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Modal Decomposition of the Linear Swing Equation
in Networks With Symmetries
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Abstract—Symmetries are widespread in physical, technological,
biological, and social systems and networks, including power grids.
The swing equation is a classic model for the dynamics of powergrid
networks. The main goal of this paper is to explain how network
symmetries affect the swing equation transient and steady state
dynamics. We introduce a modal decomposition that allows us to
study transient effects, such as the presence of overshoots in the
system response. This modal decomposition provides insight into
the peak flows within the network lines and allows a rigorous
characterization of the effects of symmetries in the network
topology on the dynamics. Our work applies to both cases of
homogeneous and heterogeneous parameters. Further, the model is
used to show how small perturbations propagate in networks with
symmetries. Finally, we present an application of our approach to a
large power grid network that displays symmetries.

Index Terms—Power grids, complex networks.

I. INTRODUCTION

ANY papers have investigated network models which

describe the dynamics of power grids [1], [10], [13],
[14], [16], [17], [20], [21], [26], [27], [33], [34], [38], [39],
[43], [49]. Simplified models for the propagation of cascading
failures on networks have been proposed in [13], [14], [27].
More realistic models for the propagation of cascading failures
are based on the swing equation [38] or DC power flows [9],
[34]. Symmetries play a significant role in the study of net-
worked systems. References [5], [8], [12], [15], [18], [30],
[32], [36], [44]-[46], [S1] have proposed tools based on graph
theory and group theory to analyze the dynamics of complex
networks with symmetries. The presence of symmetries in
power grid networks has been documented in [15], [46]. Ref-
erence [23] has analyzed how network symmetries may
affect synchronization modes of power grids and suggested
that symmetries may enhance the emergence of complete
synchronization.
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Despite this previous work, it appears that the effects of the
network symmetries on the dynamics of the swing equation
have not been fully elucidated. In what follows we first pro-
vide a definition for network symmetries in the context of the
swing equation, then we show how a reduced representation
of the dynamics based on the so-called ‘quotient network’ can
be achieved both in the cases of homogeneous and heteroge-
neous parameters. Only a subset of the modes of the original
network are inherited by the quotient network. Neglecting the
remaining modes leads to an approximation, which nonethe-
less can be quantified by considering an appropriately defined
error dynamics and applying a modal analysis to the error
dynamics.

An important application of the study of network dynamics
is network design. Knowledge of how the dynamics changes
in response to structural and dynamical perturbations is key
for designing resilient complex systems. A complex network
approach to study vulnerabilities of power grids has been pre-
sented in [2]. Further, several articles have studied the exis-
tence of vulnerabilities inherent to the power network
structure [3], [7], [11], [29], [35], [52], [53] and the impor-
tance of the transient dynamics in the propagation of failures
has been emphasized in [40].

Here we propose a mathematical analysis of the classic
swing equation based on a simplified description in terms of a
network of coupled forced second order systems. Our analysis
provides immediate understanding of the swing equation tran-
sient dynamics via a modal decomposition. Further, it allows
us to rigorously address the presence of network symmetries
and their effects on the dynamics.

The rest of this paper is organized as follows. Section II
introduces the swing equation for a generic network and
presents its modal decomposition. The effects of network
symmetries are discussed in Section III. In the presence of
symmetries, a lower dimensional dynamical representation
based on the so-called quotient network is possible, either
in the cases that the powers at the network nodes respect
the symmetries or not. In the latter case, the quotient
description only provides an approximation of the full tran-
sient response. The deviation between the full network
response and the quotient network response can be charac-
terized in terms of a properly defined error dynamics.
Effects of heterogeneity in the damping terms are presented
in Section IV. Finally, the conclusions are given in
Section V.
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II. THE SWING EQUATION AND ITS MODAL
DECOMPOSITION

The swing equation is a classic model for the dynamics of
power grid networks. A power grid can be represented using
an undirected graph such that each node can be either a gener-
ator (generating power) or a load (consuming power). Each
node is regarded as a rotating machine (oscillator) and the
presence of an edge between two nodes corresponds to the
presence of a transmission line connecting them. The network
connectivity is given by the symmetric matrix A :~{/~L;j},
Ajj = Aj > 0if nodes 4 and j are connected, A;; = Aj; =0
otherwise.

Definition 1: An undirected network is defined by the set of

nodes V = (1,2,...,n), [V| =n and the set of edges or lines
E=VxV, such that (i,j5)eé& i€V, jeV, |if
A,j = AJ, > 0.

The state of each oscillator ¢ = 1, ..., n is characterized by
its node displacement 6; and the nodal velocity w; = 9} rela-
tive to a reference frequency wp. H; is the inertia constant of
oscillator ¢, D; is its damping constant and b; is the power gen-
erated (consumed) by the node. If we assume that wp ~ w and
lossless transmission lines, we can write the swing equa-
tion [22], [31],

Z AZJ sin (¥; — v;),

@R j=1,j#i M

1=1,2,...n,

b; > 0 for generators and b; < 0 for loads. Dividing both

sides of 1 by , we get
Gy + D, = PRy, OR zn: Aysin (9, —9,), ()
""2H, ' 2H, ' 2H, Y B
J=Lj#i
1=1,2,...n.

If we deﬁne, % =Y Jq = ;)—I_?i, P = J7b7, A,j = (]j/Aq‘/j,
Eq. (2) becomes

191 = 7}/1’l9l +p7j —+ Z Aij sin (19J — ﬂl), (3)
j=Lj#

i=1,2,...n. The flow in an edge/line (7, j), with coupling
A;; at time ¢ is given by [40]:

Fb‘j(t) = AU sin (ﬂ/(t) — ﬁb(t)) (4)

Definition 2: We say that the network is balanced if
21 bi =0.

Unless differently noted, we proceed under the assumption
that the network is balanced.

In any large network, including power-grid systems, there
are redundancies in the form of symmetries [5], [12], [15],
[18], [30], [32], [36], [44], [51].

Definition 3: A symmetry for the set of Egs. (3) is a permu-
tation matrix P such that Py = yand PA = AP. The auto-
morphism group G is the set of all symmetries with the
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operation composition. The set of all symmetries in the group
will only permute certain subsets of nodes (the orbits or clus-
ters) among each other. The set of nodes V is partitioned into
q disjoint subsets of nodes {5, Ss,...S,}, UL, S;i =V, S;N
S; =0 fori # j, withn =n; >~ | n; where n; = |S;|.

The nodes in each subset are mapped into each other by
application of one or more symmetries in G; however, there is
no symmetry in G that will map into each other nodes in differ-
ent subsets. We refer to such subsets of nodes as ‘clusters’ or
‘orbits’ of the automorphism group. For a review of graph
automorphisms, see [46].

Remark 1: Consider a permutation P of the network nodes
that satisfies AP = PA. Say v, w € V two network nodes, call
v/ (w') € V the network node v (w) gets mapped to by applica-
tion of the permutation P. It follows that A,, = A, and
Awu - Aur’u’

Lemma 1: A flow-invariant ‘synchronous’ solution 9} (t) =
ﬁk(t) forall i € Sy, k=1,...,q, is induced by the automor-

phism group G. ' )
Proof: Assume 9;(0) = 9*(0) and 9;(0) = 9*(0) forall i €
S, k=1,...,q. It follows that 9;(0) = 9*(0) for all i € S},

k=1,...,q, from which the assertion follows. u

Stability of the nonlinear swing equation (3) has been stud-
ied in [50] by using a Lyapunov function approach. The condi-
tions of [50] can be directly applied to ensure convergence of
the flow invariant solution on a stable fixed point ¥} = ¥*, for
allie Sp,k=1,...,q

The linearized swing equation, which models the propaga-
tion of small disturbances (e.g., affecting the initial condition
or affecting the power supplied/demanded at different
nodes) [47], is obtained by linearizing Eqgs. (3) about the stable
fixed point 97,7 =1,...,n

0 = —vibi +pi+ > Lijfy, &)

=1
i=1,2,...n, where the Laplacian matrix L = {L;;} has
entries  Lj; = Ajjcos (U7 — UF) — 855>, Ayjcos (U5 — 7)),

and §;; is the Kronecker delta. Each term p; on the right hand
side of Eq. (5) effectively represents a small power deviation.
In the rest of this paper we will often approximate the nonlin-
ear swing equation (3) with the linearized swing equation (5),
under the assumption of small power deviations.

Definition 4: A symmetry for the set of Egs. (5) is a permu-
tation matrix P such that Py = y and PL = LP.

Lemma 2: The set of Eqs. (3) and the set of Egs. (5) have
the same set of symmetries.

Proof: We break the proof in two parts. We first show that
(i) PA= AP implies PA = AP, where the matrix A =
{A7 «»} has entries Ay = Ay oS (9% —¥;)). Then show that
(i) PA= AP implies PL = LP. Assume P is a symmetry
for the set of Egs. (3). From Remark 1, it follows that for all
v,w eV, Ay = Ay and Ay, = A,y Where v/ (w') is the
node v (w) is mapped to by P. We are now going to show that
also /AL,“,, = flv/u/ and AW = flw/v/. If v gets mapped into o'
they belong to the same cluster, and so also w and w’, hence
¥, = v, and ¥}, = ¥} ,. Hence, cos (9 — ;) = cos (9%, —0%,),
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which proves (i). To prove (ii) we just need to note that for
two nodes £ and [ to be in the same cluster it must be necessar-
ily verified that 3, Ay; = >, Aj; and so also that }; Ay; =
Zj Ay, see also [36], [46]. n

The linear approximation yields this expression for the flow
in aline (4, ) € &:

Fj = Ay(6;(t) — 6i(1)). (©)

In the rest of this paper, except for Section IV, we introduce
the following assumption of homogeneous damping terms:

Assumption 1: All the damping terms are the same y; = v,
1=1,...,n.

The regime in which all the y; = y is of interest because it
has been shown to lead to the best properties in terms of stabil-
ity of the synchronous solution [28]. So, unless specified oth-
erwise, in Secs. II and III, we set y; = y = 0.9. In Section IV
we will remove assumption 1 and generalize our results to the
case of arbitrary y’s. -

Lemma 3: 1If the original matrix A is symmetric, the spec-
trum of the matrix L is real.

Proof: We note that A;; = A;jcos (J; — 1}‘;‘) = Jif_lij,
where the matrix A = {A,;} with entries A;; = A;;cos (9] —
19]*_) is symmetric. By defining the symmetric matrix L =
{Ly-} with entries L;; = A;; — §;; Zj A;j, we can write L =
DL and the matrix D is a diagonal matrix with diagonal
entries D;; = J;. By construction, both the matrix L and the
matrix L have sums of their rows equal to zero. However, the
matrix L is generically asymmetric, while the matrix L is sym-
metric. We then write the eigenvalue equation Lv = DLv =
Av, where v is an eigenvector and A is an eigenvalue for L.
Then, we premultiply the above equation by D~'/2 and obtain:

DY2[v = AD /2y,

1/2

Now, by setting w = D~ "/“v we can write

D'?LD'?*w = \w,

where the matrix L' = DY2LD'/? is symmetric, and thus the
eigenvalues A are real.

To conclude, DL is a special case of a generically asym-
metric matrix with real spectrum. However, under generic
conditions, the real eigenvalues of L and L are not the same.

|

Since the sums of the entries along all the rows of the matrix
L (of the matrix E) are zero, it follows that this matrix has at
least one eigenvalue equal zero. The multiplicity of the zero
eigenvalue is equal to the number of connected components of
the network. We now distinguish the two cases that the net-
work is (i) connected and (ii) not connected. In case (i), the
Laplacian matrix has a single zero eigenvalue A\; = 0 with
associated eigenvector [1,1,...,1] and the remaining eigenval-
ues Ao > A3 > ...\, are all negative. In case (ii), assume
there are ¢ connected components. Then, after appropriate
labeling of the nodes, the Laplacian matrix can be written as
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) (N
L.

where L;, i =1,...,c is the Laplacian matrix associated to
connected component 7. It follows that the multiplicity of the
zero eigenvalue of the Laplacian matrix L is equal to ¢, A\ =
...= A, =0, and the corresponding eigenvectors are each
one associated with a connected component ¢ = 1, . . ., ¢; these
c eigenvectors are called the component vectors of the net-
work connected components. The remaining eigenvalues
Aet1 = Aeyo > ..\, are all negative.

Definition 5: Component vectors are vectors that have
entries j equal to 1 if node j is in connected component ¢ and
equal to O otherwise.

Lemma 4: Assume the network is connected. The left
eigenvector of the matrix L = DL associated with the zero
eigenvalue is equal to [D}!, D5y, ..., D, 1.

Proof: By assumption, the matrix L has only one zero
eigenvalue. Consider the eigenvalue equation z' DL = 0,
with left eigenvector z. The vector z” D is the left eigenvector
of the matrix L associated with the zero eigenvalue and there-
fore, it is equal to [1,1,...,1]. It follows that the entries of z are
the reciprocal of the entries on the main diagonal of the matrix
D. ]

We now consider the vector 8 = [01,0s, .. .0,] and the vec-
tor p = [py,ps, - - -, D), and rewrite Eq. (5),

0(t) = —y8(t) + LO(t) + p. ®)

We first assume the network is connected. We diagonalize
L, L=VAV~ where A = (A, \a,...,\,) is the matrix of
the eigenvalues of L and V' = {Vj;} is the matrix of the eigen-
vectors of L. We multiply Eq. (3) on the left by V! and by
calling n(t) = V~'6(t) and q = V~!p, we obtain,

i(t) = —ya(t) + An(t) +q, ©)
which can be broken up into n independent equations or
‘modes,’

i;(t) = —yn;(t) + Xim; (t) + g, (10)

i =1,...,n. Modal decompositions similar to Eq. (10) have
been also obtained in [4], [19], [24], [37], [47]. Tyloo et al.
[47] relax the constant inertia to damping ratio assumption
and show that their derivation is still valid with heterogeneous
dynamical parameters. In what follows we study the effects of
network symmetries on the modal decomposition. We also
show how the modes can be exploited in order to compute
maximum flows over lines and in designing line capacities.

Lemma 5: Assume a balanced power grid, i.e., >, b; = 0.
Then, ¢; = 0.

Proof: Consider p; = J;b; and ¢; = sz, where z is the left
eigenvector of L associated with ;.

From Lemma 4, we know that z
we get

1

T_[LL €L
- ‘]17']27...-177,

], so
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q1 = Z%pq

and it follows that

Hence, for 7 = 1, Eq. (10) becomes

i (t) + yi(t) =0, (11)

from which we can see that for a large ¢, n;(t) approaches a
constant, which depends on the initial conditions.

For¢ > 1, \; < 0 ensures convergence of the correspond-
ing n,;(t) in Eq. (10) for large ¢. Moreover, for i = 2,...,n
Eq. (10) can be written as,

7 (t) + 2¢;0:10;(t) + w;°n;(t) = q;, (12)

where —)\; = 0? and ¢; = y/(2w;), i = 2,...,m. Eq. (12) is
the equation of an underdamped (0 < ¢; < 1,1 =2,...,m)
or overdamped (¢; > 1, ¢ =m+1,...,n) second order sys-
tem forced by a step function of amplitude g;. Overdamped
systems ¢ > m do not give rise to overshoots. The solution to
(12) can be written as n;(t) = 7,(t) + #;(t), where 7,(t) is the
free evolution and #;(t) is the forced evolution. The free evo-
lution decays exponentially in time. Thus, for large ¢, we can
assume that n;(t) ~ 7,(¢).
For overdamped systems, the forced solution is equal to,

qi

—wjxat _ —wixit
w*

i §2_
1) = Xo-

where (51‘, -\ - 1) = X1s (é“i V&~

For underdamped systems, the forced solution is equal to,

13)

61{2(%;2 sin (wm/l —2t+ cos;;)].

(14)

ﬁi(t) - % [1

;

In realistic systems with constant damping and inertia, it has
been found that all modes are underdamped and propagate
through the whole system w1th <yl Vi>1 [47],
[48]. Thus, for the remainder of the paper we will only focus
on underdamped modes.

The underdamped system in (14) converges at steady
state to

s

.= 5 15
m= (15)

and is upper and lower bounded,
n (1) < m—(t) <0 (), (16)

where nE(t) = (02/1 — &) (/1 — &2 & |gile %),
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The peak time is equal to
t = w\/%iﬁ (17
and the peak value is given by
i = s [ eeoas\L-a] o ay

The larger g; is, the higher is the peak. The smaller ? = —)\;
is, the higher is the peak. Finally, the smaller is ¢;, the higher
is the peak. The eigenvalue )\, is associated with the smallest
wo and also the smallest ¢,, and so is generically responsible
for the largest peak.

As we know the 7,(t)’s, we can also compute the 6;(t)’s
using the formula 6(¢) = Vn(t), or equivalently,

t) = Z Vijn,(t)

It is important to note that the V;; can be either positive or neg-
ative, and so are the ¢;.

In general, the peak of 6;(¢) will be more strongly affected
by ny(t), followed by n5(¢), n4(t), etc., but it will also depend
on the terms V};q;. We can also compute the values of 0; at
steady state,

(19)

5SS 4qj
6; Z Vin® = Zj i (20)
From Egq. (6), the flows are equal to
F(t) = Y (Vi = Va)mi(t), 1)

k=2

where the summation starts from k = 2 since for a connected
network V;; = Vj; (the first column of the matrix V' is the
eigenvector associated with the eigenvalue 0.) Each of the
terms in the summation on the right hand side of Eq. (21) can
be either positive or negative. We rewrite the right hand side
of 2D as 3 (Vie — Vie)mi(t) + 22— (Vie — Vie)mi (),
where the first summation is only over positive terms and the
second summation is only over negative terms. The absolute
flow in a line is then upper bounded by

| F3(t |<Z Vire = Vi) (¢ +Z| e = Vi) ()]
(22)

A. Linear Combinations of Modes

Equation (19) (equation (21)) shows that the individual
nodal displacements 6;(t) (the flows Fj;(t)) can be written
as linear combinations of the modes 7,(t), ¢ = 1,..,n. This
has immediate practical implications. For example, because
each mode is both upper bounded and lower bounded,
upper bounds on the absolute flows can be computed, see
e.g., Eq. (22). However, an open question is how peaks
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Fig. 1. Bottleneck network with 7 nodes. Red circles represent motor nodes
while green squares represent generator nodes.

and peak times can be computed for linear combinations of
second order modes, such as those in Egs. (19) and (21).
The reason why this is challenging is that peak times for
different ns are different, thus a linear combination of the
peak n values will not return the peak flow. In this subsec-
tion we present a simple numerical technique to approxi-
mate the peak flows, based only on minimal knowledge
about the individual modes.

Our original assumption is that the flows Fj; are small,
which is the condition for approximating Eq. (3) with the lin-
ear swing equation (5). However, flows may increase as a
result of a variety of perturbations, including internal power
surges and outside attacks. It is also possible that the absolute
flow |F};| over a line may increase above the so-called line
capacity, causing failure of that line and possibly lead to other
line failures in a cascade. A similar event would lead to viola-
tion of the small flow assumption.

Reference [40] has pointed out the importance of the
transient dynamic as it is possible that an absolute flow
may exceed a line capacity transiently. Our analysis allows
us to study the transient response of the swing equation
dynamics under the assumption of small flows. Under this
condition, we can compute the peak flows over each line,
which can be used to design line capacities that are robust
against the effects of transient perturbations of small
entity.

Next we present a numerical technique to find the maxi-
mum absolute flow over a line. For large y, there are two
possible ways in which a flow in a line may evolve over
time; (1) The absolute flow reaches its maximum value at
the first peak time. (2) The absolute flow reaches its maxi-
mum value at steady state. Thus, to find the maximum flow
accurately, one needs to calculate both the first peak and
the steady state value and pick the one which is largest in
magnitude.

In order to compute the peak times, we note that from
Eq. (21) we have that

E/ = C?hQ + 03’73 +o Cniln (23)
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where for underdamped modes

. qdk —Crwpt o 9
N, =——F—=¢€ sinwg\/1 —¢.°t, k
Wi/ 1-— §k2 '

=m+1,...n (24)

Since ¢ywp =%, the exponents in Eq. (24) are the same for
k=m+1,...,n. Further, say ¢, = wp\/1 — ;2. A neces-
sary condition for the flow Fj; to achieve either a maximum or
a minimum is

"~ Cha

sin ¢;.t = 0. (25)

k=m+1 Sk

Since the values of ¢;, are different for different k, we are
unable to compute a closed form solution for (25). However, a
root-finding algorithm can be used to calculate the peak time
and the maximum absolute flow through the line. For example,
that can be done by computing an initial guess 7;; and by iter-
ating Newton’s method towards convergence on the peak
time.

For large enough y we expect the peak time to be the root of
(25) closest to the origin. Then a good choice of the initial
guess for the root-finding algorithm can be obtained by Taylor
expanding (25) up to third order about the origin and setting
the third order expansion equal to zero. This leads to the fol-
lowing initial guess,

ZZ:m-H quk‘ 5‘2

(26)

Tij =

To demonstrate this, we consider the ‘bottleneck network’
shown in Fig. 1 with y=1.5 and p =[0.3,—0.1,—0.1,
0.1,-0.1,-0.2, O.I]T. We use Eq. (26) to compute the initial
guesses which are then used to approximate the first peak
times and subsequently the first peak values that are shown in
Table I. Table I also shows that for this example our approach
based on the linearized swing equation (5) well approximates
the maximum flow obtained by integration of the full nonlin-
ear swing equation (3).

For non large ys however, a slightly more cumbersome
approach has to be taken to find the initial guess. Peak 71 values
are first multiplied with their respective flow coefficients and
then these values are cumulatively added in an ascending
order of peak time. The peak time corresponding to the largest
of these cumulatively added values can be used as the initial
guess for the flow. It is important to note that the closer the
peak times are, the more accurate this initial guess is and the
farther apart they are, the more iterations will be required to
converge to the actual solution.

We wish to emphasize that the approach described in this
section can be applied to any linear combination of second
order modes. For example,we can use this approach to approx-
imate peak flows in quotient networks, Eq. (27) and in error
networks, Eq. (33).
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TABLE 1
STEADY STATE, FIRST PEAK AND MAXIMUM FLOW THROUGH LINES FOR
FIG. 1. THE VALUES FOR THE SECOND COLUMN ARE COMPUTED USING
EQ. (20) AND THE VALUES FOR THE THIRD COLUMN ARE COMPUTED USING
EQ. (26), EQ. (14) AND EQ. (21). THE FOURTH AND FIFTH COLUMNS ARE CAL-
CULATED BY NUMERICALLY SOLVING THE LINEAR SWING EQUATION (5) AND
THE NON-LINEAR SWING EQUATION (3), RESPECTIVELY.

Linear Non-Linear

Line Steady | First Max Max

State Peak Flow Flow
6,—6, | -0.1750 | -0.1536 | -0.1750 | -0.1757
6;—6; | -0.1250 | -0.1466 | -0.1466 | -0.1468
6;—6, | 0.0500 | 0.0000 | 0.0500 | 0.0502
6,—6, | 0.0750 | 0.0527 | 0.0750 | 0.0751
6; — 6, | -0.2000 | 0.0000 | -0.2000 | -0.2014
6,—65 | 0.0250 | 0.0509 | 0.0509 | 0.0509
6 — 65 | -0.1000 | 0.0000 | -0.1000 | -0.1002
6, — 65 | 0.0000 | 0.0753 | 0.0753 | 0.0754
6; — 6 | 0.1000 | 0.1221 | 0.1221 | 0.1222

III. USE OF SYMMETRY IN THE TRANSIENT ANALYSIS OF THE
LINEAR SWING EQUATION

Knowledge of the symmetries may be used to reduce the
computational burden associated with the modal decomposi-
tion. In fact, we can apply the modal decomposition to a
reduced ‘quotient network’ where all the redundancies are
eliminated, thereby making the analysis easier and faster.

We introduce the n x ¢ indicator matrix F, where n is the
number of nodes and ¢ is the number of orbits or clusters.
Each entry E(i,j) = 1 if node 7 belongs to the cluster j and O
otherwise. Another way to write the indicator matrix is the fol-
lowing, £ = [ey, ey, .. ., ;] where each vector e; is an indica-
tor vector, that is entry j of vector e; is 1 if node j is in cluster
7 and is O otherwise.

Lemma 6: The set of states such that 6;(t) = 6,,(¢t) and
éz(t) = ém(t) foralll,m € S;,7=1,.. ., q, define an invariant
manifold [36].

The full network with Laplacian matrix L can be trans-
formed into its corresponding quotient network with Laplacian
matrix L by the transformation [41],

L=((E"E)'E"LE.

By pre-multiplying Eq. (8) by ((EZE) ' ET), we obtain,

6(t) = —y0(t) + LO(t) + P, 27
where the g¢-dimensional vectors 8(t) = ((ETE) 'ET)6(t)
and p = [p1, P2, - - ., By is equal to p = ((ETE) ' ET)p.

Definition 6: We say that the power vector p respects the
symmetries if for all the nodes ¢ in the same cluster S;, p; =
i)]‘,j: 1,...7q.

In what follows we first consider the case that the power
vector p respects the symmetries and then consider the more
general case that it does not.
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A. The case That the Power Vector p Respects the
Symmetries

When the power vector respects the symmetries, the forced
evolution for the full network and the quotient network will be
the same, as we explain in what follows.

Definition 7: A redundant eigenvector p of the Laplacian
matrix L has sum of entries corresponding to each cluster equal
to zero and a non redundant eigenvector v of the Laplacian
matrix have entries corresponding to each cluster that are all
the same [46]. All the redundant eigenvectors are orthogonal to
e;, i =1,..,q. Contrarily, the non-redundant eigenvectors are
not. That means e/ p = 0 and el v # 0, i = 1,..,q, where p is
any redundant vector, and v any non redundant vector.

From Definition 7 we see that the matrix L has ¢ non-redun-
dant eigenvectors v’s and (n — ¢) redundant eigenvectors
p’s [46].

Remark 2: From Definition 7 it follows that the modes (10)
can be either redundant or nonredundant. The numer of redun-
dant modes is equal to (n — ¢) and the numer of nonredundant
modes is equal to gq.

All of the eigenvalues of the matrix L are also eigenvalues
of the matrix L [46]. However, the matrix L has additional
eigenvalues that are not eigenvalues of L. When an eigenvalue
of L is also an eigenvalue of L, we say that it is ‘inherited’ by
the quotient network.

Lemma 7: Only the eigenvalues of L associated with non-
redundant eigenvectors are inherited by the quotient network.

Proof.

Consider the equation:

L=(E"E)'E"LE = (E"E) 'E"(VDV")E,  (28)
where V' is the matrix of the eigenvectors of L and D is the
matrix of eigenvalues of L.

The matrix V = [V,, V] where V, has all the redundant
eigenvectors and V, has all the non-reduntant eigenvectors.
Further, D can be written as D, ® D,, where D, is a diagonal
matrix with all the (n — ¢) redundant eigenvalues and D,, is a
diagonal matrix with all the ¢ nonredundant eigenvalues. Now
we see that ETV,, = 0 due to the orthogonality. Therefore,

L= (E"E)"'E"(V,D,VE = (E"E)""(HD,H"), (29)

where H = E"V, is a square ¢-dimensional matrix. u

From Eq. (29), we can see that only non-redundant eigen-
values and eigenvectors are inherited by the quotient network.
Moreover since the power vector p respects the symmetries,
the entries of the vector p; = p; for any node ¢ in cluster S;
(see Definition 6).

From ;p; = 0 it follows that ) 77" | = n;p; = 0, where n;
is the number of nodes in each cluster.

Remark 3: In the case that the network is connected, the
eigenvector of the Laplacian matrix [11...1], associated with
the zero eigenvalue, is non-redundant. So, the zero eigenvalue
is inherited by the quotient network. Further, it can also be
proved under generic conditions that in the case of a
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Fig. 2. 7-node network. Generator nodes are indicated with squares and
motor nodes with circles. All nodes corresponding to the same cluster or orbit
of the symmetry group are colored the same.

disconnected network, the quotient network inherits ¢ zero
eigenvalues from the full network, where c is the number of
components.

Theorem 1: Assume the network is connected. The entry of
the vector q corresponding to the zero eigenvalue is 0.

Proof: Consider the equation:

wip=0 (30)

Let v be a right eigenvector and w' be a left eigenvector of
L. We know the right eigenvector associated with the zero
eigenvalue is v = [11...1]. Which implies,

Lv=0
(ETE)'E"LEv =0

By left multiplying both sides of the above equation by
(ETE), we obtain,

ETLEv=0

Indicating that the matrix E” LE must have v = [11...1] as its
right eigenvector associated with the zero eigenvalue. A left
eigenvector w! associated with zero eigenvalue has to satisfy
the equation:

wl(ETE)'ETLE =0 (31)
This also means wT(ETE)_1 is a left eigenvector with associ-
ated eigenvalue 0 for (E” LE) which is a symmetric matrix.
Because E7LE is symmetric, its left eigenvectors and right
eigenvectors, corresponding to the same eigenvalues, are the
same.

Ergo,

wl(ETE) ! =vT (32)
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0.6

05F f\

0 10 20 30 40 50
Time

Fig. 3. Flows vs. time for network in Fig. 2. The network has a total of 6
lines. The forced evolution of the flows over each one of these lines is plotted.
However, due to the symmetries, triplets of flows are superimposed on top of
each other.

Recall that vT = [11....1]. Moreover, the matrix (ETE) is a
diagonal matrix that has the number of nodes in each cluster
n1,n9, etc on the main diagonal. It follows that wT =
[n1ns. . .]. Since the entries of the vector w! are the number of
nodes in each cluster, the product w'p is equal to the sum of
all the powers in the full network which is zero by the assump-
tion that the full network is balanced. u

In order to demonstrate this quotient transformation, we
will use the n = 7 node graph with 6 edges shown in Fig. 2,
for which

(-3 1 1 1 0 0 0]
1 -2 0 0 1 0 0
1 0o -2 0 0 1 0
L=1]1 0 0 -2 0 0 1
0 1 0 0 -1 0 0
0 0 1 0 0o -1 o0

| 0 0 0 1 0 0 -1

with  eigenvalues 0,—0.38,—0.38,—1.58,—2.61, —2.61,

—4.41. The power vector p and the transformed power vector
q are also shown,

[—0.3] 0.00
—0.3 0.00
—0.3 0.00
p=|-03|q=|—0.8895
0.4 0.00
0.4 0.00
| 04 | | 0.2208 |

As can be seen the power vector p respects the symmetries.
Fig. 3 shows the flows vs. time over all the network lines

(forced evolution). Due to the network symmetries, several

flows are superimposed on top of each other (and thus

indistinguishable).

For the network in Fig. 2, S) = {1}, S, = {2,3,4}, S35 =
{5, 6, 7}. This corresponds to the following indicator matrix:
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——e——0

Fig. 4. Quotient Network corresponding to the network in Fig. 2.

=

I
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O OO~ =O
== =0 O OO

The Laplacian matrix L for the quotient network is,

L=|1 -2 1

with eigenvalues 0, —1.58, —4.41. Moreover,

0.898  0.731 0.577

V.= |-0423 0.345 0577
0.124 —0.589 0.577
0.562  0.337 0.229

V= |-0.794 0.476 0.688
0.233  —0.813 0.688
-0.3 0.1873

p=|-03|q=|-06402
0.4 0

where Vr and Vl represent the matrix of right and the left
eigenvectors of L respectively. The vectors p and q are the
power vector and the transformed power vector of the quotient
network respectively.

As seen in the Fig. 4, the quotient network has three nodes
(each representing a cluster) and two lines. Unlike the full net-
work, this network is directed and weighted. Under the
assumption that the vector p respects the symmetries, a study
of the forced response of the quotient network provides com-
plete information about the forced response of the full net-
work. If we plot the flows of the quotient network, we still get
Fig. 3 but with only one curve representing all the nodes in a
cluster.

B. The case That the Power Vector p Does Not Respect the
Symmetries

When the power vector does not respect the symmetries, we
can still reduce the dynamics in the quotient network form
(27). In this case the power for each node of the quotient net-
work will be the average of the powers of the nodes in each
cluster and the forced evolution of the quotient network is the
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Fig. 5. a: 0 vs. time for the network in Fig. 2, b: 0 vs. time for quotient net-
work in Fig. 4. Color code consistent with color of nodes in Figs. 2 and 4.

average of the forced evolutions of the full network within
each cluster. As an example, consider the network in Fig. 2
studied previously but with power vector,

(0.3
~0.3
—0.4
~0.3

0.5
0.4
| 04 |

which does not respect the symmetries. The forced evolutions
for the full network and for the quotient network are given in
Figs. 5(a) and 5(b). The color code is consistent with the color
of nodes in Figs. 2 and 4. All the green (red) curves in Fig. 5
(a) average to the one green (red) curve in Fig. 5(b).

An important observation is that the quotient network
removes redundant modes but these modes might still produce
overshoots in the full network which will be ignored by the
quotient network.

Since the forced evolution obtained from the quotient net-
work is not the same as that of the full network, a relevant
problem is to characterize deviations between the time evolu-
tions of the nodes in the same cluster and the time evolution
of the associated quotient node.

Definition 8: Define the deviations as ¢;(t) = (0;(t) —
05 (t)), i = 1,2,...,n, where ix is the cluster node 7 belongs
to, Zz‘eSj ei(t) =0.

The dynamics of the deviations is provided by the redun-
dant modes only. Without loss of generality assume the redun-
dant modes (10) are labeled i = 1,.. ., (n — q). Then

n—q
ei(t) =Y Vin(t). (33)
j=1
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Fig. 6. Evolution of the displacement deviation of the quotient network node
with respect to the original nodal displacements. The blue curve is for node
178, the red curve is for nodes 181, 182, 183, 184, 185, 207.

The modal decomposition of the forced response Eq. (33) can
be used to compute the transient deviation overshoot dynam-
ics, peak times, upper bounds, etc. We can also approximate
the peaks using the numerical approach of Section IT A.
Lemma 8: In the case the power vector p respects the sym-
metries, the redundant modes (10) have ¢; = 0, hence their

forced response is zero.

Proof: This follows trivially from Definitions 6 and 7. H

C. Large Network Example

We now consider a large network, shown in Fig. 7, based
off the Chilean power-grid topology with n = 218 nodes, out
of which 94 are motors and 124 are generators. This is the
reduced version achieved by the Star-Mesh transformation [6]
of the original Chilean power-grid [25].

1) Powers that Respect the Symmetries: We first choose
the power vector such that it respects the symmetries; for sim-
plicity we set all generator nodes to have a power of 0.0081
and all motor nodes to have a power of —0.0106. For this net-
work, we have 29 non-trivial clusters; clusters with more than
one node, and 96 trivial clusters; clusters with only one node.
Using this information, we can transform the full network into
the quotient network shown in Fig. 8. After the transformation,
each cluster becomes a node in the quotient network with 157
nodes, out of which 74 are generator nodes and 83 are motor
nodes. As already discussed previously, if the vector p

respects the symmetries, the forced response of the quotient
network coincides the forced response of the full network (not
shown here for the sake of brevity.)

2) Powers that Do Not Respect the Symmetries: If the
power vector does not respect the symmetries, the quotient
network time evolution provides the average forced evolution
of the nodes in each cluster of the full network. The deviation
between the dynamics of the full network and the quotient net-
work can be characterized using Eq. (33). To demonstrate this

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 3, JULY-SEPTEMBER 2021

Fig. 7. Chilean power-grid Network. Squares indicate generator nodes and
circles indicate motor nodes. Black nodes are in trivial clusters whereas nodes
with the same color (different from black) are in non-trivial clusters.

we first choose a cluster where the nodes do not respect the
symmetries. The cluster is chosen containing 7 nodes: 178,
181, 182, 182, 183, 184, 185, 207, with associated powers
[0.0181, 0.0081, 0.0081, 0.0081, 0.0081, 0.0081, 0.0081].

Now, using analogous equations to Eq. (25) and (26), we
can obtain the maximum displacement deviation of each node
€;. Since we are finding the maximum of displacements rather
than flows, we replace the coefficients C; with V; and get,

n—q Vi
3 2 in it = 0. (34)
k=1 Sk

6> 1_1 Viar

Zz;i] Vk:qk: 5‘%

(35)

tij =

Using the technique mentioned in Section II A and Eq. (34)
and (35), we can easily calculate maximum displacement
deviation. The time evolution of this deviation for our selected

cluster is shown in Fig. 6.

IV. EFFECTS OF HETEROGENEITY IN THE y; TERMS

In this section we remove the assumption of homogeneous
damping terms y; = y. Note that the symmetries of the swing
equation are defined in the generic case of heterogeneous
(arbitrary) y’s, see Definition 4. Here we explain how our pre-
vious derivations need to be modified in the case of heteroge-
neous y’s.

Equation (8) is rewritten,

0(t) = —TO(t) + LO(t) + p, (36)
where the n-dimensional diagonal matrix I' = diag(y,,
Y3y -« ¥n)- Analogously, the quotient network Equation (27)
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Fig. 8. Quotient network for Chilean Power-grid topology. Squares indicate
generator nodes and circles indicate motor nodes. Black nodes are in trivial
clusters whereas nodes with the same color (different from black) are in non-
trivial clusters. Thickness of the arrows are indicative of the weight of the
edges.

becomes,

o(t) = —T0(t) + LO(t) + p, 37)

where the ¢-dimensional diagonal matrix I = diag(y,,
Y25+ -+ ¥,) and y; is the damping ratio of all the nodes in clus-
ter S;.

A separate consideration is needed for the study of the devi-
ations in the case that (i) the y’s are heterogeneous and (ii) the
power vector p does not respect the symmetries. To deal with
such a case, we introduce the irreducible representations of
the symmetry group G [36].

From knowledge of the group of symmetries G, we can
compute the irreducible representations (IRRs) of the symme-
try group of the network. This defines a transformation 7" into
the so-called IRR coordinate system (see Ref. [36]). The trans-
formation matrix 7' is orthogonal. Each one of the rows of the
matrix 7" is associated with a specific cluster. If a row of the
matrix 7" is associated with cluster k, it means all the ¢ entries
of that row are zero for i not in cluster Si.. The first ¢ rows of
the matrix 7" are parallel to the ¢ nonredundant eigenvectors v.

Therefore, the matrix 7" can be cast in the following block
diagonal form,

(38)

where each block 7}, is an n;-dimensional square matrix asso-
ciated with cluster k. Premultiplying Eq. (36) by T', we obtain,

£(t) = ~TE(t) + BE(t) +1,

where £ =70, r = T'p, the block -diagonal matrix B = TLTT
and the matrix I is unaltered by application of the matrix 7. The

(39)
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latter property follows from the block-diagonal structure of the
matrix 7" and the observation that I can be recast in a similar form

(40)

where I,,, is the nj-dimensional identity matrix.

The transformed n x n block diagonal matrix B = TAT” is
a direct sum EBf,]:lBu, where Eu is a (generally complex) p, X
p,, matrix with p,, the multiplicity of the uth IRR in the permu-
tation representation, U the number of IRRs present and d,, the
dimension of the uth IRR, so that Zu dypy = n. The matrix T’
contains information on which perturbations affecting differ-
ent clusters get mapped to different IRRs [42].

Due to the block-diagonal structure of the matrix B,
Eq. (39) can be decoupled into a number of lower dimensional
equations, where each equation corresponds to a block of the
matrix B.

There is one representation (labeled v = 1) which we call
trivial and has dimension d; = ¢. The associated block of the
matrix B corresponds to the dynamics of the quotient network.
Hence, the trivial representation is associated with all the clus-
ters. However, it is possible that other IRR representations are
only associated with some of the clusters (not all of them.)
Each one of these other representations v > 1 describes the
deviation dynamics of either an isolated cluster or a group of
intertwined clusters [36]. A simple interpretation of isolated
vs. intertwined clusters is the following. If a cluster is isolated
a perturbation affecting the power of any one of its nodes will
not affect the deviation dynamics of other clusters. On the
contrary, when a set of two or more clusters are intertwined, a
perturbation affecting the power of any of the nodes in a clus-
ter will affect the deviation dynamics of the remaining clusters
in the set.

Example A

For this example, we consider the dynamics of Eq. (5), with
adjacency matrix corresponding to the network in Fig. 2, the
power vector p = [—0.3, —0.3, —0.3,—0.4,0.4,0.4,0.5]" and
the matrix I' = diag(3,2,1,1,2,1,1). By the definition of
symmetries (Definition 3), nodes belonging to the same cluster
have the same y value. In this case, due to the presence of het-
erogeneity in y, there are two non-trivial clusters, each con-
taining 2 nodes: {3,4} and {6,7}. All other nodes are in
trivial clusters. Moreover, the power vector p does not respect
the symmetries.

We compute the TRRs of the symmetry group. The trans-
formation matrix 7" is equal to,

10 0 0 0 0 0 7
01 0 0 00 0
1 1

00 4% & 00 0
7—|l00 0 0 1.0 o0

11
000 0 0 g 5
00 5 500 0
000 0 0% —& |

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 20,2021 at 23:04:17 UTC from IEEE Xplore. Restrictions apply.



2492

TABLE II
STEADY STATE, FIRST PEAK AND MAXIMUM ERRORS FOR THE TWO NON-
TRIVIAL CLUSTERS. THE VALUES FOR THE SECOND COLUMN ARE OBTAINED
USING EQ. (20) AND THE VALUES FOR THE THIRD COLUMN ARE OBTAINED
USING EQ. (35), EQ. (42) AND EQ. (19). THE FOURTH AND FIFTH COLUMNS
ARE CALCULATED BY NUMERICALLY SOLVING THE LINEAR SWING EQUA-
TION (5) AND THE NON-LINEAR SWING EQUATION (3), RESPECTIVELY.
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TABLE III
STEADY STATE, FIRST PEAK AND MAXIMUM ERRORS FOR THE CLUSTER CON-
TAINING NODES {77, 79,81}. THE VALUES FOR THE SECOND COLUMN ARE
OBTAINED USING EQ. (20) AND THE VALUES FOR THE THIRD COLUMN ARE
OBTAINED USING EQ. (35), EQ. (42) AND EQ. (19). THE FOURTH AND FIFTH
COLUMNS ARE CALCULATED BY NUMERICALLY INTEGRATING THE LINEAR
AND NON LINEAR ODE RESPECTIVELY. 6, REFERS TO THE DISPLACEMENT OF
THE QUOTIENT NODE WHICH IS GIVEN BY 6, = ‘- t%1

With this information, we can calculate the block-diagonal
matrix B=TLTT, r = Tp,and 'y, = TI7TT,

(-3 1 v2 0 0 0 0 ]
1 -2 0 1 0 0 0
V2.0 -2 0 1 0 0
B=|0o 1 0 -1 0 0 0.
0o 0 1 0 -1 0 0
o 0 0 0 0 -2 1
L0 0 0 0 0 1 -1 ]

r=[-03 —03 —0495 04 0636 [1/10v2 —1/10v2] .

Fm’th =

OO OO OO W
OO O OO NO
OO OO OO
OO o N O OO
OO OO OO
O OO o OO
_ O O oo oo

The transverse (bottom right) block of the matrix B repre-
sents the deviation dynamics for the two non-trivial clusters,
which are intertwined. Note that the elements of r relative to
this block are given by rg = 24 and 7, = Z-10  We also
note that I',,4, for the transverse block is the same as I' as
explained in the theory. After diagonalizing the transverse
block, its dynamics decouples into two independent modes,

—0.3820 0

S 0.02298
i —2.6180}'( {

—0.09732] “h

Now, using the technique derived in Section II A, we can
use Eq. (41) to calculate the maximum deviations from the
quotient network. We can find the initial guess analogously to
Eq. (35).

The time 7 can then be used to find the time of maximum
error by solving the following equation for ¢ until convergence:

(42)

n
Vi
Z KTk sin st =0.

k=m+1 Sk

Linear Non-Linear
Deviation | Steady | First Max Max Linear Non-Linear
State Peak Error Error Deviation | Steady First Max Max
L 0 -0.0314 | -0.0314 | -0.0323 State Peak Error Error
e 6,,—6, | 0.00083 | 0.001181 | 0.01175 | 0.001182
7 0.0707 | 0.0707 | 0.0713 | 0.0792 69— 0, | -0.000416 | -0.000591 | -0.000588 | -0.000577
051 — 0, | -0.000416 | -0.000591 | -0.000588 | -0.000577 |

The obtained time ¢ can then be used to solve (19) which gives
us the deviations in each non-trivial cluster as seen in Table II.
Table II also shows that for this example our approach based
on the linearized swing equation (5) well approximates the
maximum error obtained by integration of the full nonlinear
swing equation (3).

Example B

For this example, we consider the Chilean power-grid
described in Section III C and pictured in Fig. 7. The power
vector is chosen so that it does not respect the symmetries.
The coefficients y, are chosen such that all nodes have y; = 1,
except for y,4 = 2. For this network we computed the IR
representations and the block-diagonal matrix B. This allowed
us to study the deviation from the quotient network dynamics
for each one of the 29 nontrivial clusters. We did not find any
intertwined clusters. Next, we focus on a cluster comprised of
the three nodes {77,79, 81}, represented as three cyan squares
on the right side of Fig. 7. The transverse block corresponding
to that cluster is reduced in a similar form to Eq. (41),

—-9.123 0

o ~0.00502
€= =1k 0.0000 —0.876}" {

0.00643 ] “3)

Similarly to Example A, Eq. (43) can be mapped to the
deviation of the individual nodal displacement from the quo-
tient displacement. This can be done by computing a linear
combination of the uncoupled modes (43) and applying the
technique developed in Section II A. Results of this computa-
tion are presented in Table III, which shows our ability to
accurately predict the maximum deviations for all three nodes
{77,79,81} in the cluster.

V. CONCLUSION

In this paper we have studied how the presence of network
symmetries affects the swing equation dynamics. We have
first introduced the nonlinear swing equation and then mod-
eled the propagation of small perturbations via the linearized
swing equation. We have then shown that the nonlinear and
the linear swing equation have the same symmetries. These
symmetries can be reduced to provide an essential description
of the dynamics in terms of a ‘quotient network’.
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We have introduced a decomposition of the linear swing equa-
tion dynamics into independent modes, each of which corre-
sponds to a forced second order system. This allowed us to
characterize several transient effects such as overshoots, peaks,
peak times, upper bounds etc. We have classified the symmetries
into two cases based on whether the power vector respects the
symmetries or not and presented techniques to obtain a full char-
acterization of the transient dynamics and/or error quantification.

In the case in which the power demanded and supplied by
different nodes respects the symmetries, the quotient network
completely describes the forced evolution of the full network,
otherwise it provides the forced evolution averaged over the
nodes in each cluster. We have also introduced the error
dynamics which describes how the quotient network time evo-
lutions deviate from the time evolutions of the individual
nodes inside the clusters. This error dynamics can be written
as a linear combination of the ‘redundant modes’.

Finally, we have presented how the symmetry analysis can
be applied to networks with heterogeneous y. In order to study
the deviation dynamics in the case that the y’s are arbitrary
and the power vector does not respect the symmetries, we
have introduced the irreducible representation of the symme-
try group. Furthermore, though not discussed in the paper, it is
possible to apply our techniques to the case of different types
of forcing terms, such as sinusoidal forcing; they can also be
generalized to other network models, such as the effective net-
work model (EN) or the structure preserving model (SP) [31].
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