3 in Alemzadeh
et al. (2017) coping with the special case of signed graphs rele-
vant tomodel opinion dynamics (Altafini & Lini, 2014), we now
tackle the problemof selecting a set of nodes inwhich additional
inputs must be injected to stabilisableXor. To do so, we leverage
the following conditions from Hautus (1970).

Definition 4.1: Given a pair (A,B) an eigenvalue λi ofA is con-
trollable if and only if ∃j such that vTi bj �= 0, for any eigenvector
vi associated to λi.

Theorem 4.1 ((Hautus, 1970)): A dynamical system defined
by the pair (A,B) is stabilisable if and only if every unstable
eigenvalue of A is controllable.

We denote by w theW-dimensional vector of the additional
inputs and by D the N × W dimensional matrix indicating the
nodes in which these inputs are injected, that is, the drivers.
Namely, Dij �= 0 if the jth additional input wj is injected in
the ith network node and 0 otherwise. Considering these addi-
tional inputs leads to rewriting the dynamics of the network in
Equation (1) as

ẋ = Ax + Bu + Dw. (11)

As a result, applying the transformation Tor in Equation (4) to
the controlled network in Equation (11) yields

ż = Ãz + B̃u + D̃w, (12)

where

D̃ = TorD =
[

D‖
D⊥

]
. (13)

We constrain the selection of the matrix D to be such that the
input signals w do not affect the dynamics along the group

consensus subspace, so to allow independent design of (i) the
control action u responsible for controlling the group consensus
solution and (ii) the stabilising action w.

To be able to formulate and solve our driver node selection
problem, let us relabel the eigenvalues of A so that the first K
are also eigenvalues of A‖ and the last (N − K) are also eigen-
values of A⊥ (here we just list all the eigenvalues of A regardless
of their multiplicity). Note that this is possible from the block
diagonal structure of Ã in Equation (4). After this relabelling,
the eigenvectors ofA associated with its firstK eigenvalues span
the group consensus subspace, while the eigenvectors ofA asso-
ciated with the last (N − K) eigenvalues span its orthogonal
complement. In particular, the last (N − K) eigenvalues of A
determine the stability properties of the group consensus sub-
space.Moreover, we denote by�i the subspace of the eigenspace
of the eigenvalue λi of A that is orthogonal to Xor and by μi
the dimension of �i. Given a vector d, we denote by proj�i(d)
its projection on �i. Finally, we denote by �⊥ the subset of
the eigenvalues of A with non-negative real part that are also
eigenvalues of A⊥. Thanks to these preliminary considerations
and notation, we can now formulate our driver node selection
problem

Problem 4.1: Select a matrix D such that

D‖ = 0 (14a)

(A⊥,D⊥) is stabilisable (14b)

Algorithm 1 Driver Node Selection Algorithm
procedure Initialisation (i = 1,D is the empty matrix, j =
0)

while i ≤ |�⊥| do
�i = {Dj : proj�i(Di) �= 0 ∧ �Dk : proj�i(Dk) ‖

proj�i(Dj)}
hi = |�i|
while j ≤ μi − hi do

j = j + 1
Build an N-dimensional vector Dj by solving

proj�i(Dj) �= 0 (15)

proj�i(Dj) �= proj�i(Dm) ∀m < j (16)

∑
k∈Cl

Dj(k) = 0 ∀l (17)

D = [D Dj]
end while
i = i + 1

end while
end procedure

Algorithm 1 prescribes to initialise the matrixD as an empty
matrix. Then, for all the eigenvalues in the set �⊥, we find
the number hi of columns of the matrix D with non-zero and
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linearly independent projection on �i, that is, the subspace of
the eigenspace associated to λi that is orthogonal to the group
consensus subspace. Then, we add μi − hi column vectors to
the matrix D each having non-zero and linearly independent
projection on �i, thus ensuring, from Definition 4.1 that λi is
controllable. Thanks to the condition in Equation (29), these
μi − hi added columns will be orthogonal to the group consen-
sus subspace thus ensuring D‖ = 0. Doing so for all λi in �⊥
ensures the pair (A⊥,D⊥) is stabilisable thanks to Theorem 4.1.

Theorem 4.2: Algorithm 1 solves Problem 4.1.

Proof: To prove that any matrix selected by Algorithm 1 satis-
fies condition (14a) it suffices to note that from Equation (13)
and the structure of the matrix Tor in Equation (2) we have
that the ith element of the jth column of D‖ is obtained
as

∑
k∈Ci Dj(k). Then, Equation (14a) follows directly from

Equation (29). On the other hand, note that from Theorem 4.1
and Definition 4.1, to prove that any matrix selected according
to Algorithm 1 satisfies (14b) it suffices to show that for each
eigenvector, say v⊥

j of A⊥ associated to an eigenvalue that is
encompassed in the set �⊥ there exists a column D⊥

l of the
matrix D⊥ such that v⊥

j
TD⊥

l �= 0. In turn, as any μi vectors of
�i can be chosen as eigenvectors of A⊥, and as the columns
of D⊥ are the projection of the columns of D on the orthogo-
nal complement to the group consensus subspace, ensuring that
for any v⊥

j associated to an eigenvalue λi ∈ �⊥ there exists D⊥
l

such that v⊥
j
TD⊥

l �= 0 is equivalent to ensuring that there exist
μi columns of D that span �i. As this is ensured by the inner
while loop in Algorithm 1 thanks to Equations (27) and (28),
the thesis follows. �

Remark 4.3: Note that while indeed the symmetries of the pair
(A, [BD]), withD selected according to Algorithm 1, are not the
same of that of the pair (A,B), this has no effect on the dynamics
along the group consensus manifold as from Problem 4.1 and
Theorem 4.2 we know that D‖ = 0. Consistently, as the control
signal w is conceived to be a stabilising feedback action, it will
vanish asymptotically, and in the absence of perturbations the
network dynamics will revert to that in Equation (1).

Corollary 4.2: The number of independent input signals
required to solve Problem 4.1 is lower bounded by

max
i:λi∈�⊥

|�i|.

Proof: Let us start by noting that any vector in�i is an eigenvec-
tor ofA⊥ associated toλi. Hence, for the stabilisability condition
in Theorem 4.1 to be verified for the pair (A⊥,D⊥), we must
have that for all λi ∈ �⊥ there exist |�i| columns of D⊥, and
thus also ofD, with non-zero and non-parallel projection on�i.
Hence, the pair (A⊥,D⊥) can be stabilisable only if the number
of columns ofD is at least equal to maxi:λi∈�⊥ |�i|which proves
our statement. �

After giving a bound on the number of input signals required
to solve Problem 4.1, let us now give a bound on the number of
drivers, i.e. the number of rows of D encompassing at least a

non-zero entry, required to solve Problem 4.1. To do so, let us
define the operator

| · |∅ :=
{

| · | if | · | > 0
−1 otherwise

Corollary 4.3: The number of rows of the matrix D with at least
one non-zero entry required to solve Problem 4.1 is lower bounded
by

max
i:λi∈�⊥

|�i|∅ + 1.

Proof: From Corollary 4.2, we know that the number of
columns of D required to stabilise Xor is lower bounded
by maxi:λi∈�⊥ |�i|. As the projections of these columns on
�i∗ , with i∗ = argmaxi:λi∈�⊥|�i|, must be non-zero and non-
parallel, then the rank of the matrix D is lower bounded by
maxi:λi∈�⊥ |�i|. On the other hand, to ensure the condition
in (14a) is fulfilled, each column of D must be parallel to Xor
which is true iff the columns of D verify Equation (29), that
is, their elements sum to zero. Hence, for the matrix D to be
zero column sum and have at least rank maxi:λi∈�⊥ |�i| it must
have at least maxi:λi∈�⊥ |�i|∅ + 1 rows encompassing non-zero
entries thus proving our statement. �

Corollary 4.3 provides a bound on the number of driver
nodes required to solve Problem 4.1. We will now show how
to exploit the clusters induced by the network symmetries to
give a different bound from that provided in Corollary 4.3. To
do so, let us denote by �

j
i the subspace of �i that is spanned

by vectors el, l = 1, . . . , |�j
i| such that each element elm of el

is non-zero iff node m is encompassed in cluster Cj. Roughly
speaking,�j

i is the jth cluster specific subspace of�i. As in gen-
eral�i cannot be completely spanned by cluster specific vectors,
we have that �i = ∪K

j=1�
j
i + �̃i, where �̃i is thus the subspace

of �i that cannot be spanned by cluster specific vectors. Finally
let us relabel the network nodes so that node i belongs to Cj if
|Cj−1| < i ≤ |Cj|, with |C0| = 0 as C0 does not exist. Then, the
matrix D can be decomposed in blocks as follows

D =

⎡⎢⎢⎢⎣
D1

D2

...
DK

⎤⎥⎥⎥⎦ (18)

with each Dj having |Cj| rows.

Corollary 4.4: The number of rows of the matrix D encom-
passing non-zero entries required to solve Problem 4.1 is lower
bounded by

K∑
j=1

(
max

i:λi∈�⊥
|�j

i|∅ + 1
)
. (19)

Proof: From Theorem 4.1, Definition 4.1, and Equation (14a),
we know that to solve Problem 4.1 we need to ensure that
each λi ∈ �⊥ is made controllable by a matrix D such that
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∑
l∈Cj Dli = 0∀i. Moreover, from Corollary 4.2 and as �

j
i is

spanned by cluster specific vectors, it is possible to show that
to ensure an eigenvalue λi ∈ �⊥ is controllable we need that
at least |�j

i| columns of the matrix Dj have non-zero and non-
parallel projection on �

j
i. Hence, these columns must define a

matrix D that is both full rank and also zero column sum so
to ensure fulfillment of Equation (14a). This implies that sta-
bilising any λi ∈ �⊥ requires that at least |�j

i| + 1 rows of the
block Dj encompass a non-zero entry for all j such that �j

i �= ∅.
Hence, the total number of rows of the matrix D encompassing
a non-zero entry is lower bounded by the quantity in (19). �

Remark 4.4: The problem of identifying the cluster specific
vectors spanning the subspaces �

j
i for all i and j can be eas-

ily solved using the IRR transformation Tor. Indeed, one of
the properties of this transformation is to have cluster spe-
cific rows that can be linearly combined through the coeffi-
cients of the eigenvectors of the corresponding block of Ã to
generate eigenvectors of A. Therefore, each eigenvector of A
associated to an eigenvalue λi obtained through this proce-
dure either belongs to (i) �

j
i if the rows that are combined to

obtain them are all associated to the same cluster Cj, or (ii) �̃i
otherwise.

Remark 4.5: Corollaries 4.2, 4.3, and 4.4 give lower bounds on
the number of input signals and on the number of rows of the
matrix D encompassing non-zero entries so to achieve stabil-
isability of the dynamics transverse to Xor . Let us remark that
as each unstable eigenvalue requires an input signal to be sta-
bilised, then the number of columns of the matrix D is upper
bounded by |�⊥|. Moreover, in order to ensure D‖ = 0, then
the columns of D must sum to zero, the number of rows of the
matrix D encompassing non-zero entries is upper bounded by
2|�⊥|. Finally, as Algorithm 1 is constructive, in the sense that it
goes through the elements of the set �⊥ adding an input signal
whenever the current eigenvalue has not already been stabilised
by the existing columns of thematrixD, its computational com-
plexity grows linearly with the number of unstable eigenvalues
of the matrix A⊥.

5. Numerical examples

We consider the N = 8 node network in Figure 1. A study of
the symmetries of the pair (A,B) shows that there are K = 3
orbital clusters, C1 ∪ C2 ∪ C3 = V and C1 = {1, 2, 3, 4}, C2 =
{5, 6}, C3 = {7, 8}. The corresponding indicator matrix is

E�T =
⎡⎣1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤⎦ . (20)

We tackle the problem of steering the network state towards the
group consensus value [11×4 21×2 31×2]T in tf = 5 seconds. To
do so, according to the results in Section 4 we must first decou-
ple the dynamics along and transverse to the group consensus

subspace by leveraging the state transformation z = Torx with

Tor =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0.5 0.5
0 0 0 0
0 0 0 0
0.5 0.5 −0.5 −0.5
0 0 0 0√
2−1 −√

2−1 0 0
0 0

√
2−1 −√

2−1

0 0 0 0

0 0 0 0
0 0

√
2−1 √

2−1

√
2−1 √

2−1 0 0
0 0 0 0√
2−1 −√

2−1 0 0
0 0 0 0
0 0 0 0
0 0

√
2−1 −√

2−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (21)

obtaining

A‖ =
⎡⎣ 0 0

√
2

0 0 2√
2 2 0

⎤⎦ , B‖ =
⎡⎣ 0√

2
0

⎤⎦ ,

A⊥ =

⎡⎢⎢⎢⎢⎣
0 −√

2 0 0 0
−√

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

B⊥ =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦ . (22)

Consistently with Corollary 3.1, we obtain that B⊥ = 0. More-
over, the pair (A‖,B‖) defines the dynamics of the quotient
network, whose three node structure is portrayed in Figure 1. As
the readermay easily check, the pair (A‖,B‖) is controllable, and
thus to control the dynamics along Xor we pose the following
minimum energy control problem:

min
u

1
2

∫ 5

0
uT(t)u(t) dt

s.t.

ż‖ = A‖z‖ + B‖u

z‖(0) = T‖x0

z‖(5) = T‖[11×4 21×2 31×2]T = [2 3
√
2 2

√
2]T

(23)
where z‖ ∈ R3 is the state vector of the quotient network.

The solution of this optimal control problem is

u∗∗(t) = BT‖ e
AT

‖ (5−t)W−1(z‖(5) − e5A‖z(0))

= BT‖ (VT
‖ )−1e�‖(5−t)VT

‖ W
−1(z‖(5) − V−1

‖ e5�‖V‖z(0))
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≈ −0.00003e
√
6(5−t) + 2.54e−

√
6(5−t) + 0.732 (24)

where

W(t0, tf ) =
∫ tf

t0
eA‖(tf −t)B‖BT‖ e

AT
‖ (tf −t) dt (25)

is the reachability gramian of the quotient network. Note that
the optimal control input is a linear combination of the three
eigenmodes corresponding to the three clusters of the orbital
partition � of G(A,B). It’s worth underlining that, since the
consensus subspace is unstable, numerical computation of the
optimal control solution is hard due to the positive eigenvalue√
6. Notably, due to the low dimensionality of the quotient

network, the IRR allows us to solve (23) analytically.
Having dealt with controlling the dynamics along the group

consensus subspace, we can now turn to stabilising the dynam-
ics transverse to this subspace. To this aim, note that the spec-
trum of the matrix A⊥ in (22) is composed of the following set
of eigenvalues

{−√
2, 0,

√
2} (26)

with the geometric multiplicity of the null eigenvalue being
equal to 3, and the other two eigenvalues being simple. Hence,
in order to apply Algorithm 1, wemust first consider that�⊥ =
{ 0,

√
2}, with μ1 = 3, and μ2 = 1. Then, setting i = 1, and

as D is initialised as the empty matrix, then h1 = 0 as � is the
empty set and we can enter the inner while loop. The three vec-
tors spanning �1 are the last three rows of the matrix Tor that
brings the system in the IRR-coordinates, namely

⎡⎢⎣
√
2−1 −√

2−1 0 0 0 0 0 0
0 0

√
2−1 −√

2−1 0 0 0 0
0 0 0 0 0 0

√
2−1 −√

2−1

⎤⎥⎦
T

and a feasible solution that iteratively solves Equations (27)–(29)
is

D1 = [
1 0 0 − 1 0 0 0 0

]T ,
D2 = [

0 0 0 0 0 0 1 − 1
]T ,

D3 = [
0 0 − 1 1 0 0 0 0

]T .
(27)

Hence, we can turn to i = 2 noting that as the vector

[−0.35 − 0.35 0.35 0.35 − 0.50 0.50 0 0]T

is a basis for �2, then h2 = 1 as there already exists a column
of D, namely D1 in Equation (27) with non-zero projection on
�2. Hence, as μ2 = 1, and |�⊥| = 2, the driver node selection
procedure comes to an end. Note that this solution achieves
both the bound given in Corollary 4.2 as well as that given in
Corollary 4.4 and thus minimises both the number of input
signals and the number of driver nodes required to stabiliseXor.

Having performed the selection of the matrixD that ensures
stabilisability of the pair (A⊥,D⊥) we can now turn our atten-
tion to designing the stabilising signal w as

w = −Gz⊥

with the matrix G being such that the eigenvalues of the matrix
(A⊥ − D⊥G) are all smaller than or equal to −√

2, the only

negative eigenvalue of A⊥ which we do not move. Specifically,
we design G so that all the originally non-negative eigenval-
ues are placed in −2. This selection ensures that the slowest
time constant of the transverse dynamics is the one of the only
stable eigenvalue we did not touch (1/

√
2). Note that this place-

ment ensures the transverse dynamics become negligible well
before the time tf = 5 when the dynamics parallel to the group
consensus subspace will converge to the target state z‖(5). The
designed control inputs can be now used to steer the network
towards the group consensus state [11×4 21×2 31×2]. In Figure 2
we report the network state evolution (panel a) and the control
inputs (panel b). As expected, the optimal control input u∗∗ in
Equation (24), shown in black in Figure 2(b) is able to steer the
nodes in C1 to 1, the nodes in C2 to 2 and the nodes in C3 to 3 at
tf = 5. In the meantime, the stabilising control input w makes
the transverse clustered synchronous solution stable, ensuring
the network state converges on the cluster consensus subspace.
Note that as expected, this control action vanishes in time, as
shown in Figure 2(b).

Applying Algorithm 1 to the eight node network in Figure 1
yielded a selection of six driver nodes in order to stabilise Xor,
that is, 75% of the network nodes.We now consider a larger net-
work with N = 48 nodes, shown in Figure 3(a), obtained using
the algorithmproposed inKlickstein and Sorrentino (2018).We
assume that the same input signal u is injected in all the nodes
i such that 21 ≤ i ≤ 35. A study of the symmetries of the pair
(A,B) for this network shows that there are K = 3 orbital clus-
ters with C1 := {i : i ≤ 20}, C2 := {i : 21 ≤ i ≤ 36}, and C3 :=
{i : i ≥ 37} defining the quotient network in Figure 3(b). Apply-
ing the transformation in Equation (4) and computing the
eigenvalues of the matrix A⊥ in Equation (5), we find that
|�⊥| = 8 and that

∑
i:λi∈�⊥ μi = 19, that is, the number of

eigenvectors associated to the non-stable eigenvalues of A⊥ is
19.Hence, in order to ensure the network in Figure 3(a) achieves
group consensus we need to select an additional set of driver
nodes defining the matrix D in Equation (11). To do so, we
apply Algorithm 1 finding that eight input signals, i.e. a matrix
D with eight columns, are sufficient to stabilise the dynamics
transverse toXor. Notably, only 11 rows of the matrixD encom-
pass at least one non-zero entry, and thus only 11 driver nodes,
roughly 23% of the network nodes, are sufficient to stabiliseXor,
five of which were already nodes in which the input signal u is
injected. In the appendix we give all the details on the driver
node selection procedure for this example, showing that the
bound in Corollary 4.4 is achieved also for the 48 node network
considered here. Figure 3(c), shows the trajectory generated by
the joint action of an optimal controller u∗∗ which solves the
problem

min
u

1
2

∫ 5

0
uT(t)u(t) dt

s.t.

ż‖ = A‖z‖ + B‖u

z‖(0) = T‖x0

z‖(1) = T‖[11×20 21×16 31×12]T = [
√
20 8 3

√
12]T

(28)
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Figure 2. (a) State trajectories of the original network. Those of nodes in cluster C1 converge to 1, those of nodes in cluster C2 converge to 2, while those of nodesin
cluster C3 converge to 3. (b) Control inputs.

Figure 3. (a) The 48 node random network with 3 orbital cluster and (b) its three node quotient network. (c) Controlled state trajectories of the network nodes driven
towards the group consensus state through the joint action of the optimal control input u and of the stabilising actionw. (d) Time evolution of the control inputs.
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Figure 4. (a) Network topology. (b) free dynamics. (c) control input. (d) controlled dynamics.

and of a stabilising state feedback control action w designed on
the pair (A⊥,D⊥) which places all the formerly unstable eigen-
values of A⊥ in −10. As can be seen from the figure, group
consensus is achieved starting from an initial condition that lies
outside Xor. Figure 3(d) shows the control inputs u∗∗ and wi(t)
i = 1, . . . , 8.

In our third and last numerical example, we consider amath-
ematical paradigm used to model opinion dynamics in real-
world social systems in the presence of antagonistic interactions,
consensus on signed graphs. In this framework, the dynamics of
each node can be described by

ẋi = −σixi +
∑
j�=i

aij(xj − sign(aij)xi) +
M∑

m=1
bimum, (29)

where sign(·) = + if · ≥ 0 and sign(·) = − otherwise. Note that
the interpretation of Equation (29) is that any pair of connected
agents (i, j) interact cooperatively if aij > 0 and antagonisti-
cally otherwise. In the context of opinion dynamics, the (usually
constant) exogenous signal um can be interpreted as the cogni-
tive bias of each individual with respect to a given topic (Gray
et al., 2018) while each element bij of the matrix B determines
which network nodes share the same bias.

Being linear, the dynamics of the N network nodes in
Equation (29) can be rewritten as in Equation (1). Note that the
coefficients aij, j �= i in Equation (29) are the off-diagonal ele-
ments of the matrix A, while the weights of the self loops aii for
all i can be computed as

aii = −σi +
∑
i �=j

−sign(aij)aij.

In our example, we consider the four node graph endowed of
non-trivial symmetries described in Figure 4(a) and defined by
the pair of matrices

A =

⎡⎢⎢⎣
−1 −2 1 1
−2 −1 1 1
1 1 −2 −1
1 1 −1 −2

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
1 0
1 0
0 1
0 1

⎤⎥⎥⎦ . (30)

The pair (A,B) defines a partition � of the network nodes in
K = 2 clusters C1 = {1, 2} and C2 = {3, 4}. In the field of opin-
ion dynamics, it has been highlighted (Bizyaeva et al., 2020) how
symmetries in the network structure model the emergence of
clusters of agents sharing the same opinion.

In this simple example, the transformation allowing to
describe the network dynamics in the IRR coordinate systems
is

T =

⎡⎢⎢⎢⎣
√
2−1 √

2−1 0 0
0 0

√
2−1 √

2−1

√
2−1 −√

2−1 0 0
0 0

√
2−1 −√

2−1

⎤⎥⎥⎥⎦
yielding

A‖ =
[−3 2
3 −3

]
, A⊥ =

[
1 0
0 −1

]
.

The reader can easily note that while the dynamics along the
group consensus subspace is stable, we have that �⊥ = {1}.
This means that if no additional stabilising control action is
applied, then the unstable eigenvalue of the matrix A ensures
group consensus is not achieved, i.e. the antagonism between
members of the same cluster causes their opinions to diverge,
see panel b of Figure 4. Hence, we leverage Algorithm 1 to add
a stabilising control action allowing to achieve group consen-
sus. As �1 = [1;−1; 0; 0], adding a control action in node 1,
that is, selecting D = [1; 0; 0; 0] ensures the pair (A⊥,D⊥) is
stabilisable. Figure 4(c–d) shows the time evolution of the sta-
bilising signalw and the resulting convergence of the controlled
trajectories to the group consensus subspace.

6. Conclusions

Motivated by the observation that symmetries induce both loss
of controllability and the emergence of group consensus, in
this work we studied the controllability properties of networks
endowed of symmetries. We found that controllability is lost in
directions orthogonal to the group consensus subspace, but it is
still possible to control the consensus state either if the network
initial condition belongs to the group consensus subspace, or if
the subsystem of the dynamics orthogonal to this subspace is
asymptotically stable. Moreover, we showed that when the net-
work controllable subspace coincides with the group consensus
subspace, we can control consensus by designing control strate-
gies on a lower-dimensional network, the quotient network,
thus reducing the computational burden. We also considered
the issue of stabilisability of the network dynamics and provided
a simple algorithm to place additional control inputs that ensure
that the group consensus subspace is stabilisable. By using the
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IRR transformation of the network symmetry group, we pro-
vided bounds on theminimumnumber of additional inputs and
on the number of driver nodes that are needed to achieve sta-
bilisability. We demonstrated our theoretical analysis through
two representative numerical examples and then introduced a
third example to show how are results can be applied to the
field of opinion dynamics. We envision that our results could
be useful towards the design of symmetric network topologies
in engineering applications for which the emergence of group
consensus is desired.
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Appendix. Stabilising the cluster consesnsus on the example in Figure 3
The adjacency matrix of the proposed network is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1
1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

https://doi.org/10.1016/j.sysconle.2010.03.009
https://doi.org/10.1080/00207721.2010.496056
https://doi.org/10.1016/j.automatica.2012.05.043
https://doi.org/10.1038/ncomms3447
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0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1
0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0
0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1
0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1
0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

BT =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

]
.
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Using the algorithm in Pecora et al. (2014), we compute the transformation to the IRR coordinate system of this network, that is

100 Tor =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 25 25 25 25 25 25 25 25 25 25 25
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 −22 22 −22 22 −22 22 −22 22 −22 22 −22 22 −22 22 −22 22 −22 22 −22 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −25 25 −25 25 −25 25 −25 25 −25 25 −25 25 −25
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 −32 0 32 0 −32 0 32 0 −32 0 32 0 −32 0 32 0 −32 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 −35 0 35 0 −35 0 35 0 −35 0 35
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −32 0 32 0 −32 0 32 0 −32 0 32 0 −32 0 32 0 −32 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −35 0 35 0 −35 0 35 0 −35 0 35 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 −27−24 13 31 7 −27−24 13 31 7 −27−24 13 31 7 −27−24 13 31 0 0 0 0 0 0 0 0 0 0 0 0 0
31 16 −21−29 3 31 16 −21−29 3 31 16 −21−29 3 31 16 −21−29 3 0 0 0 0 0 0 0 0 0 0 0 0 0

−29 24 −17 8 2 −12 20 −27 31 −32 29 −24 17 −8 −2 12 −20 27 −31 32 0 0 0 0 0 0 0 0 0 0 0 0 0
−12 20 −27 31 −32 29 −24 17 −8 −2 12 −20 27 −31 32 −29 24 −17 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0
5 28 28 5 −23−31−14 15 31 22 −5 −28−28 −5 23 31 14 −15−31−22 0 0 0 0 0 0 0 0 0 0 0 0 0

−31−14 15 31 22 −5 −28−28 −5 23 31 14 −15−31−22 5 28 28 5 −23 0 0 0 0 0 0 0 0 0 0 0 0 0
−5 −28 22 14 −31 5 28 −22−14 31 −5 −28 22 14 −31 5 28 −22−14 31 0 0 0 0 0 0 0 0 0 0 0 0 0
31 −14−22 28 5 −31 14 22 −28 −5 31 −14−22 28 5 −31 14 22 −28 −5 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −19 30 −30 18 1 −19 30 −30 18 1 −19 30 −30 18 1 −19 30 −30 18 0 0 0 0 0 0 0 0 0 0 0 0 0

−32 25 −9 −10 26 −32 25 −9 −10 26 −32 25 −9 −10 26 −32 25 −9 −10 26 0 0 0 0 0 0 0 0 0 0 0 0 0
29 −27 3 24 −31 12 16 −31 21 7 −29 27 −3 −24 31 −12−16 31 −21 −7 0 0 0 0 0 0 0 0 0 0 0 0 0

−12−16 31 −21 −7 29 −27 3 24 −31 12 16 −31 21 7 −29 27 −3 −24 31 0 0 0 0 0 0 0 0 0 0 0 0 0
−28−31−22 −5 15 28 31 22 5 −15−28−31−22 −5 15 28 31 22 5 −15 0 0 0 0 0 0 0 0 0 0 0 0 0
−14 5 23 31 28 14 −5 −23−31−28−14 5 23 31 28 14 −5 −23−31−28 0 0 0 0 0 0 0 0 0 0 0 0 0
32 30 25 17 8 −2 −11−20−26−31−32−30−25−17 −8 2 11 20 26 31 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −11−20−26−31−32−30−25−17 −8 2 11 20 26 31 32 30 25 17 8 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −29 7 35 20 −20−35 −7 29 29 −7 −35−20 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −20−35 −7 29 29 −7 −35−20 20 35 7 −29−29
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 −29 19 −7 −7 20 −30 35 −35 29 −19 7 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −7 20 −30 35 −35 29 −19 7 7 −20 30 −35 35
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −9 −28 31 5 −34 22 18 −35 9 28 −31 −5 34
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 −22−18 35 −9 −28 31 5 −34 22 18 −35 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −22−10 3 17 27 34 35 31 22 10 −3 −17−27
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 34 35 31 22 10 −3 −17−27−34−35−31−22
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −30 11 −18 34 30 −11 18 −34−30 11 −18 34 30
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 −11−37 11 −30 11 37 −11 30 −11−37 11 −30
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −16 16 −28−35 16 −16 28 35 −16 16 −28−35 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 45 5 6 −21−45 −5 −6 21 45 5 6 −21
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 25 25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 29 29 29 29 29 29 29 29 29 29 29 29
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 −25 25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −29 29 −29 29 −29 29 −29 29 −29 29 −29 29
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −35 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −41 0 41 0 −41 0 41 0 −41 0 41 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−35 0 35 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 41 0 −41 0 41 0 −41 0 41 0 −41
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 7 −29 0 0 0 0 0 0 0 0 0 0 0 0
7 35 20 0 0 0 0 0 0 0 0 0 0 0 0

−20 30 −35 0 0 0 0 0 0 0 0 0 0 0 0
−29 19 −7 0 0 0 0 0 0 0 0 0 0 0 0
−22 −18 35 0 0 0 0 0 0 0 0 0 0 0 0
28 −31 −5 0 0 0 0 0 0 0 0 0 0 0 0

−34 −35 −31 0 0 0 0 0 0 0 0 0 0 0 0
−10 3 17 0 0 0 0 0 0 0 0 0 0 0 0
−11 18 −34 0 0 0 0 0 0 0 0 0 0 0 0
11 37 −11 0 0 0 0 0 0 0 0 0 0 0 0

−16 28 35 0 0 0 0 0 0 0 0 0 0 0 0
−45 −5 −6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 35 −35 0 35 −35 0 35 −35 0 35 −35 0
0 0 0 −20 −20 41 −20 −20 41 −20 −20 41 −20 −20 41
0 0 0 −35 20 0 −20 35 −41 35 −20 0 20 −35 41
0 0 0 −20 35 −41 35 −20 0 20 −35 41 −35 20 0
0 0 0 −38 −32 6 38 32 −6 −38 −32 6 38 32 −6
0 0 0 −15 26 40 15 −26 −40 −15 26 40 15 −26 −40
0 0 0 −35 −20 0 20 35 41 35 20 0 −20 −35 −41
0 0 0 20 35 41 35 20 0 −20 −35 −41 −35 −20 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that each row of the transformation is cluster specific, that is,
each row has non-zero entries in the elements corresponding to only
one of the clusters. Applying this transformation to our example, we
obtain

Ã =

⎡⎢⎢⎢⎢⎢⎣
A‖ 0 0 0 0
0 A1

⊥ 0 0 0
0 0 A2

⊥ 0 0
0 0 0 A3

⊥ 0
0 0 0 0 A4,...,39

⊥

⎤⎥⎥⎥⎥⎥⎦ ,

A‖ =
⎡⎣ 6 4

√
5

√
15

4
√
5 6

√
12√

15
√
12 9

⎤⎦ , A1
⊥ =

⎡⎣ −2 −9 −3.9
−9 −2 3.5

−3.9 3.5 1

⎤⎦ ,

A2
⊥ = A3

⊥ =
⎡⎣ −2 0 −3.9

0 −2 −3.5
−3.9 −3.5 −1

⎤⎦
A4,...,19

⊥ = diag(−2.6,−2.6,−1.5,−1.5,−1.3,−1.3,−0.6,

−0.6,−0.4,−0.4, 0.1, 0.1, 1.6, 1.6, 4.7, 4.7)

A20,...,31
⊥ = diag(−2.5,−2.5,−1.2,−1.2,−0.3,−0.3, 4, 4, 0, 0, 0, 0)

A32,...,39
⊥ = diag(0, 0,−2.7,−2.7,−2,−2, 0.7, 0.7)
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where we have highlighted the block structure of the matrix Ã. Note that
the first three rows of Tor span the cluster consensus subspace Xor . Then
we have three sets of three rows of the so called intertwined symmetry-
breaks (Pecora et al., 2014), that define three 3 × 3 blocks A1

⊥, . . . ,A
3
⊥ of

Ã each governing the dynamics along an A-invariant subspace. Any one of
these blocks is generated by three rows of the matrix Tor each specific of
a different cluster. The eigenvectors of the matrix A generating these three
dimensional invariant subspaces have therefore non-zero entries in all their
elements (since they involve all the three clusters/all the nodes of the net-
work). The remaining 36 rows of Tor define 36 monodimensional blocks of
Ã (A4

⊥, . . . ,A
39
⊥ ), and are therefore themselves eigenvectors of thematrixA.

The first 16 are specific of cluster C1, the next 12 are specific of cluster C2,
and finally the last 8 are specific of cluster C3.

The transverse non-stable eigenvalues that define �⊥ are the 16 non-
negative monodimensional block of Ã, together with three other positive
eigenvalues, one for each fo the 3x3 blocks of A⊥. As a result

where the brackets associate each λi ∈ �⊥ to the eigenvectors obtained
according to Remark 4.4 and spanning �i.

We are now ready to apply Algorithm 1 to find the driver nodes needed
to stabiliseXor .

• when i = 1 we consider the eigenspace of the eigenvalue 9.9. Its dimen-
sion is 1, so we need at least one control input and two driver nodes to
stabilise it. We select nodes 1 and 2 as drivers and thusD1,1 = 1, D1,2 =
−1, D1,j = 0, j = 3, . . . , 48.

• when i = 2 we consider the eigenspace of the eigenvalue 3.7. This
eigenspace is two-dimensional, so we need another control input and
another driver node to stabilise it. We then add a second (indepen-
dent) column to the matrix D with D2,1 = 1, D2,4 = −1, D2,j = 0, j =
2, 3, 5, . . . , 48. We then verify that D has now two columns with non-
zero and non-parallel projection on the eigenspace associated to the
eigenvalue 3.7 by computing the elements
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D2
1,1 = [1,−1, 0][0,−2, 2]T = 2, D2

1,2 = [1,−1, 0][2, 0, 0]T = 2,

D2
2,1 = [1, 0,−1][0,−2, 2]T = −2, D2

2,2 = [1, 0,−1][2, 0, 0]T = 2,

of the matrix D2 and then verifying that this matrix is full rank as
det(D2) = 8 �= 0.

• when i = 3 we consider the eigenspace associated to the eigenvalue
0.1. Its dimension is 2, and the vectors in D have a two dimensional
projection on it as the elements

D3
1,1 = [1,−1, 0][3, 2, 0]T = 1, D3

1,2 = [1,−1, 0][−1,−2,−3]T = 1,

D3
2,1 = [1, 0,−1][3, 2, 0]T = 3, D3

2,2 = [1, 0,−1][−1,−2,−3]T = 2,

define the matrixD3 that is is full rank as det(D3) = −1 �= 0.
• when i = 4 we consider the eigenspace associated to the eigenvalue

1.1. It’s dimension is 2, and the vectors in D have a two dimensional
projection on it as the elements

D4
1,1 = [1,−1, 0][−1, 1, 3]T =−2, D4

1,2= [1,−1, 0][3, 3, 0]T = 0,

D4
2,1 = [1, 0,−1][−1, 1, 3]T =−4, D4

2,2= [1, 0,−1][3, 3, 0]T = 3,

define the matrixD4 that is is full rank as det(D4) = −6 �= 0.
• when i = 5 we consider the eigenspace associated to the eigenvalue

4.7. It’s dimension is 2, and the vectors in D have a two dimensional
projection on it as the elements

D5
1,1 = [1,−1, 0][−1,−1,−2]T = 0, D5

1,2 = [1,−1, 0][3,−2, 3]T = 5,

D5
2,1 = [1, 0,−1][−1,−1,−2]T = 1, D5

2,2 = [1, 0,−1][3,−2, 3]T = 0,

define the matrixD5 that is is full rank being det(D5) = −5 �= 0.
• the eigenspaces �i when i ≥ 6 have 0 components on cluster C1. As

a consequence, we need to select additional drivers from the other
clusters in order to stabilise them. In particular, for i = 6 we con-
sider the eigenspace associated to the eigenvalue 4. It’s dimension
is 2, and so we need at least 3 driver nodes in the cluster C2 in
order to have a two dimensional projection on it. We then select
D3,21 = 1, D3,22 = −1, D3,j = 0 j = 1, . . . , 20, 23, . . . , 48 and D4,21 =
1, D4,23 = −1, D4,j = 0, j = 1, . . . , 20, 22, 24, . . . , 48. This achieves
our goal as the elements

D6
1,1 = [1,−1, 0][1, 3, 3]T = −2, D6

1,2 = [1,−1, 0][−3,−2,−1]T = 1,

D6
2,1 = [1, 0,−1][1, 3, 3]T = −2, D6

2,2 = [1, 0,−1][−3,−2,−1]T = 2,

define the matrixD6 that is is full rank being det(D6) = −2 �= 0.
• when i = 7 we consider the eigenspace associated to the eigenvalue

0. It’s dimension is 6, but we can treat separately the first 4 eigenvec-
tors, associated to cluster C2 and thus spanning �2

7, from the other 2

eigenvectors, associated to cluster C3 and thus spanning �2
7. As |�2

7| =
4, we need to select two additional driver nodes for the matrix D to
have four columns with non-zero and non-parallel projection on it. We
therefore select nodes 24 and 25 as drivers by adding to D the columns
D5,21 = 1, D5,24 = −1, D5,j = 0 j = 1, . . . , 20, 22, 23, 25, . . . , 48 and
D6,21 = 1, D6,25 = −1,D6,j = 0 j = 1, . . . , 20, 22, 23, 24, 26, . . . , 48. As
the matrix

D7 =

⎡⎢⎢⎣
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

−3 3 −2 2
1 −1 2 4

−2 −4 −3 1
3 1 −3 1
3 −3 2 −2

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎣
−4 4 −4 −2
−1 7 1 1
−6 2 1 1
−6 6 −4 4

⎤⎥⎥⎦
is full rank, then the matrixD has now four columns with non-zero and
non-parallel projection on |�2

7| = 4.
Then,we turn our attention to�3

7 noting that |�3
7| = 2.We therefore

need to select three additional drivers defined by D7,37 = 1, D3,38 =
−1, D7,j = 0, j = 1, . . . , 36, 29, . . . , 48 andD8,37 = 1, D8,39 = −1,D8,j =
0 j = 1, . . . , 36, 38, 40, . . . , 48. As the matrix

D′7 =
[
1 −1 0
1 0 −1

] [
4 −2

−4 −20 4

]
=

[
8 0
4 −6

]
is full rank being det(D′7) = −48 �= 0, then the matrix D has now two
columns with non-zero and non-parallel projection on �3

7.• Our procedure ends with iteration i = 8 in which we consider the
eigenspace associated to the eigenvalue 0.7. Note that the matrix D
already has two columns with non-zero and non-parallel projection on
it, namely D7 and D8 as the matrix

det(D8) = det

⎛⎝[
1 −1 0
1 0 −1

]⎡⎣−3 3
−1 4
1 4

⎤⎦⎞⎠
= det

([−2 −1
−4 −1

])
= −2 �= 0

is full rank. Note that our selection achieved bound on the number of driver
nodes given in Corollary 4.4, but not the minimum number of inputs (that
are 6, applying Corollary 4.2). This last achievement can easily be obtained
replacing D1 and D2 with D1 + D7 and D2 + D8, and then removing D7
and D8 from D.
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