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Abstract—Symmetries are widespread in physical, technological,
biological, and social systems and networks, including power grids.
The swing equation is a classic model for the dynamics of powergrid
networks. The main goal of this paper is to explain how network
symmetries affect the swing equation transient and steady state
dynamics. We introduce a modal decomposition that allows us to
study transient effects, such as the presence of overshoots in the
system response. This modal decomposition provides insight into
the peak flows within the network lines and allows a rigorous
characterization of the effects of symmetries in the network
topology on the dynamics. Our work applies to both cases of
homogeneous and heterogeneous parameters. Further, the model is
used to show how small perturbations propagate in networks with
symmetries. Finally, we present an application of our approach to a
large power grid network that displays symmetries.

Index Terms—Power grids, complex networks.

I. INTRODUCTION

MANY papers have investigated network models which

describe the dynamics of power grids [1], [10], [13],

[14], [16], [17], [20], [21], [26], [27], [33], [34], [38], [39],

[43], [49]. Simplified models for the propagation of cascading

failures on networks have been proposed in [13], [14], [27].

More realistic models for the propagation of cascading failures

are based on the swing equation [38] or DC power flows [9],

[34]. Symmetries play a significant role in the study of net-

worked systems. References [5], [8], [12], [15], [18], [30],

[32], [36], [44]–[46], [51] have proposed tools based on graph

theory and group theory to analyze the dynamics of complex

networks with symmetries. The presence of symmetries in

power grid networks has been documented in [15], [46]. Ref-

erence [23] has analyzed how network symmetries may

affect synchronization modes of power grids and suggested

that symmetries may enhance the emergence of complete

synchronization.

Despite this previous work, it appears that the effects of the

network symmetries on the dynamics of the swing equation

have not been fully elucidated. In what follows we first pro-

vide a definition for network symmetries in the context of the

swing equation, then we show how a reduced representation

of the dynamics based on the so-called ‘quotient network’ can

be achieved both in the cases of homogeneous and heteroge-

neous parameters. Only a subset of the modes of the original

network are inherited by the quotient network. Neglecting the

remaining modes leads to an approximation, which nonethe-

less can be quantified by considering an appropriately defined

error dynamics and applying a modal analysis to the error

dynamics.

An important application of the study of network dynamics

is network design. Knowledge of how the dynamics changes

in response to structural and dynamical perturbations is key

for designing resilient complex systems. A complex network

approach to study vulnerabilities of power grids has been pre-

sented in [2]. Further, several articles have studied the exis-

tence of vulnerabilities inherent to the power network

structure [3], [7], [11], [29], [35], [52], [53] and the impor-

tance of the transient dynamics in the propagation of failures

has been emphasized in [40].

Here we propose a mathematical analysis of the classic

swing equation based on a simplified description in terms of a

network of coupled forced second order systems. Our analysis

provides immediate understanding of the swing equation tran-

sient dynamics via a modal decomposition. Further, it allows

us to rigorously address the presence of network symmetries

and their effects on the dynamics.

The rest of this paper is organized as follows. Section II

introduces the swing equation for a generic network and

presents its modal decomposition. The effects of network

symmetries are discussed in Section III. In the presence of

symmetries, a lower dimensional dynamical representation

based on the so-called quotient network is possible, either

in the cases that the powers at the network nodes respect

the symmetries or not. In the latter case, the quotient

description only provides an approximation of the full tran-

sient response. The deviation between the full network

response and the quotient network response can be charac-

terized in terms of a properly defined error dynamics.

Effects of heterogeneity in the damping terms are presented

in Section IV. Finally, the conclusions are given in

Section V.
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II. THE SWING EQUATION AND ITS MODAL

DECOMPOSITION

The swing equation is a classic model for the dynamics of

power grid networks. A power grid can be represented using

an undirected graph such that each node can be either a gener-

ator (generating power) or a load (consuming power). Each

node is regarded as a rotating machine (oscillator) and the

presence of an edge between two nodes corresponds to the

presence of a transmission line connecting them. The network

connectivity is given by the symmetric matrix ~A ¼ f ~Aijg,
~Aij ¼ ~Aji > 0 if nodes i and j are connected, ~Aij ¼ ~Aji ¼ 0
otherwise.

Definition 1: An undirected network is defined by the set of

nodes V ¼ ð1; 2; . . .; nÞ, jVj ¼ n and the set of edges or lines

E ¼ V � V; such that ði; jÞ 2 E, i 2 V, j 2 V, if
~Aij ¼ ~Aji > 0.
The state of each oscillator i ¼ 1; . . .; n is characterized by

its node displacement ui and the nodal velocity vi ¼ _ui rela-
tive to a reference frequency vR. Hi is the inertia constant of

oscillator i,Di is its damping constant and bi is the power gen-
erated (consumed) by the node. If we assume that vR � v and

lossless transmission lines, we can write the swing equa-

tion [22], [31],

2Hi

vR

€#i þ Di

vR

_#i ¼ bi �
Xn

j¼1;j 6¼i

~Aij sin ð#i � #jÞ;

i ¼ 1; 2; . . .n;

(1)

bi > 0 for generators and bi < 0 for loads. Dividing both

sides of 1 by
2Hi
vR

, we get

€#i þ Di

2Hi

_#i ¼ vR

2Hi
bi � vR

2Hi

Xn
j¼1;j6¼i

~Aij sin ð#i � #jÞ; (2)

i ¼ 1; 2; . . .n:
If we define, Di

2Hi
¼ gi, Ji ¼ vR

2Hi
, pi ¼ Jibi, Aij ¼ Ji ~Aij,

Eq. (2) becomes

€#i ¼ �gi
_#i þ pi þ

Xn
j¼1;j6¼i

Aij sin ð#j � #iÞ; (3)

i ¼ 1; 2; . . .n. The flow in an edge/line ði; jÞ, with coupling

Aij at time t is given by [40]:

FijðtÞ ¼ Aij sin ð#jðtÞ � #iðtÞÞ: (4)

Definition 2: We say that the network is balanced ifPn
i¼1 bi ¼ 0.
Unless differently noted, we proceed under the assumption

that the network is balanced.

In any large network, including power-grid systems, there

are redundancies in the form of symmetries [5], [12], [15],

[18], [30], [32], [36], [44], [51].

Definition 3: A symmetry for the set of Eqs. (3) is a permu-

tation matrix P such that Pg ¼ gand PA ¼ AP . The auto-

morphism group G is the set of all symmetries with the

operation composition. The set of all symmetries in the group

will only permute certain subsets of nodes (the orbits or clus-

ters) among each other. The set of nodes V is partitioned into

q disjoint subsets of nodes fS1; S2; . . .Sqg, [q
i¼1Si ¼ V, Si \

Sj ¼ ; for i 6¼ j, with n ¼ ni

Pq
i¼1 ni where ni ¼ jSij.

The nodes in each subset are mapped into each other by

application of one or more symmetries in G; however, there is
no symmetry in G that will map into each other nodes in differ-

ent subsets. We refer to such subsets of nodes as ‘clusters’ or

‘orbits’ of the automorphism group. For a review of graph

automorphisms, see [46].

Remark 1: Consider a permutation P of the network nodes

that satisfies AP ¼ PA. Say v; w 2 V two network nodes, call

v0 ðw0Þ 2 V the network node v ðwÞ gets mapped to by applica-

tion of the permutation P . It follows that Avw ¼ Av0w0 and

Awv ¼ Aw0v0 .
Lemma 1: A flow-invariant ‘synchronous’ solution #�

i ðtÞ ¼
#kðtÞ for all i 2 Sk, k ¼ 1; . . .; q, is induced by the automor-

phism group G.
Proof: Assume #ið0Þ ¼ #kð0Þ and _#ið0Þ ¼ _#kð0Þ for all i 2

Sk, k ¼ 1; . . .; q. It follows that €#ið0Þ ¼ €#kð0Þ for all i 2 Sk,

k ¼ 1; . . .; q, from which the assertion follows. &

Stability of the nonlinear swing equation (3) has been stud-

ied in [50] by using a Lyapunov function approach. The condi-

tions of [50] can be directly applied to ensure convergence of

the flow invariant solution on a stable fixed point #�
i ¼ #k, for

all i 2 Sk, k ¼ 1; . . .; q.
The linearized swing equation, which models the propaga-

tion of small disturbances (e.g., affecting the initial condition

or affecting the power supplied/demanded at different

nodes) [47], is obtained by linearizing Eqs. (3) about the stable

fixed point #�
i , i ¼ 1; . . .; n,

€ui ¼ �gi
_ui þ pi þ

Xn
j¼1

Lijuj; (5)

i ¼ 1; 2; . . .n, where the Laplacian matrix L ¼ fLijg has

entries Lij ¼ Aij cos ð#�
j � #�

i Þ � dij
P

j Aij cos ð#�
j � #�

i Þ,
and dij is the Kronecker delta. Each term pi on the right hand

side of Eq. (5) effectively represents a small power deviation.

In the rest of this paper we will often approximate the nonlin-

ear swing equation (3) with the linearized swing equation (5),

under the assumption of small power deviations.

Definition 4: A symmetry for the set of Eqs. (5) is a permu-

tation matrix P such that Pg ¼ g and PL ¼ LP .

Lemma 2: The set of Eqs. (3) and the set of Eqs. (5) have

the same set of symmetries.

Proof: We break the proof in two parts. We first show that

(i) PA ¼ AP implies PÂ ¼ ÂP , where the matrix Â ¼
fÂvwg has entries Âvw ¼ Avw cos ð#�

v � #�
wÞ. Then show that

(ii) PÂ ¼ ÂP implies PL ¼ LP . Assume P is a symmetry

for the set of Eqs. (3). From Remark 1, it follows that for all

v; w 2 V, Avw ¼ Av0w0 and Awv ¼ Aw0v0 where v0 (w0) is the

node v (w) is mapped to by P . We are now going to show that

also Âvw ¼ Âv0w0 and Âwv ¼ Âw0v0 . If v gets mapped into v0

they belong to the same cluster, and so also w and w0, hence
#�
v ¼ #�

v0 and #�
w ¼ #�

w0 . Hence, cos ð#�
v � #�

wÞ ¼ cos ð#�
v0 � #�

w0 Þ,
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which proves (i). To prove (ii) we just need to note that for

two nodes k and l to be in the same cluster it must be necessar-

ily verified that
P

j Akj ¼
P

j Alj and so also that
P

j Âkj ¼P
j Âlj, see also [36], [46]. &

The linear approximation yields this expression for the flow

in a line ði; jÞ 2 E:

Fij ¼ AijðujðtÞ � uiðtÞÞ: (6)

In the rest of this paper, except for Section IV, we introduce

the following assumption of homogeneous damping terms:

Assumption 1: All the damping terms are the same gi ¼ g,

i ¼ 1; . . .; n:
The regime in which all the gi ¼ g is of interest because it

has been shown to lead to the best properties in terms of stabil-

ity of the synchronous solution [28]. So, unless specified oth-

erwise, in Secs. II and III, we set gi ¼ g ¼ 0:9. In Section IV

we will remove assumption 1 and generalize our results to the

case of arbitrary g’s.

Lemma 3: If the original matrix ~A is symmetric, the spec-

trum of the matrix L is real.

Proof: We note that Âij ¼ Aij cos ð#�
i � #�

jÞ ¼ Ji �Aij,

where the matrix �A ¼ f �Aijg with entries �Aij ¼ ~Aij cos ð#�
i �

#�
jÞ is symmetric. By defining the symmetric matrix �L ¼

f �Lijg with entries �Lij ¼ �Aij � dij
P

j
�Aij, we can write L ¼

D �L and the matrix D is a diagonal matrix with diagonal

entries Dii ¼ Ji. By construction, both the matrix L and the

matrix �L have sums of their rows equal to zero. However, the

matrix L is generically asymmetric, while the matrix �L is sym-

metric. We then write the eigenvalue equation Lv ¼ D �Lv ¼
�v, where v is an eigenvector and � is an eigenvalue for L.
Then, we premultiply the above equation byD�1=2 and obtain:

D1=2 �Lv ¼ �D�1=2v:

Now, by settingw ¼ D�1=2v we can write

D1=2 �LD1=2w ¼ �w;

where the matrix L0 ¼ D1=2 �LD1=2 is symmetric, and thus the

eigenvalues � are real.

To conclude, D �L is a special case of a generically asym-

metric matrix with real spectrum. However, under generic

conditions, the real eigenvalues of L and �L are not the same.
&

Since the sums of the entries along all the rows of the matrix

L (of the matrix ~L) are zero, it follows that this matrix has at

least one eigenvalue equal zero. The multiplicity of the zero

eigenvalue is equal to the number of connected components of

the network. We now distinguish the two cases that the net-

work is (i) connected and (ii) not connected. In case (i), the

Laplacian matrix has a single zero eigenvalue �1 ¼ 0 with

associated eigenvector [1,1,...,1] and the remaining eigenval-

ues �2 � �3 � . . .:�n are all negative. In case (ii), assume

there are c connected components. Then, after appropriate

labeling of the nodes, the Laplacian matrix can be written as

L ¼
L1

. .
.

Lc

2
64

3
75; (7)

where Li, i ¼ 1; . . .; c is the Laplacian matrix associated to

connected component i. It follows that the multiplicity of the

zero eigenvalue of the Laplacian matrix L is equal to c, �1 ¼
. . . ¼ �c ¼ 0, and the corresponding eigenvectors are each

one associated with a connected component i ¼ 1; . . .; c; these
c eigenvectors are called the component vectors of the net-

work connected components. The remaining eigenvalues

�cþ1 � �cþ2 � . . .:�n are all negative.

Definition 5: Component vectors are vectors that have

entries j equal to 1 if node j is in connected component i and
equal to 0 otherwise.

Lemma 4: Assume the network is connected. The left

eigenvector of the matrix L ¼ D ~L associated with the zero

eigenvalue is equal to ½D�1
11 ; D

�1
22 ; . . .; D

�1
nn �.

Proof: By assumption, the matrix L has only one zero

eigenvalue. Consider the eigenvalue equation zTD ~L ¼ 0,
with left eigenvector z. The vector zTD is the left eigenvector

of the matrix ~L associated with the zero eigenvalue and there-

fore, it is equal to [1,1,...,1]. It follows that the entries of z are

the reciprocal of the entries on the main diagonal of the matrix

D. &

We now consider the vector uu ¼ ½u1; u2; . . .un� and the vec-

tor p ¼ ½p1; p2; . . .; pn�, and rewrite Eq. (5),
€uuðtÞ ¼ �g _uuðtÞ þ LuuðtÞ þ p: (8)

We first assume the network is connected. We diagonalize

L, L ¼ VLV �1, where L ¼ ð�1; �2; . . .; �nÞ is the matrix of

the eigenvalues of L and V ¼ fVijg is the matrix of the eigen-

vectors of L. We multiply Eq. (3) on the left by V �1 and by

calling hhðtÞ ¼ V �1uuðtÞ and q ¼ V �1p, we obtain,

€hhðtÞ ¼ �g _hhðtÞ þ LhhðtÞ þ q; (9)

which can be broken up into n independent equations or

‘modes,’

€hiðtÞ ¼ �g _hiðtÞ þ �ihiðtÞ þ qi; (10)

i ¼ 1; . . .; n. Modal decompositions similar to Eq. (10) have

been also obtained in [4], [19], [24], [37], [47]. Tyloo et al.

[47] relax the constant inertia to damping ratio assumption

and show that their derivation is still valid with heterogeneous

dynamical parameters. In what follows we study the effects of

network symmetries on the modal decomposition. We also

show how the modes can be exploited in order to compute

maximum flows over lines and in designing line capacities.

Lemma 5: Assume a balanced power grid, i.e.,
P

i bi ¼ 0.
Then, q1 ¼ 0.
Proof: Consider pi ¼ Jibi and q1 ¼ zTp, where z is the left

eigenvector of L associated with �1.

From Lemma 4, we know that zT ¼ ½ 1J1 ;
1
J2
; . . . 1

Jn
�, so

we get

2484 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 20,2021 at 23:04:17 UTC from IEEE Xplore.  Restrictions apply. 



q1 ¼
X
i

1

Ji
pi

and it follows that

q1 ¼
X
i

1

Ji
Jibi ¼

X
i

bi ¼ 0:

&

Hence, for i ¼ 1, Eq. (10) becomes

€h1ðtÞ þ g _h1ðtÞ ¼ 0; (11)

from which we can see that for a large t, h1ðtÞ approaches a
constant, which depends on the initial conditions.

For i > 1, �i < 0 ensures convergence of the correspond-

ing hiðtÞ in Eq. (10) for large t. Moreover, for i ¼ 2; . . .; n,
Eq. (10) can be written as,

€hiðtÞ þ 2zivi _hiðtÞ þ vi
2hiðtÞ ¼ qi; (12)

where ��i ¼ v2
i and zi ¼ g=ð2viÞ, i ¼ 2; . . .;m. Eq. (12) is

the equation of an underdamped (0 < zi < 1, i ¼ 2; . . .;m)

or overdamped (zi > 1, i ¼ mþ 1; . . .; n) second order sys-

tem forced by a step function of amplitude qi. Overdamped

systems i > m do not give rise to overshoots. The solution to

(12) can be written as hiðtÞ ¼ �hiðtÞ þ ĥiðtÞ, where �hiðtÞ is the
free evolution and ĥiðtÞ is the forced evolution. The free evo-

lution decays exponentially in time. Thus, for large t, we can

assume that hiðtÞ ’ ĥiðtÞ.
For overdamped systems, the forced solution is equal to,

hiðtÞ ¼
qi
v2
i

1þ x1e
�vix2t � x2e

�vix1t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i � 1

p
" #

(13)

where
�
zi �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i � 1

p �
¼ x1;

�
zi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i � 1

p �
¼ x2.

For underdamped systems, the forced solution is equal to,

hiðtÞ ¼
qi
v2
i

1� e�zivitffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

p sin
�
vi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
tþ cos zi

�" #
:

(14)

In realistic systems with constant damping and inertia, it has

been found that all modes are underdamped and propagate

through the whole system with D
�i

< g�1; 8i > 1 [47],

[48]. Thus, for the remainder of the paper, we will only focus

on underdamped modes.

The underdamped system in (14) converges at steady

state to

hssi ¼ qi
v2
i

; (15)

and is upper and lower bounded,

h�i ðtÞ � hiðtÞ � hþi ðtÞ; (16)

where h	i ðtÞ ¼ ðv2
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

p
Þ�1ðqi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

p
	 jqije�zivitÞ.

The peak time is equal to

ti ¼ p

vi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

p ; (17)

and the peak value is given by

hpeaki ¼ qi
v2
i

h
1þ expð�pzi=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
Þ
i
: (18)

The larger qi is, the higher is the peak. The smaller v2
i ¼ ��i

is, the higher is the peak. Finally, the smaller is zi, the higher
is the peak. The eigenvalue �2 is associated with the smallest

v2 and also the smallest z2, and so is generically responsible

for the largest peak.

As we know the hiðtÞ’s, we can also compute the uiðtÞ’s
using the formula uuðtÞ ¼ V hhðtÞ, or equivalently,

uiðtÞ ¼
X
j

VijhjðtÞ; (19)

It is important to note that the Vij can be either positive or neg-

ative, and so are the qi.
In general, the peak of uiðtÞ will be more strongly affected

by h2ðtÞ, followed by h3ðtÞ, h4ðtÞ, etc., but it will also depend

on the terms Vijqj. We can also compute the values of ui at

steady state,

ussi ¼
X
j

Vijh
ss
j ¼

X
j

Vij
qj
v2
j

: (20)

From Eq. (6), the flows are equal to

FijðtÞ ¼
Xn
k¼2

ðVjk � VikÞhkðtÞ; (21)

where the summation starts from k ¼ 2 since for a connected

network Vi1 ¼ Vj1 (the first column of the matrix V is the

eigenvector associated with the eigenvalue 0.) Each of the

terms in the summation on the right hand side of Eq. (21) can

be either positive or negative. We rewrite the right hand side

of (21) as
P

kþðVjk � VikÞhkðtÞ þ
P

k�ðVjk � VikÞhkðtÞ,
where the first summation is only over positive terms and the

second summation is only over negative terms. The absolute

flow in a line is then upper bounded by

jFijðtÞj �
X
kþ

ðVjk � VikÞhþk ðtÞ þ
X
k�

jðVjk � VikÞh�k ðtÞj:

(22)

A. Linear Combinations of Modes

Equation (19) (equation (21)) shows that the individual

nodal displacements uiðtÞ (the flows FijðtÞ) can be written

as linear combinations of the modes hiðtÞ, i ¼ 1; ::; n. This
has immediate practical implications. For example, because

each mode is both upper bounded and lower bounded,

upper bounds on the absolute flows can be computed, see

e.g., Eq. (22). However, an open question is how peaks
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and peak times can be computed for linear combinations of

second order modes, such as those in Eqs. (19) and (21).

The reason why this is challenging is that peak times for

different hs are different, thus a linear combination of the

peak h values will not return the peak flow. In this subsec-

tion we present a simple numerical technique to approxi-

mate the peak flows, based only on minimal knowledge

about the individual modes.

Our original assumption is that the flows Fij are small,

which is the condition for approximating Eq. (3) with the lin-

ear swing equation (5). However, flows may increase as a

result of a variety of perturbations, including internal power

surges and outside attacks. It is also possible that the absolute

flow jFijj over a line may increase above the so-called line

capacity, causing failure of that line and possibly lead to other

line failures in a cascade. A similar event would lead to viola-

tion of the small flow assumption.

Reference [40] has pointed out the importance of the

transient dynamic as it is possible that an absolute flow

may exceed a line capacity transiently. Our analysis allows

us to study the transient response of the swing equation

dynamics under the assumption of small flows. Under this

condition, we can compute the peak flows over each line,

which can be used to design line capacities that are robust

against the effects of transient perturbations of small

entity.

Next we present a numerical technique to find the maxi-

mum absolute flow over a line. For large g, there are two

possible ways in which a flow in a line may evolve over

time; (1) The absolute flow reaches its maximum value at

the first peak time. (2) The absolute flow reaches its maxi-

mum value at steady state. Thus, to find the maximum flow

accurately, one needs to calculate both the first peak and

the steady state value and pick the one which is largest in

magnitude.

In order to compute the peak times, we note that from

Eq. (21) we have that

_Fij ¼ C2 _h2 þ C3 _h3 þ 
 
 
Cn _hn (23)

where for underdamped modes

_hk ¼
qk

vk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zk

2
p e�zkvkt sinvk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zk

2

q
t; k

¼ mþ 1; . . .; n (24)

Since zkvk ¼ g
2 , the exponents in Eq. (24) are the same for

k ¼ mþ 1; . . .; n. Further, say &k ¼ vk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zk

2
p

. A neces-

sary condition for the flow Fij to achieve either a maximum or

a minimum is

Xn
k¼mþ1

Ckqk
&k

sin &kt ¼ 0: (25)

Since the values of &k are different for different k, we are

unable to compute a closed form solution for (25). However, a

root-finding algorithm can be used to calculate the peak time

and the maximum absolute flow through the line. For example,

that can be done by computing an initial guess tij and by iter-

ating Newton’s method towards convergence on the peak

time.

For large enough g we expect the peak time to be the root of

(25) closest to the origin. Then a good choice of the initial

guess for the root-finding algorithm can be obtained by Taylor

expanding (25) up to third order about the origin and setting

the third order expansion equal to zero. This leads to the fol-

lowing initial guess,

~tij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
Pn

k¼mþ1 CkqkPn
k¼mþ1 Ckqk&

2
k

s
: (26)

To demonstrate this, we consider the ‘bottleneck network’

shown in Fig. 1 with g ¼ 1:5 and p ¼ ½0:3;�0:1;�0:1;
0:1;�0:1;�0:2; 0:1�T . We use Eq. (26) to compute the initial

guesses which are then used to approximate the first peak

times and subsequently the first peak values that are shown in

Table I. Table I also shows that for this example our approach

based on the linearized swing equation (5) well approximates

the maximum flow obtained by integration of the full nonlin-

ear swing equation (3).

For non large gs however, a slightly more cumbersome

approach has to be taken to find the initial guess. Peak h values

are first multiplied with their respective flow coefficients and

then these values are cumulatively added in an ascending

order of peak time. The peak time corresponding to the largest

of these cumulatively added values can be used as the initial

guess for the flow. It is important to note that the closer the

peak times are, the more accurate this initial guess is and the

farther apart they are, the more iterations will be required to

converge to the actual solution.

We wish to emphasize that the approach described in this

section can be applied to any linear combination of second

order modes. For example,we can use this approach to approx-

imate peak flows in quotient networks, Eq. (27) and in error

networks, Eq. (33).

Fig. 1. Bottleneck network with 7 nodes. Red circles represent motor nodes
while green squares represent generator nodes.
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III. USE OF SYMMETRY IN THE TRANSIENT ANALYSIS OF THE

LINEAR SWING EQUATION

Knowledge of the symmetries may be used to reduce the

computational burden associated with the modal decomposi-

tion. In fact, we can apply the modal decomposition to a

reduced ‘quotient network’ where all the redundancies are

eliminated, thereby making the analysis easier and faster.

We introduce the n� q indicator matrix E, where n is the

number of nodes and q is the number of orbits or clusters.

Each entry Eði; jÞ ¼ 1 if node i belongs to the cluster j and 0

otherwise. Another way to write the indicator matrix is the fol-

lowing, E ¼ ½e1; e2; . . .; eq� where each vector ei is an indica-

tor vector, that is entry j of vector ei is 1 if node j is in cluster

i and is 0 otherwise.
Lemma 6: The set of states such that ulðtÞ ¼ umðtÞ and

_ulðtÞ ¼ _umðtÞ for all l;m 2 Si, i ¼ 1; . . .; q, define an invariant
manifold [36].

The full network with Laplacian matrix L can be trans-

formed into its corresponding quotient network with Laplacian

matrix ~L by the transformation [41],

~L ¼ ððETEÞ�1ET ÞLE:

By pre-multiplying Eq. (8) by ððETEÞ�1ET Þ, we obtain,

€~uuðtÞ ¼ �g _~uuðtÞ þ ~L~uuðtÞ þ ~p; (27)

where the q-dimensional vectors ~uuðtÞ ¼ ððETEÞ�1ET ÞuuðtÞ
and ~p ¼ ½~p1; ~p2; . . .; ~pq� is equal to ~p ¼ ððETEÞ�1ET Þp.
Definition 6: We say that the power vector p respects the

symmetries if for all the nodes i in the same cluster Sj, pi ¼
~pj, j ¼ 1; . . .; q.
In what follows we first consider the case that the power

vector p respects the symmetries and then consider the more

general case that it does not.

A. The case That the Power Vector p Respects the

Symmetries

When the power vector respects the symmetries, the forced

evolution for the full network and the quotient network will be

the same, as we explain in what follows.

Definition 7: A redundant eigenvector rr of the Laplacian

matrix L has sum of entries corresponding to each cluster equal

to zero and a non redundant eigenvector nn of the Laplacian

matrix have entries corresponding to each cluster that are all

the same [46]. All the redundant eigenvectors are orthogonal to

ei, i ¼ 1; ::; q. Contrarily, the non-redundant eigenvectors are

not. That means eTi rr ¼ 0 and eTi n 6¼ 0, i ¼ 1; ::; q, where rr is

any redundant vector, and nn any non redundant vector.

From Definition 7 we see that the matrix L has q non-redun-
dant eigenvectors nn’s and ðn� qÞ redundant eigenvectors

rr’s [46].

Remark 2: From Definition 7 it follows that the modes (10)

can be either redundant or nonredundant. The numer of redun-

dant modes is equal to ðn� qÞ and the numer of nonredundant

modes is equal to q.
All of the eigenvalues of the matrix ~L are also eigenvalues

of the matrix L [46]. However, the matrix L has additional

eigenvalues that are not eigenvalues of ~L. When an eigenvalue

of L is also an eigenvalue of ~L, we say that it is ‘inherited’ by

the quotient network.

Lemma 7: Only the eigenvalues of L associated with non-

redundant eigenvectors are inherited by the quotient network.

Proof.

Consider the equation:

~L ¼ ðETEÞ�1ETLE ¼ ðETEÞ�1ET ðVDV T ÞE; (28)

where V is the matrix of the eigenvectors of L and D is the

matrix of eigenvalues of L.
The matrix V ¼ ½Vr; Vn� where Vr has all the redundant

eigenvectors and Vn has all the non-reduntant eigenvectors.

Further, D can be written as Dr �Dn, where Dr is a diagonal

matrix with all the ðn� qÞ redundant eigenvalues and Dn is a

diagonal matrix with all the q nonredundant eigenvalues. Now
we see that ETVr ¼ 0 due to the orthogonality. Therefore,

~L ¼ ðETEÞ�1ET ðVnDnV
T
n ÞE ¼ ðETEÞ�1ðHDnH

T Þ; (29)

whereH ¼ ETVn is a square q-dimensional matrix. &

From Eq. (29), we can see that only non-redundant eigen-

values and eigenvectors are inherited by the quotient network.

Moreover since the power vector p respects the symmetries,

the entries of the vector ~pj ¼ pi for any node i in cluster Sj

(see Definition 6).

From
P

j pj ¼ 0 it follows that
Pm

j¼1 ¼ nj~pj ¼ 0, where nj

is the number of nodes in each cluster.

Remark 3: In the case that the network is connected, the

eigenvector of the Laplacian matrix ½11. . .1�, associated with

the zero eigenvalue, is non-redundant. So, the zero eigenvalue

is inherited by the quotient network. Further, it can also be

proved under generic conditions that in the case of a

TABLE I
STEADY STATE, FIRST PEAK AND MAXIMUM FLOW THROUGH LINES FOR

FIG. 1. THE VALUES FOR THE SECOND COLUMN ARE COMPUTED USING

EQ. (20) AND THE VALUES FOR THE THIRD COLUMN ARE COMPUTED USING

EQ. (26), EQ. (14) AND EQ. (21). THE FOURTH AND FIFTH COLUMNS ARE CAL-

CULATED BY NUMERICALLY SOLVING THE LINEAR SWING EQUATION (5) AND
THE NON-LINEAR SWING EQUATION (3), RESPECTIVELY.
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disconnected network, the quotient network inherits c zero

eigenvalues from the full network, where c is the number of

components.

Theorem 1: Assume the network is connected. The entry of

the vector ~q corresponding to the zero eigenvalue is 0.

Proof: Consider the equation:

wT~p ¼ 0 (30)

Let v be a right eigenvector and wT be a left eigenvector of
~L. We know the right eigenvector associated with the zero

eigenvalue is v ¼ ½11. . .1�. Which implies,

~Lv ¼ 0

ðETEÞ�1ETLEv ¼ 0

By left multiplying both sides of the above equation by

ðETEÞ, we obtain,

ETLEv ¼ 0

Indicating that the matrix ETLE must have v ¼ ½11. . .1� as its
right eigenvector associated with the zero eigenvalue. A left

eigenvector wT associated with zero eigenvalue has to satisfy

the equation:

wTðETEÞ�1ETLE ¼ 0 (31)

This also means wTðETEÞ�1
is a left eigenvector with associ-

ated eigenvalue 0 for ðETLEÞ which is a symmetric matrix.

Because ETLE is symmetric, its left eigenvectors and right

eigenvectors, corresponding to the same eigenvalues, are the

same.

Ergo,

wTðETEÞ�1 ¼ vT (32)

Recall that vT ¼ ½11. . .:1�. Moreover, the matrix ðETEÞ is a
diagonal matrix that has the number of nodes in each cluster

n1; n2; etc on the main diagonal. It follows that wT ¼
½n1n2. . .�. Since the entries of the vector wT are the number of

nodes in each cluster, the product wT~p is equal to the sum of

all the powers in the full network which is zero by the assump-

tion that the full network is balanced. &

In order to demonstrate this quotient transformation, we

will use the n ¼ 7 node graph with 6 edges shown in Fig. 2,

for which

L ¼

�3 1 1 1 0 0 0
1 �2 0 0 1 0 0
1 0 �2 0 0 1 0
1 0 0 �2 0 0 1
0 1 0 0 �1 0 0
0 0 1 0 0 �1 0
0 0 0 1 0 0 �1

2
666666664

3
777777775

with eigenvalues 0;�0:38;�0:38;�1:58;�2:61;�2:61;
�4:41. The power vector p and the transformed power vector

q are also shown,

p ¼

�0:3
�0:3
�0:3
�0:3
0:4
0:4
0:4

2
666666664

3
777777775
q ¼

0:00
0:00
0:00

�0:8895
0:00
0:00

0:2208

2
666666664

3
777777775

As can be seen the power vector p respects the symmetries.

Fig. 3 shows the flows vs. time over all the network lines

(forced evolution). Due to the network symmetries, several

flows are superimposed on top of each other (and thus

indistinguishable).

For the network in Fig. 2, S1 ¼ f1g, S2 ¼ f2; 3; 4g, S3 ¼
f5; 6; 7g. This corresponds to the following indicator matrix:

Fig. 2. 7-node network. Generator nodes are indicated with squares and
motor nodes with circles. All nodes corresponding to the same cluster or orbit
of the symmetry group are colored the same.

Fig. 3. Flows vs. time for network in Fig. 2. The network has a total of 6
lines. The forced evolution of the flows over each one of these lines is plotted.
However, due to the symmetries, triplets of flows are superimposed on top of
each other.
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E ¼

1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

2
666666664

3
777777775

The Laplacian matrix ~L for the quotient network is,

~L ¼
�3 3 0
1 �2 1
0 1 �1

2
4

3
5

with eigenvalues 0;�1:58;�4:41. Moreover,

~Vr ¼
0:898 0:731 0:577

�0:423 0:345 0:577

0:124 �0:589 0:577

2
64

3
75

~Vl ¼
0:562 0:337 0:229

�0:794 0:476 0:688

0:233 �0:813 0:688

2
64

3
75

~p ¼
�0:3
�0:3
0:4

2
4

3
5~q ¼

0:1873
�0:6402

0

2
4

3
5

where ~Vr and ~Vl represent the matrix of right and the left

eigenvectors of ~L respectively. The vectors ~p and ~q are the

power vector and the transformed power vector of the quotient

network respectively.

As seen in the Fig. 4, the quotient network has three nodes

(each representing a cluster) and two lines. Unlike the full net-

work, this network is directed and weighted. Under the

assumption that the vector p respects the symmetries, a study

of the forced response of the quotient network provides com-

plete information about the forced response of the full net-

work. If we plot the flows of the quotient network, we still get

Fig. 3 but with only one curve representing all the nodes in a

cluster.

B. The case That the Power Vector p Does Not Respect the

Symmetries

When the power vector does not respect the symmetries, we

can still reduce the dynamics in the quotient network form

(27). In this case the power for each node of the quotient net-

work will be the average of the powers of the nodes in each

cluster and the forced evolution of the quotient network is the

average of the forced evolutions of the full network within

each cluster. As an example, consider the network in Fig. 2

studied previously but with power vector,

p ¼

�0:3
�0:3
�0:4
�0:3
0:5
0:4
0:4

2
666666664

3
777777775

which does not respect the symmetries. The forced evolutions

for the full network and for the quotient network are given in

Figs. 5(a) and 5(b). The color code is consistent with the color

of nodes in Figs. 2 and 4. All the green (red) curves in Fig. 5

(a) average to the one green (red) curve in Fig. 5(b).

An important observation is that the quotient network

removes redundant modes but these modes might still produce

overshoots in the full network which will be ignored by the

quotient network.

Since the forced evolution obtained from the quotient net-

work is not the same as that of the full network, a relevant

problem is to characterize deviations between the time evolu-

tions of the nodes in the same cluster and the time evolution

of the associated quotient node.

Definition 8: Define the deviations as �iðtÞ ¼ ðuiðtÞ �
~ui�ðtÞÞ, i ¼ 1; 2; . . .; n, where i� is the cluster node i belongs
to,

P
i2Sj �iðtÞ ¼ 0.

The dynamics of the deviations is provided by the redun-

dant modes only. Without loss of generality assume the redun-

dant modes (10) are labeled i ¼ 1; . . .; ðn� qÞ: Then

�iðtÞ ¼
Xn�q

j¼1

VijhjðtÞ: (33)

Fig. 4. Quotient Network corresponding to the network in Fig. 2.

Fig. 5. a: u vs. time for the network in Fig. 2, b: u vs. time for quotient net-
work in Fig. 4. Color code consistent with color of nodes in Figs. 2 and 4.
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The modal decomposition of the forced response Eq. (33) can

be used to compute the transient deviation overshoot dynam-

ics, peak times, upper bounds, etc. We can also approximate

the peaks using the numerical approach of Section II A.

Lemma 8: In the case the power vector p respects the sym-

metries, the redundant modes (10) have qi ¼ 0, hence their

forced response is zero.

Proof: This follows trivially from Definitions 6 and 7. &

C. Large Network Example

We now consider a large network, shown in Fig. 7, based

off the Chilean power-grid topology with n ¼ 218 nodes, out

of which 94 are motors and 124 are generators. This is the

reduced version achieved by the Star-Mesh transformation [6]

of the original Chilean power-grid [25].

1) Powers that Respect the Symmetries: We first choose

the power vector such that it respects the symmetries; for sim-

plicity we set all generator nodes to have a power of 0.0081

and all motor nodes to have a power of �0.0106. For this net-

work, we have 29 non-trivial clusters; clusters with more than

one node, and 96 trivial clusters; clusters with only one node.

Using this information, we can transform the full network into

the quotient network shown in Fig. 8. After the transformation,

each cluster becomes a node in the quotient network with 157

nodes, out of which 74 are generator nodes and 83 are motor

nodes. As already discussed previously, if the vector p
respects the symmetries, the forced response of the quotient

network coincides the forced response of the full network (not

shown here for the sake of brevity.)

2) Powers that Do Not Respect the Symmetries: If the

power vector does not respect the symmetries, the quotient

network time evolution provides the average forced evolution

of the nodes in each cluster of the full network. The deviation

between the dynamics of the full network and the quotient net-

work can be characterized using Eq. (33). To demonstrate this

we first choose a cluster where the nodes do not respect the

symmetries. The cluster is chosen containing 7 nodes: 178,

181, 182, 182, 183, 184, 185, 207, with associated powers

[0.0181, 0.0081, 0.0081, 0.0081, 0.0081, 0.0081, 0.0081].

Now, using analogous equations to Eq. (25) and (26), we

can obtain the maximum displacement deviation of each node

�i. Since we are finding the maximum of displacements rather

than flows, we replace the coefficients Ci with Vi and get,

Xn�q

k¼1

Vkqk
&k

sin &kt ¼ 0: (34Þ

~tij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
Pn�q

k¼1 VkqkPn�q
k¼1 Vkqk&

2
k

s
: (35Þ

Using the technique mentioned in Section II A and Eq. (34)

and (35), we can easily calculate maximum displacement

deviation. The time evolution of this deviation for our selected

cluster is shown in Fig. 6.

IV. EFFECTS OF HETEROGENEITY IN THE gi TERMS

In this section we remove the assumption of homogeneous

damping terms gi ¼ g. Note that the symmetries of the swing

equation are defined in the generic case of heterogeneous

(arbitrary) g’s, see Definition 4. Here we explain how our pre-

vious derivations need to be modified in the case of heteroge-

neous g’s.

Equation (8) is rewritten,

€uuðtÞ ¼ �G _uuðtÞ þ LuuðtÞ þ p; (36)

where the n-dimensional diagonal matrix G ¼ diagðg1;
g2; . . .; gnÞ. Analogously, the quotient network Equation (27)

Fig. 6. Evolution of the displacement deviation of the quotient network node
with respect to the original nodal displacements. The blue curve is for node
178, the red curve is for nodes 181, 182, 183, 184, 185, 207.

Fig. 7. Chilean power-grid Network. Squares indicate generator nodes and
circles indicate motor nodes. Black nodes are in trivial clusters whereas nodes
with the same color (different from black) are in non-trivial clusters.
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becomes,

€~uuðtÞ ¼ �~G _~uuðtÞ þ ~L~uuðtÞ þ ~p; (37)

where the q-dimensional diagonal matrix ~G ¼ diagð~g1;
~g2; . . .; ~gqÞ and ~gi is the damping ratio of all the nodes in clus-

ter Si.

A separate consideration is needed for the study of the devi-

ations in the case that (i) the g’s are heterogeneous and (ii) the

power vector p does not respect the symmetries. To deal with

such a case, we introduce the irreducible representations of

the symmetry group G [36].

From knowledge of the group of symmetries G, we can

compute the irreducible representations (IRRs) of the symme-

try group of the network. This defines a transformation T into

the so-called IRR coordinate system (see Ref. [36]). The trans-

formation matrix T is orthogonal. Each one of the rows of the

matrix T is associated with a specific cluster. If a row of the

matrix T is associated with cluster k, it means all the i entries
of that row are zero for i not in cluster Sk. The first q rows of

the matrix T are parallel to the q nonredundant eigenvectors nn.
Therefore, the matrix T can be cast in the following block

diagonal form,

T ¼ �
k¼1;::;q

Tk; (38)

where each block Tk is an nk-dimensional square matrix asso-

ciated with cluster k. Premultiplying Eq. (36) by T , we obtain,

€��ðtÞ ¼ �G _��ðtÞ þ B��ðtÞ þ r; (39)

where �� ¼ Tuu, r ¼ Tp, the block -diagonal matrix B ¼ TLTT

and the matrix G is unaltered by application of the matrix T . The

latter property follows from the block-diagonal structure of the

matrixT and the observation thatG can be recast in a similar form

G ¼ �
k¼1;...;q

Ink~gk; (40)

where Ink is the nk-dimensional identity matrix.

The transformed n� n block diagonal matrix B ¼ TATT is

a direct sum �U
u¼1B̂u, where B̂u is a (generally complex) pu �

pu matrix with pu the multiplicity of the uth IRR in the permu-

tation representation, U the number of IRRs present and du the
dimension of the uth IRR, so that

P
u dupu ¼ n. The matrix T

contains information on which perturbations affecting differ-

ent clusters get mapped to different IRRs [42].

Due to the block-diagonal structure of the matrix B,

Eq. (39) can be decoupled into a number of lower dimensional

equations, where each equation corresponds to a block of the

matrix B.

There is one representation (labeled u ¼ 1) which we call

trivial and has dimension d1 ¼ q. The associated block of the

matrix B corresponds to the dynamics of the quotient network.

Hence, the trivial representation is associated with all the clus-

ters. However, it is possible that other IRR representations are

only associated with some of the clusters (not all of them.)

Each one of these other representations u > 1 describes the

deviation dynamics of either an isolated cluster or a group of

intertwined clusters [36]. A simple interpretation of isolated

vs. intertwined clusters is the following. If a cluster is isolated

a perturbation affecting the power of any one of its nodes will

not affect the deviation dynamics of other clusters. On the

contrary, when a set of two or more clusters are intertwined, a

perturbation affecting the power of any of the nodes in a clus-

ter will affect the deviation dynamics of the remaining clusters

in the set.

Example A

For this example, we consider the dynamics of Eq. (5), with

adjacency matrix corresponding to the network in Fig. 2, the

power vector p ¼ ½�0:3;�0:3;�0:3;�0:4; 0:4; 0:4; 0:5�T and

the matrix G ¼ diagð3; 2; 1; 1; 2; 1; 1Þ. By the definition of

symmetries (Definition 3), nodes belonging to the same cluster

have the same g value. In this case, due to the presence of het-

erogeneity in g, there are two non-trivial clusters, each con-

taining 2 nodes: f3; 4g and f6; 7g. All other nodes are in

trivial clusters. Moreover, the power vector p does not respect

the symmetries.

We compute the IRRs of the symmetry group. The trans-

formation matrix T is equal to,

T ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1ffiffi

2
p 1ffiffi

2
p 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1ffiffi

2
p 1ffiffi

2
p

0 0 1ffiffi
2

p � 1ffiffi
2

p 0 0 0

0 0 0 0 0 1ffiffi
2

p � 1ffiffi
2

p

2
6666666664

3
7777777775

Fig. 8. Quotient network for Chilean Power-grid topology. Squares indicate
generator nodes and circles indicate motor nodes. Black nodes are in trivial
clusters whereas nodes with the same color (different from black) are in non-
trivial clusters. Thickness of the arrows are indicative of the weight of the
edges.
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With this information, we can calculate the block-diagonal

matrix B ¼ TLTT , r ¼ Tp, and Gorth ¼ TGTT ,

B ¼

�3 1
ffiffiffi
2

p
0 0 0 0

1 �2 0 1 0 0 0ffiffiffi
2

p
0 �2 0 1 0 0

0 1 0 �1 0 0 0
0 0 1 0 �1 0 0
0 0 0 0 0 �2 1
0 0 0 0 0 1 �1

:

2
666666664

3
777777775

r ¼ �0:3 �0:3 �0:495 0:4 0:636 j1=10 ffiffiffi
2

p �1=10
ffiffiffi
2

p� �T
:

Gorth ¼

3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

:

2
666666664

3
777777775

The transverse (bottom right) block of the matrix B repre-

sents the deviation dynamics for the two non-trivial clusters,

which are intertwined. Note that the elements of r relative to

this block are given by r6 ¼ ðp3�r4Þffiffi
2

p and r7 ¼ ðp6�r7Þffiffi
2

p . We also

note that Gorth for the transverse block is the same as G as

explained in the theory. After diagonalizing the transverse

block, its dynamics decouples into two independent modes,

€kk ¼ �I _kkþ �0:3820 0
0 �2:6180

� �
kkþ 0:02298

�0:09732

� �
(41)

Now, using the technique derived in Section II A, we can

use Eq. (41) to calculate the maximum deviations from the

quotient network. We can find the initial guess analogously to

Eq. (35).

The time ~t can then be used to find the time of maximum

error by solving the following equation for t until convergence:

Xn
k¼mþ1

Vkrk
&k

sin &kt ¼ 0: (42)

The obtained time t can then be used to solve (19) which gives
us the deviations in each non-trivial cluster as seen in Table II.

Table II also shows that for this example our approach based

on the linearized swing equation (5) well approximates the

maximum error obtained by integration of the full nonlinear

swing equation (3).

Example B

For this example, we consider the Chilean power-grid

described in Section III C and pictured in Fig. 7. The power

vector is chosen so that it does not respect the symmetries.

The coefficients gi are chosen such that all nodes have gi ¼ 1,
except for g116 ¼ 2. For this network we computed the IRR
representations and the block-diagonal matrix B. This allowed

us to study the deviation from the quotient network dynamics

for each one of the 29 nontrivial clusters. We did not find any

intertwined clusters. Next, we focus on a cluster comprised of

the three nodes f77; 79; 81g, represented as three cyan squares

on the right side of Fig. 7. The transverse block corresponding

to that cluster is reduced in a similar form to Eq. (41),

€kk ¼ �I _kkþ �9:123 0
0:0000 �0:876

� �
kkþ �0:00502

0:00643

� �
(43)

Similarly to Example A, Eq. (43) can be mapped to the

deviation of the individual nodal displacement from the quo-

tient displacement. This can be done by computing a linear

combination of the uncoupled modes (43) and applying the

technique developed in Section II A. Results of this computa-

tion are presented in Table III, which shows our ability to

accurately predict the maximum deviations for all three nodes

f77; 79; 81g in the cluster.

V. CONCLUSION

In this paper we have studied how the presence of network

symmetries affects the swing equation dynamics. We have

first introduced the nonlinear swing equation and then mod-

eled the propagation of small perturbations via the linearized

swing equation. We have then shown that the nonlinear and

the linear swing equation have the same symmetries. These

symmetries can be reduced to provide an essential description

of the dynamics in terms of a ‘quotient network’.

TABLE II
STEADY STATE, FIRST PEAK AND MAXIMUM ERRORS FOR THE TWO NON-

TRIVIAL CLUSTERS. THE VALUES FOR THE SECOND COLUMN ARE OBTAINED

USING EQ. (20) AND THE VALUES FOR THE THIRD COLUMN ARE OBTAINED

USING EQ. (35), EQ. (42) AND EQ. (19). THE FOURTH AND FIFTH COLUMNS

ARE CALCULATED BY NUMERICALLY SOLVING THE LINEAR SWING EQUA-
TION (5) AND THE NON-LINEAR SWING EQUATION (3), RESPECTIVELY.

TABLE III
STEADY STATE, FIRST PEAK AND MAXIMUM ERRORS FOR THE CLUSTER CON-

TAINING NODES f77; 79; 81g. THE VALUES FOR THE SECOND COLUMN ARE

OBTAINED USING EQ. (20) AND THE VALUES FOR THE THIRD COLUMN ARE

OBTAINED USING EQ. (35), EQ. (42) AND EQ. (19). THE FOURTH AND FIFTH
COLUMNS ARE CALCULATED BY NUMERICALLY INTEGRATING THE LINEAR

AND NON LINEAR ODE RESPECTIVELY. uq REFERS TO THE DISPLACEMENT OF

THE QUOTIENT NODE WHICH IS GIVEN BY uq ¼ u77þu79þu81
3
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We have introduced a decomposition of the linear swing equa-

tion dynamics into independent modes, each of which corre-

sponds to a forced second order system. This allowed us to

characterize several transient effects such as overshoots, peaks,

peak times, upper bounds etc. We have classified the symmetries

into two cases based on whether the power vector respects the

symmetries or not and presented techniques to obtain a full char-

acterization of the transient dynamics and/or error quantification.

In the case in which the power demanded and supplied by

different nodes respects the symmetries, the quotient network

completely describes the forced evolution of the full network,

otherwise it provides the forced evolution averaged over the

nodes in each cluster. We have also introduced the error

dynamics which describes how the quotient network time evo-

lutions deviate from the time evolutions of the individual

nodes inside the clusters. This error dynamics can be written

as a linear combination of the ‘redundant modes’.

Finally, we have presented how the symmetry analysis can

be applied to networks with heterogeneous g. In order to study

the deviation dynamics in the case that the g’s are arbitrary

and the power vector does not respect the symmetries, we

have introduced the irreducible representation of the symme-

try group. Furthermore, though not discussed in the paper, it is

possible to apply our techniques to the case of different types

of forcing terms, such as sinusoidal forcing; they can also be

generalized to other network models, such as the effective net-

work model (EN) or the structure preserving model (SP) [31].

ACKNOWLEDGMENT

The authors thank Cesar Ornelas for collaborating on an earlier

version of this paper, Aranya Chakraborrti for insightful discus-

sions and Matteo Lodi for helping with the calculations of the

irreducible representations.

REFERENCES

[1] R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of the
North American power grid,” Phys. Rev. E, vol. 69, no. 2, 2004, Art
no. 025103.

[2] S. Arianos, E. Bompard, A. Carbone, and F. Xue, “Power grid vulnera-
bility: A complex network approach,” Chaos: An Interdiscipl. J. Nonlin-
ear Sci., vol. 19, no. 1, 2009, Art no. 013119.

[3] R. Baldick, B. Chowdhury, I. Dobson, DOng Zhaoyang, B. Gou, and
D. Hawkins, “Vulnerability assessment for cascading failures in electric
power systems,” inProc. IEEE/PES Power Syst. Conf. Expo., 2009, pp. 1–9.

[4] B. Bamieh and D. F. Gayme, “The price of synchrony: Resistive losses
due to phase synchronization in power networks,” in Proc. Amer. Con-
trol Conf., 2013, pp. 5815–5820.

[5] W. Barrett, A. Francis, and B. Webb, “Equitable decompositions of graphs
with symmetries,” Linear Algebra Its Appl., vol. 513, pp. 409–434, 2017.

[6] S. Bedrosian, “Converse of the star-mesh transformation,” IRE Trans.
Circuit Theory, vol. 8, no. 4, pp. 491–493, Dec. 1961.

[7] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman,
“Sensitivity analysis of the power grid vulnerability to large-scale cas-
cading failures,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 3,
pp. 33–37, 2012.

[8] K. A. Blaha, K. Huang, F. D. Rossa, L. Pecora, M. Hossein-Zadeh, and
F. Sorrentino, “Cluster synchronization in multilayer networks: A fully
analog experiment with 1C oscillators with physically dissimilar
coupling,” Phys. Rev. Lett., vol. 122, no. 1, 2019, Art no. 014101.

[9] B. A. Carreras, V. E.Lynch, I. Dobson, and D. E. Newman, “Critical
points and transitions in an electric power transmission model for cas-
cading failure blackouts,” Chaos: An Interdiscipl. J. Nonlinear Sci.,
vol. 12, no. 4, pp. 985–994, 2002.

[10] P. D.Chassin and C. Posse, “Evaluating north american electric grid reli-
ability using the barab�asi-albert network model,” Phys. A: Statist. Mech.
Appl., vol. 355, no. 2-4, pp. 667–677, 2005.

[11] Q. Chen, C. Jian, W. Qiu, and J. D. McCalley, “Probability models for
estimating the probabilities of cascading outages in high-voltage trans-
mission network,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1423–
1431, Aug. 2006.

[12] Y. S. Cho, T. Nishikawa, and A. E. Motter, “Stable chimeras and inde-
pendently synchronizable clusters,” Phys. Rev. Lett., vol. 119, no. 8,
2017, Art no. 084101.

[13] P. Crucitti, V. Latora, and M. Marchiori, “Model for cascading failures in
complex networks,” Phys. Rev. E, vol. 69, no. 4, 2004, Art no. 045104.

[14] P. Crucitti, V. Latora, and M. Marchiori, “A topological analysis of the
italian electric power grid,” Phys. A: Statist. Mech. Appl., vol. 338,
no. 1-2, pp. 92–97, 2004.

[15] F. D. Rossa, L. Pecora, K. Blaha, A. Shirin, I. Klickstein, and
F. Sorrentino, “Symmetries and cluster synchronization in multilayer
networks,” Nat. Commun., vol. 11, no. 1, pp. 1–17, 2020.

[16] A. Dwivedi, X. Yu, and P. Sokolowski, “Identifying vulnerable lines in
a power network using complex network theory,” in Proc. IEEE Int.
Symp. Ind. Electron., 2009, pp. 18–23.

[17] A. Dwivedi, X. Yu, and P. Sokolowski, “Analyzing power network vul-
nerability with maximum flow based centrality approach,” in Proc. 8th
IEEE Int. Conf. Ind. Informat., 2010, pp. 336–341.

[18] M. Golubitsky and I. Stewart, “Symmetry and pattern formation in cou-
pled cell networks,” Pattern Formation in Continuous and Coupled Sys-
tems. New York, NY, USA: Springer, 1999, pp. 65–82.

[19] L. Guo, C. Zhao, and S. H. Low, “Graph laplacian spectrum and primary
frequency regulation,” in Proc. IEEE Conf. Decis. Control, 2018,
pp. 158–165.

[20] Z. Guohua, W. Ce, Z. Jianhua, Y. Jingyan, Z. Yin, and D. Manyin,
“Vulnerability assessment of bulk power grid based on complex network
theory,” in Proc. 3rd Int. Conf. Electric Utility Deregulation Restructur-
ing Power Technol., 2008, pp. 1554–1558.

[21] J. A
�
keHolmgren, “Using graph models to analyze the vulnerability of

electric power networks,” Risk Anal., vol. 26, no. 4, pp. 955–969, 2006.
[22] Y. Huang, J. Lu, and W. Zhang, “Small disturbances can trigger cascad-

ing failures in power grids,” 2019, arXiv:1907.12965.
[23] T. Ishizaki, A. Chakraborty, and J.-I. Imura, “Graph-theoretic analy-

sis of power systems,” Proc. IEEE, vol. 106, no. 5, pp. 931–952,
May 2018.

[24] S. Kettemann, “Delocalization of disturbances and the stability of ac
electricity grids,” Phys. Rev. E, vol. 94, no. 6, 2016, Art no. 062311.

[25] H. Kim, D. Olave-Rojas, E. Alvarez-Miranda, and S. W. Son, “In-depth
data on the network structure and hourly activity of the central chilean
power grid,” Sci. Data, vol. 5, Art. no. 180209, 2018, doi: 10.1038/
sdata.2018.209.

[26] P. Mlinari�c, T. Ishizaki, A. Chakrabortty, S. Grundel, P. Benner, and
J.-I. Imura, “Synchronization and aggregation of nonlinear power sys-
tems with consideration of bus network structures,” in Proc. Eur. Con-
trol Conf., 2018 pp. 2266–2271.

[27] E. A.Motter and Y.-C. Lai, “Cascade-based attacks on complex
networks,” Phys. Rev. E, vol. 66, no. 6, 2002, Art no. 065102.

[28] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spontaneous
synchrony in power-grid networks,” Nat. Phys., vol. 9, no. 3., pp. 191–
197, 2013.

[29] T. Nesti, A. Zocca, and B. Zwart, “Emergent failures and cascades in
power grids: A statistical physics perspective,” Phys. Rev. Lett.,
vol. 120, no. 25, 2018, Art no. 258301.

[30] V. Nicosia, M. Valencia, M. Chavez, A. D�ıaz-Guilera, and V. Latora,
“Remote synchronization reveals network symmetries and functional
modules,” Phys. Rev. Lett., vol. 110, no. 17, 2013, Art no. 174102.

[31] T. Nishikawa and A. E. Motter, “Comparative analysis of existing mod-
els for power-grid synchronization,” New J. Phys., vol. 17, no. 1, 2015,
Art no. 015012.

[32] K. Okuda and Y. Kuramoto, “Mutual entrainment between populations of
coupled oscillators,” Prog. Theor. Phys., vol. 86, no. 6, pp. 1159–1176,
1991.

[33] S. Pahwa, A. Hodges, C. Scoglio, and S. Wood, “Topological analysis of
the power grid and mitigation strategies against cascading failures,” in
Proc. IEEE Int. Syst. Conf., 2010, pp. 272–276.

[34] S. Pahwa, C. Scoglio, and A. Scala, “Abruptness of cascade failures in
power grids,” Sci. Rep., vol. 4, 2014, Art no. 3694.

[35] F. Pasqualetti, A. Bicchi, and F. Bullo, “Graph-theoretical characteriza-
tion of power network vulnerabilities,” in Proc. Amer. Control Conf.,
2011, pp. 3918–3923.

BHATTA et al.: MODAL DECOMPOSITION OF THE LINEAR SWING EQUATION IN NETWORKS WITH SYMMETRIES 2493

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 20,2021 at 23:04:17 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1038/sdata.2018.209
https://dx.doi.org/10.1038/sdata.2018.209


[36] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy,
“Cluster synchronization and isolated desynchronization in complex net-
works with symmetries,” Nat. Commun., vol. 5, no. 1, pp. 1–8, 2014.

[37] G. Rogers, Power System Oscillations., New York, NY, USA: Springer
ScienceþBusiness Media, LLC, 2000.

[38] M. Rohden, D. Jung, S. Tamrakar, and S. Kettemann, “Cascading fail-
ures in ac electricity grids,” Phys. Rev. E, vol. 94, no. 3, 2016, Art
no. 032209.

[39] M. Rosas-Casals, S. Valverde, and R. V. Sol�e, “Topological vulnerabil-
ity of the european power grid under errors and attacks,” Int. J. Bifurca-
tion Chaos, vol. 17, no. 07, pp. 2465–2475, 2007.

[40] B. Sch€afer, D. Witthaut, M. Timme, and V. Latora, “Dynamically
induced cascading failures in power grids,” Nat. Commun., vol. 9, no. 1,
pp. 1–13, 2018.

[41] M. T. Schaub et al., “Graph partitions and cluster synchronization in net-
works of oscillators,” Chaos: An Interdiscipl. J. Nonlinear Sci., vol. 26,
no. 9, 2016, Art no. 094821.

[42] A. B. Siddique, L. Pecora, J. D. Hart, and F. Sorrentino, “Symmetry-and
input-cluster synchronization in networks,” Phys. Rev. E, vol. 97, no. 4,
2018, Art no. 042217.

[43] R. V. Sol�e, M. Rosas-Casals, B. Corominas-Murtra, and S. Valverde,
“Robustness of the european power grids under intentional attack,”
Phys. Rev. E, vol. 77, no. 2, 2008, Art no. 026102.

[44] F. Sorrentino and L. M. Pecora, “Approximate cluster synchronization
in networks with symmetries,” Chaos, 26, no. 9, 2016, Art no. 094823.

[45] F. Sorrentino, A. B. Siddique, and L. M. Pecora, “Symmetries in the
time-averaged dynamics of networks: Reducing unnecessary complexity
through minimal network models,” Chaos: An Interdiscipl. J. Nonlinear
Sci., vol. 29, no. 1, 2019, Art no. 011101.

[46] J. R.S�anchez-Garc�ıa, “Exploiting symmetry in network analysis,” Com-
mun. Phys., vol. 3, no. 1, pp. 1–15, May 2020.

[47] M. Tyloo and P. Jacquod, “Primary control effort under fluctuating
power generation in realistic high-voltage power networks,” IEEE
Contr. Syst. Lett., vol. 5, no. 3, pp. 929–934, Jul. 2021.

[48] M. Tyloo, L. Pagnier, and P. Jacquod, “The key player problem in com-
plex oscillator networks and electric power grids: Resistance centralities
identify local vulnerabilities,” Sci. Adv., vol. 5, no. 11, 2019, Art no.
eaaw8359.

[49] T.V. Cutsem and C. Cournas, Voltage Stability of Electric Power Sys-
tems. Boston, MA, USA: Springer, 2007.

[50] T. L. Vu and K. Turitsyn, “Lyapunov functions family approach to tran-
sient stability assessment, IEEE Trans. Power Syst., vol. 31, no. 2,
pp. 1269–1277, Mar. 2016.

[51] A. J. Whalen, S. N. Brennan, T. D. Sauer, and S. J. Schiff,
“Observability and controllability of nonlinear networks: The role of
symmetry,” Phys. Rev. X, vol. 5, no. 1, 2015, Art no. 011005.

[52] Y. Yang, T. Nishikawa, and A. Motter, “Small vulnerable sets determine
large network cascades in power grids,” Science, vol. 358,6365, 2017,
doi: 10.1038/sdata.2018.209.

[53] H. Zheng and C. DeMarco, “A bi-stable branch model for energy-based
cascading failure analysis in power systems,” North Amer. Power
Symp.2010, pp. 1–7, 2010, doi: 10.1109/NAPS.2010.5618968.

Kshitij Bhatta (Student Member, IEEE) received the
bachelor’s degree in 2020 in mechanical engineering
from The University of New Mexico, Albuquerque,
NM, USA, where he is currently working toward the
master’s degree in mechanical engineering. His
research interests include nonlinear dynamic systems,
analysis of complex networks, and control systems
with feedback in robotic and automotive applications.

Majeed M. Hayat (Fellow, IEEE) received the M.S.
and Ph.D. degrees in electrical and computer engi-
neering from the University of Wisconsin-Madison,
Madison, WI, USA, in 1988 and 1992, respectively.
He is currently a Professor and Department Chair of
electrical and computer engineering with Marquette
University, Milwaukee, WI, USA. He has authored
or coauthored more than 108 peer-reviewed journal
articles and 134 conference papers, more than 5500
citations, H-Index: 37, and has 14 issued patents, six
of which have been licensed. His research interests

include a broad range of topics including resilience and reliability of interde-
pendent cyber-physical systems, dynamical modeling of cascading phenom-
ena with applications to power systems, avalanche photodiodes, statistical
communication theory, signal and image processing, algorithms for spectral
and radar sensing and imaging, optical communication, and networked com-
puting. From 2004 to 2010, he was an Associate Editor for the Optics Express
(Photodetectors and Image Processing), and an Associate Editor and a Mem-
ber of the Conference Editorial Board for the IEEE Control Systems Society.
From 2010 to 2013, he was the Chair of the topical committee on Photodetec-
tors, Sensors, Systems, and Imaging of the IEEE Photonics Society. From
2014 to 2018, he was an Associate Editor for the IEEE TRANSACTIONS ON PAR-
ALLEL AND DISTRIBUTED SYSTEMS. In 1998, he was the recipient of the National
Science Foundation Early Faculty Career Award.

Francesco Sorrentino (Senior Member, IEEE)
received the master’s degree in industrial engineering
and the Ph.D. degree in control engineering from the
University of Naples Federico II, Naples, Italy, in
2003 and 2007, respectively. His expertise is in
dynamical systems and controls, with particular
emphasis on nonlinear dynamics and adaptive decen-
tralized control. His work includes studies on dynam-
ics and control of complex dynamical networks and
hypernetworks, adaptation in complex systems, sen-
sor adaptive networks, coordinated autonomous

vehicles operating in a dynamically changing environment, and identification
of nonlinear systems. He has authored or coauthored more than 50 papers in
international scientific peer reviewed journals. His interest include applying
the theory of dynamical systems to model, analyze, and control the dynamics
of complex distributed energy systems such as power networks and smart
grids. His current research subjects include evolutionary game theory on net-
works (evolutionary graph theory), the dynamics of large networks of coupled
neurons, and the use of adaptive techniques for dynamical identification of
communication delays between coupled mobile platforms.

2494 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on September 20,2021 at 23:04:17 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1038/sdata.2018.209
https://dx.doi.org/10.1109/NAPS.2010.5618968

