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ABSTRACT. The “invisible hand” of the free market is remarkably effective at producing

near-equilibrium prices. This is difficult to quantify, however, in the absence of an agreed

model for out-of-equilibrium trade. Short of a fully reductionist model, a useful substitute

would be a scaling law relating equilibration time and other market parameters. Even this,

however, is missing in the literature.

We make progress in this direction. We examine a class of Arrow-Debreu markets with

price signaling driven by continuous-time proportional-tâtonnement. We show that the con-

nectivity among the participants in the market determines quite accurately a scaling law for

convergence time of the market to equilibrium, and thus determines the effectiveness of the

price signaling. To our knowledge this is the first characterization of price stability in terms of

market connectivity. At a technical level, we show how convergence in our class of markets

is determined by a market-dependent Laplacian matrix.

If a market is not isolated but, rather, subject to external noise, equilibrium theory has

predictive value only to the extent to which that noise is counterbalanced by the price equi-

libration process. Our model quantifies this predictive value by providing a scaling law that

relates the connectivity of the market with the variance of its prices.

1. INTRODUCTION

Dynamics. In a free market, the rise or fall of prices signal excess demand or supply. Ideally,

this signaling causes goods to clear and prices to restore to equilibrium; or, after a shock, to
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2 THE INVISIBLE HAND OF LAPLACE

restore to a possibly new near-equilibrium zone;1 this is the rationale for studying equilib-

rium theories.2 However, markets in general do not have central auctioneers; instead, price

signaling occurs through adjustments among agents who are actually trading. The purpose

of this paper is to analyze the significance of this geometry to the equilibration process. We

focus upon a simple setting that nonetheless allows rich geometry: Arrow-Debreu markets in

which agents have constant-elasticity-of-substitution (CES) utilities in the gross substitutes

regime.

Thanks to the seminal works [43, 6, 4] it is well known that in these conditions an

equilibrium exists and is unique, so there is no question about statics—only about dynam-

ics. The same works established that simple tâtonnement dynamics converge to the equi-

librium. To be specific, throughout this paper we employ Samuelson’s [55] continuous-

time proportional-tâtonnement (henceforth Samuelson dynamics), well-known to converge

to equilibrium [4]:

(1.1) ṗj =
dj − sj
sj

pj.

(Here j is a good; sj is the fixed endowment of this good; pj is its time-varying price; dj is

its time-varying demand; and we write ṗj = ∂pj/∂t to suppress the time variable t.)

In showing that tâtonnement dynamics converge to equilibrium, these classic works estab-

lished that the equilibrium is stable—under the proviso that these are plausible dynamics for

an economic market. We believe this proviso is reasonable for a market close to equilibrium.

To begin with, plausibility of tâtonnement was its raison d’être in the foundational writings

of Walras.3 Apart from Walras’s informal argument, two more justifications for studying

tâtonnement, near equilibrium, might be offered.

1F. M. Fisher, 1983 [22]: “The view that equilibria are the points of interest must logically rest on two

underlying properties about the dynamics of what happens out of equilibrium. First, the system must be stable;

that is, it must converge to some equilibrium. Second, such convergence must take place relatively quickly. If

the predictions of comparative statics are to be interesting in a world in which conditions change, convergence

to equilibrium must be sufficiently rapid that the system, reacting to given parameter shift, gets close to the

predicted new equilibrium before parameters shift once more.”
2F. A. Hayek, 1948 [29]: “This appears to me one of the most important of the points where the starting point

of the theory of competitive equilibrium assumes away the main task which only the process of competition

can solve.”
3L. Walras, 1874 [70], e.g., p. 251: “This groping takes place naturally in the services market under a system

of free competition, since, under such a system, the price of services rises when demand exceeds offer and falls

when offer exceeds demand.” See also McKenzie [44] §2.4.
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The first justification is merely to note that very little has actually been assumed here—

mainly (a) that dynamics are invariant to simultaneous scaling of all prices, and (b) that

prices exhibit first-order response to excess demand. Point (b) is significant: we do not of

course imagine that “microscopically,” agents implement Samuelson dynamics. Rather, we

think that the details should matter little to a network-wide effect such as convergence time.

The second, more phenomenological justification is that sellers of a product typically

maintain a buffer (inventory), and suffer significant loss if the buffer empties or overflows. In

this setting, short-term pricing response may primarily be designed to prevent buffer failures.

Such a response can be implemented without even explicitly estimating current demand, as

follows. Each time the buffer shrinks by one, multiply the current price by a factor eε/sj ,

slightly greater than 1; each time the buffer grows by one, multiply the price by e−ε/sj . This

is a discrete-time implementation of Samuelson’s ṗj/pj = ε(dj − sj)/sj . In control theory

(see PID controllers in, e.g., [64]) this is called “anticipatory” or “derivative” control.

Far from equilibrium, higher derivatives of the response curve would matter, as well as

possible concerns about agent look-ahead. Indeed we do not have reason to think that first-

order dynamics are plausible far from equilibrium, and consequently, we do not study rates

of global convergence in this paper.

If one nonetheless considers the tâtonnement process initialized far from equilibrium, then

due to the analysis [4] we know it will eventually approach equilibrium closely enough for

our linearized analysis to become relevant; the duration of this “burn-in” period will depend

on the initial condition as well as on the magnitude of quadratic correction terms around the

equilibrium.

Meaningfulness of equilibrium. In view of these justifications, if one neglects the time

scale for convergence, then one might consider that the theorems of the 1950s on tâtonnement

establish a satisfactory picture (in WGS markets), in which the restorative forces justify the

focus of the theory upon equilibrium prices.

The caveat about convergence time, however, is serious. Every mathematical model of a

market is imperfect; if the convergence force is weak, then so is the claim for relevance of

the equilibrium point, as other effects might dominate.

Thus the question of convergence rate is really a question about the justification for equi-

librium theory. Or, perhaps more importantly and leaving theory aside, a question about why

in typical free markets, much of the time, prices are fairly steady.

In this paper we show that this justification is actually quite sensitive to the connectivity

of the market. This is because price updates must propagate like waves through the market.
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The above-cited classical convergence results for tâtonnement dynamics hold only in an

abstract “auctioneer” model in which there is perfect instantaneous communication; when

price updates must spread through interaction, the strength and geometry of that web of

interactions is critical to stability of equilibrium.

Statics in open systems. Our results on convergence rate lead in turn to conclusions about

statics, because any real-world market is continually subject to small noise perturbations.

This being the case, the market cannot be modeled as residing at a perfect equilibrium price

vector—but rather, in a stationary distribution over price vectors. Only if that distribution is

tightly concentrated around the perfect equilibrium point, does the equilibrium acquire real-

world meaning.4 Fortunately, we will be able to show, at least for a restricted class of markets

and a simple noise model, precisely how bounds on the convergence rate of the dynamics

imply bounds on price variance in the stationary distribution.

Our work establishes a quantitative foundation for the following appealing intuition: a

well-connected market (one which cannot be partitioned into two blocs with little trade

between them), converges rapidly, almost as if equilibration were performed by a central-

ized auction; whereas a poorly-connected market (for an extreme example one may think of

agents arranged in a cycle and valuing only their immediate neighbors’ goods) will only very

slowly equilibrate. Correspondingly, in the presence of noise, the first market will have reli-

ably steady prices whereas the latter will see large price swings. Figure 1 (to be explained in

more detail in Section 4.4.1) illustrates two markets, with identical local parameters—both

have ten participants, each of whom value some three goods equally. Solely because of the

different global structure of the markets, the one on the left converges to equilibrium more

than four times as rapidly as the one on the right.

Useful quantification of the “invisible hand” must include information about rates of con-

vergence. A truly quantitative theory cannot be one-sided (bounding the rate of convergence

only from above or only from below) because bounds from both above and below are nec-

essary if we wish to compare two markets, or analyze in a single market whether observed

changes are due to external stimulation vs. being perhaps long-lived oscillations of the sys-

tem. All results of this paper are in this sense truly quantitative. Having said this we hasten to

4As expressed by A. Marshall, 1890 [42]: “This is the real drift of that much quoted, and much-

misunderstood doctrine of Adam Smith and other economists that the normal, or ‘natural,’ value of a commod-

ity is that which economic forces tend to bring about in the long run. It is the average value which economic

forces would bring about if the general conditions of life were stationary for a run of time long enough to enable

them all to work out their full effect.”
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FIGURE 1. Rapidly (Petersen) vs. slowly (Cycle) equilibrating markets, both

with n = 10 and k = 3.

add that in order to obtain rigorous results we have had to make restrictions on the markets.

Nevertheless, we think the tradeoff of connectivity with price stability should prevail more

generally. To our knowledge our results are the first, in any market model, to characterize

the effect of market connectivity upon the stability of prices.

Results and Structure of the Paper. In Section 2 we give a rigorous description of the

market model, along with some necessary technical preliminaries, culminating in a generator

matrix for the dynamics.

In Section 3, first, we provide the fundamental mathematical analysis of the dynamics,

showing that they are of second order in the matrices describing the local interactions, and

representable in terms of a market “Laplacian;” second, we relate the convergence rate of

the dynamics to the quality of connectivity of the market as expressed by its edge expansion,

a notion from Markov chain theory. We also explain why these results are robust to small

errors in measurement of the market properties.

In Section 4 we address a special class of markets in which stronger results may be ob-

tained. In these so-called circulation-free markets, (a) We give a tighter bound on conver-

gence rate, in terms of the spectral gap of the Laplacian. (b) We give a stronger robustness

guarantee (e.g., we can characterize market dynamics fairly accurately knowing only the

prices and purchasing patterns). (c) Perhaps most interestingly, we will be able to exactly

relate the convergence rate of the market on the one hand, with the variance of prices under

conditions when the market is not in isolation but is continually perturbed by external noise.

This last is an analogue of what in physics is called a fluctuation-dissipation theorem.

Tâtonnement-type processes arise naturally in several disciplines. We will be taking ad-

vantage throughout the paper of some of the theory that has been previously developed. We
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will also briefly discuss in Section 5 some of the non-market dynamics where similar pro-

cesses arise. We also raise there some questions for future work.

2. MARKET MODEL AND DYNAMICS

2.1. Agents and utilities. We consider an Arrow-Debreu market on n (n ≥ 2) participants

in which each participant i values an allocation xij of the goods j according to a CES util-

ity function [5] ui(x) =
(∑

j C
1−ρ
ij xρij

)1/ρ

where Cij are nonnegative coefficients, and the

parameter ρ is in (0, 1), the gross substitutes regime. It will simplify later expressions to

replace the customary ρ by the monotonically-related parameter δ = ρ
1−ρ which ranges in

(0,∞). (1 + δ is the elasticity of substitution.) So the utilities are

(2.1) ui(x) =

(∑
j

C
1

1+δ

ij x
δ

1+δ

ij

) 1+δ
δ

What is it that gives our markets geometry? Partly, that the utility functions ui vary from

agent to agent, but this alone is not sufficient: e.g., it includes the case of a Fisher market,

which can be viewed as an Arrow-Debreu market in which all participants are endowed

with goods in the same proportions. What is needed is also that endowments vary among

participants. In order for the geometry to emerge most sharply, we take this to the extreme

and assume a bijection between agents and goods, with agent i being the sole agent endowed

with good i, in the fixed quantity si > 0.

In the Arrow-Debreu model, at prices p = (p1, . . . , pn) (not all 0), participant i has budget

bi = sipi, which is then allocated to goods j so as to optimize basket utility; this results in

the following demand by participant i for good j:

(2.2) dij(p) =
biCij

p1+δ
j

∑
k Cik/p

δ
k

=
sipiCij

p1+δ
j

∑
k Cik/p

δ
k

Let dj =
∑

i dij be the total demand for good j. Prices pj are an equilibrium if all dj = sj

(i.e., if demands match endowments).

(Incidentally, the price-taking assumption will be strained if demand for a good is concen-

trated at very few buyers. We would be skeptical of applying our analysis to such situations,

although there is no formal obstacle to writing down markets with such demands.)

It is worth noting that the model is essentially unaffected if agents are endowed with

multiple goods, provided the set of such goods at any agent i is disjoint from the goods at

the other agents. Writing Si for the goods in agent i’s endowment, the budget at agent i

becomes bi =
∑

j∈Si sjpj; in (2.2) we have dij(p) =
Cij

∑
`∈Si

s`p`

p1+δj

∑
k Cik/p

δ
k

. Since the last expression
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is linear in the endowments s`, the dynamics are equivalent to those of a market in which

each participant i is split into several participants having identical utility functions, each

endowed with a distinct good from Si, in the same fixed quantity.

Since the parameters Cij are nonnegative, we regard them as edge-weights of a directed

graph (0 means the edge is absent). We make the following assumption:

(A) Connectedness: for every i, j there is a directed path from i to j, namely, there are

i = i0, i1, . . . , ik = j such that
∏k

`=1 Ci`−1i` > 0.

This is not a restrictive assumption. In equilibrium, the payments entering and leaving each

agent are equal. We see from (2.2) that for any i, j s.t. Cij > 0, payments are made in

equilibrium from agent i to agent j. If there exist i and j with a directed path from i to j but

not from j to i, payment equilibrium is impossible. This leaves only the case that the agents

partition into disjoint sets, each of which is connected in the sense just defined. But in this

case, each connected component of the market evolves separately. So it is suffices to study

the connected case.

2.2. Dynamics in terms of log-prices; rescalings. Let r = (r1, . . . , rn) denote the equilib-

rium prices of the system (which as noted, are known to exist and be unique). Working with

log-prices

(2.3) αj = log(pj/rj),

the Samuelson dynamics (1.1) become

(2.4) α̇j = ṗj/pj = −1 + dj/sj.

Simply by rescaling units, we may suppose that all endowments si = 1. Specifically,

consider the “primed” system with C ′ij = Cijs
δ
j , and s′j = 1. We claim that the linear

transformation p′j = pjsj commutes with the dynamics of the original and primed systems;

that is, ṗ′j|p′ = sj ṗj|p. Equivalently, working with the logarithms of prices, and using the

transformation α′j = αj + log sj , the claim establishes that this additive shift in the space

commutes with the dynamics: α̇′j|α′ = α̇j|α. To show this claim, in view of (1.1) or (2.4),

we simply need to establish that d′j/s
′
j = dj/sj . One has only to substitute (2.2) for each

system; we omit the calculation.

Introduce the functions Pi of the prices p:

(2.5) Pi(p) =
∑
k

Cik
pδk
.
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After the rescaling of the endowments, the demands in a system with unit endowments (drop-

ping the “primes”) can be written:

(2.6) dij(p) =
piCij

p1+δ
j

∑
k Cik/p

δ
k

=
piCij

p1+δ
j Pi(p)

(Subsequently we generally omit the argument p of dij(p).)

The dynamics (2.4) depend only on the demands and endowments, and the demands (2.2)

of each agent i are unchanged if all Cij are multiplied by any common positive number;

furthermore the demands generated by agent i are not affected by any Ci′j, i′ 6= i. So we

may without loss of generality rescale the Cij’s so that for every i,

(2.7) min
j:Cij>0

Cij = 1.

2.3. Generator of the dynamics. After the rescalings of the previous section, we have that

at the equilibrium prices r, dj(r) = 1 for all j. It will be convenient to abbreviateRi = Pi(r)

(thus, Ri =
∑

k Cik/r
δ
k); then the demand by i for j at equilibrium is

(2.8) dij(r) =
riCij

r1+δ
j Ri

and the equilibrium condition is the following system of equations, ranging over all j:

(2.9) 1 =
1

r1+δ
j

∑
i

riCij
Ri

.

In view of the rescaling of the endowments, and following (1.1), (2.4), the dynamics are

(2.10) α̇j = dj − 1.

Conventions: all vectors will be column vectors unless otherwise noted; for scalar c, ~c is

the column vector with all entries c; v∗ is the conjugate transpose of vector or matrix v;

for vector v, diag(v) is the diagonal matrix with diag(v)ii = vi. Vector norms are denoted

‖v‖p = (
∑
vpi )

1/p, with ‖v‖ := ‖v‖2.

By definition the equilibrium (i.e., the point at which α̇ = ~0) is α = ~0. It is clear from the

form of the demands that α̇ is continuously differentiable at any α. Consequently, α̇ can be

expressed to first order around the origin as

(2.11) α̇ = Dα

where D is the Jacobian of the demands w.r.t. α at ~0,

(2.12) Dji =
∂dj
∂αi

∣∣∣∣
~0
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Any scaling of the equilibrium price vector r is also an equilibrium (i.e., there is a ray, not

a single point, of equilibrium prices), so from (2.11) we can deduce

(2.13) ~0 = D~1

and so, D has a 0 eigenvalue. (Moreover, due to uniqueness of the equilibrium, the right-

kernel of D consists solely of span~1.) This particular eigenvalue is irrelevant to our consid-

erations: it merely expresses that the model is scale-invariant in the prices. (An alternative,

less natural approach would have been to introduce an (n + 1)’st good as numéraire.) We

express this scale-invariance in the dynamics by writing the log-prices vector α(t) as

(2.14) α(t) = ~c+ ᾱ(t)

(note ᾱ is a vector), for real c determined by the condition

(2.15)
n∑
i=1

riᾱi(t) = 0 equivalently
∑

riαi(t) = c
∑

ri

In (2.14) the term ~c is unchanging in time as we see from (2.11) and (2.13).

It turns out that many expressions simplify if we use the following diagonal matrix B to

rescale (i.e., make a change of basis in the log-prices space):

B = diag(
√
ri)(2.16)

β = Bα(2.17)

and rewrite the dynamics (2.11) accordingly:

D̃ = BDB−1(2.18)

β̇ = D̃β(2.19)

In view of (2.19) we refer to D̃ as the generator of the dynamics (for β). The decomposi-

tion (2.14) is equivalent to decomposing β as

(2.20) βi = c
√
ri+β̄i for vector β̄ determined by the condition

∑√
riβi(t) = c

∑
ri.

3. THE MARKET LAPLACIAN, DYNAMICS SEMIGROUP AND CONVERGENCE TIME

Our task is now to understand the dynamics matrix D̃. Toward this end we recall the

(normalized) Laplacian matrix of an Eulerian graph. As before we regard a matrix A with

nonnegative entries as the weighted adjacency matrix of a weighted directed graph,Aij being

the weight of edge i→ j. The vector of weighted outdegrees is ζ(A) := A~1, and we assume

that all entries of ζ(A) are positive (otherwise some of the agents would have trivial roles in



10 THE INVISIBLE HAND OF LAPLACE

the market). We say the graph or weighted adjacency matrix is Eulerian if ζ(A) = ζ(A∗).

E.g., an undirected weighted graph without isolated vertices is necessarily Eulerian. The

Laplacian matrix corresponding to A is defined to be5

(3.1) ∆(A) = I − diag(ζ(A))−1/2 · A · diag(ζ(A))−1/2.

We will be discussing the Laplacians of several different, but related, weighted graphs.

The Laplacian which exactly controls the price dynamics we call LC . In order to define it,

we start with the weighted adjacency matrix

(3.2) Kij =
Cijr

1/2
i

Rir
1/2+δ
j

.

K is nonnegative and (by assumption (A)) irreducible, and consequently, by the Perron-

Frobenius theorem, has a unique nonnegative eigenvector (henceforth called the PF vector);

the corresponding eigenvalue is real, and strictly larger in norm than any other eigenvalue.

In our case the PF vector is the same, B~1, on both the right and the left, because:

KB~1 = B~1 from the definition of R(3.3)

K∗B~1 = B~1 because r is at equilibrium(3.4)

In particular this means that if we define a weighted adjacency matrix

(3.5) W = BKB,

then W is Eulerian and B = diag(ζ(W ))1/2; thus, applying the formalism (3.1), we have

the market Laplacian

(3.6) LĈ = ∆(W ) = I −K.

For both of the matrices ∆(W ) and ∆(W )∗, the right-kernel contains B~1, as can be verified

from the calculations above; moreover both right-kernels are spanned by this vctor, due to the

uniqueness part of the PF theorem. (As noted after (2.13), characterization of the right-kernel

of ∆(W ) is also implied by the known uniqueness of the equilibrium of the dynamics.)

Remark 1. W carries significant meaning about trade in the market: combining (2.8) and (3.5)

we see that Wij is equal to the payment made, in equilibrium, by agent i to agent j for agent

j’s good. (This is generally of course different from the net payment between the two agents.)

5Some authors use I − diag(ζ(A))−1 ·A which has the advantage that diag(ζ(A))−1 ·A is row-stochastic;

our convention has the advantage that, in the circulation-free case discussed in Sec. 4, ∆(A) is symmetric.
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The tool that makes our results possible is the following theorem:

Theorem 2 (Quadratic expansion of the dynamics in terms of local interactions). The dy-

namics generator D̃ is given by the following expressions in K or in its Laplacian LĈ:

D̃ = −(1 + δ)I +K∗ + δK∗K(3.7)

= −δLĈ − (1 + δ)LĈ
∗ + δLĈ

∗LĈ(3.8)

Proof. We start by calculating D, the generator of the dynamics (2.11). First we consider

entries Djk, k 6= j. Applying (2.12) gives:

Djk =
∂

∂αk

[∑
i

dij

]∣∣∣∣∣
~0

=
∂

∂αk

[∑
i

piCij

p1+δ
j

∑
hCih/p

δ
h

]∣∣∣∣∣
~0

from (2.5) and (2.6)

=
∂

∂αk

[
pkCkj

p1+δ
j

∑
hCkh/p

δ
h

+
∑
i 6=k

piCij

p1+δ
j

∑
hCih/p

δ
h

]∣∣∣∣∣
~0

=
∂

∂αk

[
rke

αkCkj

r1+δ
j (Ckke−δαk/rδk +

∑
h6=k Ckh/r

δ
h)

+
∑
i 6=k

riCij

r1+δ
j (Cike−δαk/rδk +

∑
h6=k Cih/r

δ
h)

]∣∣∣∣∣
~0

=
(r1+δ
j Rk + δr1+δ

j Ckk/r
δ
k)rkCkj

r2+2δ
j R2

k

+
∑
i 6=k

δriCijr
1+δ
j Cik/r

δ
k

r2+2δ
j R2

i

=
rkCkj

r1+δ
j Rk

+ δ
∑
i

riCijCik

rδkr
1+δ
j R2

i

Applying (3.2), we calculate (K∗K)ij =
∑

k
CkiCkjrk

R2
kr

1/2+δ
i r

1/2+δ
j

. Using the change of basis (2.17)

we have

D̃jk = r
1/2
j r

−1/2
k Djk =

r
1/2
k Ckj

r
1/2+δ
j Rk

+ δ
∑
i

riCijCik

r
1/2+δ
k r

1/2+δ
j R2

i

= K∗jk + δ(K∗K)jk

Next we calculate entries D̃jj . Again applying (2.12),

D̃jj = Djj =
∂

∂αj

[∑
i

dij

]∣∣∣∣∣
~0

=
∂

∂αj

[∑
i

piCij

p1+δ
j

∑
k Cik/p

δ
k

]∣∣∣∣∣
~0

=
∂

∂αj

[
pjCjj

p1+δ
j

∑
k Cjk/p

δ
k

+
∑
i 6=j

piCij

p1+δ
j

∑
k Cik/p

δ
k

]∣∣∣∣∣
~0



12 THE INVISIBLE HAND OF LAPLACE

=
∂

∂αj

[
e−δαjCjj

Cjje−δαj + rδj
∑

k 6=j Cjk/r
δ
k

+
∑
i 6=j

riCij

rjeαjCij + r1+δ
j e(1+δ)αj

∑
k 6=j Cik/r

δ
k

]∣∣∣∣∣
~0

=
−δrδjRjCjj + δC2

jj

r2δ
j R

2
j

+
∑
i 6=j

−riCij(−δrjCij + (1 + δ)r1+δ
j Ri)

r2+2δ
j R2

i

=
Cjj
rδjRj

+ δ
∑
i

rirjC
2
ij

r2+2δ
j R2

i

− (1 + δ)
∑
i

Cijri

r1+δ
j Ri

= Kjj + δ(K∗K)jj − (1 + δ)r
−1/2
j

∑
i

r
1/2
i Kij

= Kjj + δ(K∗K)jj − (1 + δ)I using (3.4)

Putting these two calculations together, D̃ = −(1 + δ)I +K∗ + δK∗K as desired. �

Now let us see what Theorem 2 tells us about market stability. Start by setting K̄ =
1

1+δ
(K∗ + δK∗K). Using Theorem 2 the dynamics (2.19) solve to

(3.9) β(t) = e(1+δ)(K̄−I)tβ(0)

For a set of agents S, let 1S (the indicator vector of S) be the vector which is one on

elements of S and zero elsewhere; let 1 = 1[n] for [n] We require two definitions from the

theory of Markov chains:

Definition 3. Let A be a nonnegative matrix whose right PF vector u is the transpose of its

left PF vector. The edge expansion (a.k.a. conductance) of A is

φ(A) = min
S

{
1∗S diag(u)A diag(u)1S

min{1∗S diag(u)A diag(u)1,1∗
S

diag(u)A diag(u)1}

}
(3.10)

which in the special case that A has PF eigenvalue 1, simplifies to

φ(A) = min
S:0<

∑
i∈S u

2
i≤

∑
i/∈S u

2
i

{
1∗S diag(u)A diag(u)1S∑

i∈S u
2
i

}
(3.11)

Edge expansion is a well-known combinatorial characterization of the smallest bottleneck

in the connectivity of a weighted graph. One way to think of it is to note that, with A, u as

above, diag(u)−1A diag(u) is a row-stochastic matrix (thus a Markov chain) with invariant

measure u2
i on states i; for a set of states S, the right-hand side of (3.11) is the probability, in

the invariant measure, of leaving S in the next step, conditional on being in S. φ(A) is deter-

mined by the set minimizing this quantity, i.e., which represents a “bottleneck” to spreading

throughout the state space. To quantify this we recall the concept of mixing time, which is
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the time required for the Markov chain to almost forget its starting point. (For technical rea-

sons we write the definition in terms of the continuous-time Markov chain associated with

A, for which the time-τ transition matrix is exp(τ(diag(u)−1A diag(u)− I)).)

Definition 4. Let A be a nonnegative irreducible matrix with PF eigenvalue p > 0, whose

right PF vector u is the transpose of its left PF vector. Normalize so that u∗u = 1, and let r

be the column vector ri := u2
i . The mixing time τε(A) is the least τ such that

‖z(exp(τ · (A− pI))− uu∗) diag(u)‖1 ≤ ε

for all vectors z s.t. ‖z diag(u)‖1 = 1. Equivalently, τε(A) is the least τ such that∥∥z′(exp(τ(diag(u)−1A diag(u)− pI))− 1r∗)
∥∥

1
≤ ε

for all vectors z′ s.t. ‖z′‖1 = 1. Here r∗ represents the steady state, and z′ the initial

condition, of the Markov chain.

Theorem 5. The mixing time for the dynamics (3.9) is

(3.12) Ω

(
1

(1 + δ)φ(K̄)

)
≤ τε((1 + δ)K̄) ≤ O

(
ln( n

εmini ri
)

(1 + δ)φ2(K̄)

)
.

(With Ω, O denoting lower, resp. upper, bounds within constant factors.)

Thus, we find that a market converges rapidly if and only if it has strong connectivity in

the sense of high edge expansion.

Proof. From (3.3), (3.4) we see that B~1 is the right and left PF vector of K̄, with K̄B~1 =

K̄∗B~1 = B~1. So Definition 3, for K̄, becomes

(3.13) φ(K̄) = min
S:0<

∑
i∈S ri≤

∑
i/∈S ri

{
1∗SBK̄B1S∑

i∈S ri

}
.

Now combine Theorem 2 with the following theorem of Mihail, with A = K̄. Observe

that the dynamics (3.9) amount to speeding up the dynamics e(K̄−I)t by a factor of 1 + δ.

Theorem 6 (Mihail [48], as adapted in [45]). Let A, u be as in Definition 4, and with A

having PF eigenvalue 1. Then:

(3.14) Ω

(
1

φ(A)

)
≤ τε(A) ≤ O

(
ln( n

εmini u2i
)

φ2(A)

)
.

�
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Remark 7 (Structural interpretation). Recall from Remark 1 thatWij is equal to the payment

made, in equilibrium, by agent i to agent j; and so if S, T are sets of agents, WS,T =∑
i∈S,j∈T Wij equals the total payments in equilibrium from agents in S to agents in T .

This gives us a concrete interpretation what it means for a market to have a “bottleneck.”

Examining φ(K̄) in (3.13) we see that the numerator equals 1
1+δ

(WS,S + δ1SBK
∗KB1S):

due to the first term, any partition of the agents into two blocks with large trade between

them, has large edge expansion in K̄. The contrapositive is that slow price equilibration

implies the existence of two blocks which trade very little with each other.

Interestingly, the other term which can hasten equilibration is the quadratic term in φ(K̄),

which represents indirect price interaction between sellers who share a common buyer.

Remark 8 (Computation). There are efficient algorithms to find an approximately-worst bot-

tleneck in a graph (see [65] for an exposition); these can be used to diagnose a connectivity

flaw in a market which is observed to be slowly-converging.

Remark 9 (Robustness). Measurement of the activity in a market will necessarily be impre-

cise, so one should ask whether the bounds of Theorem 5 are robust to perturbation in the

market parameters. Fortunately, a positive answer is implicit in the form of the bounds. Any

error in the stationary prices ri affects the right-hand side of (3.12) directly only through a

logarithm; while errors in the ri and in the Cij affect K (and therefore K̄) with exponents re-

spectively at most 2+2δ and 1. The edge conductance is just a sum of entries of a submatrix,

so its sensitivity to error is similar.

4. CIRCULATION-FREE MARKETS

4.1. A further condition. We now turn our attention to markets that, beside the innocuous

assumption (A), satisfy an additional condition:

(B) Circulation-free: let i0, i1, . . . , ik = i0 be any cycle through the vertices. Then∏k
`=1 Ci`−1i` =

∏k
`=1 Ci`i`−1

.

(It follows that Cij = 0 if and only if Cji = 0. Write i ∼ j if Cji > 0.) This assumption

is strong. As we will show in Theorem 10, it implies that the net payment between any two

agents, in steady state, is 0. That is to say, when the market is in steady state, all trade could

be achieved by barter. Payments and prices are still essential however, since they drive the

Samuelson dynamics.

The reason for imposing condition (B) is that it enables spectral techniques which consid-

erably tighten the general bounds given earlier (Sec. 4.4). This does not mean that spectral
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estimates are necessarily be bad when (B) is not satisfied; there are markets violating the

assumption for which the general bounds cannot be improved, but these are exceptional.

The gap between spectral and edge-expansion estimates is most noticeable when the market

Laplacian is not diagonalizable or the diagonalizing matrix has poor (i.e., large) condition

number.

4.2. Quantifying local and global disparity. Two “disparity” parameters of a circulation-

free market emerge as useful. To define these, start by defining for every two agents i, j the

value

ψi,j =
k∏
`=1

Ci`−1i`

Ci`i`−1

,

where i = i0, i1, . . . , ik = j is a path in the graph; to see this is well defined, consider any

other path i = i0, i
′
1, . . . , i

′
k′ = j, form the cycle i0, i1, . . . , ik−1, j, i

′
k′−1, . . . , i

′
1, i0, and apply

the circulation-free property. Consequently we can fix i0 to be a vertex such that ψi0,j ≥ 1

for all j, and simplify notation by writing

(4.1) ψj = ψi0,j

(with ψi0 = 1). For future reference, observe that we have for any edge i ∼ j the identity

(4.2) ψiCij = ψjCji.

Now set:

(1) ψ = maxj ψj . Recall that minj ψj = 1, so ψ is a measure of the global disparity in

the desirability of various goods in the market. (We will later also show it roughly

measures the global disparity in prices.)

(2) γ = maxi
∑

j Cij . This is a measure of the local (at an agent) disparity among

the utilities of the goods to which that agent assigns positive utility. (Recall we

normalized so that each nonzero Cij is at least 1.)

4.3. Properties of Equilibrium.

4.3.1. Existence, uniqueness and detailed balance. The equilibrium equations (2.9) are ho-

mogeneous of degree 1 in r, so (as already noted) any scalar multiple of an equilibrium

vector r is also an equilibrium vector. Subsequently when we discuss uniqueness, “up to

scaling” is implied. Due to connectedness of the market, no price can be 0 at an equilibrium.

The existence of an equilibrium in our setting is a corollary of the theorem of Arrow and De-

breu [6] and McKenzie [43] (improving on an earlier argument of Wald, see [32, 20]). (We

remind that this is in the regime δ > 0, among the other assumptions detailed in Section 2.)
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In fact, as the utility functions are strongly concave and twice continuously differentiable,

the equilibrium is unique (up to an overall scale factor). For convenience a short proof of

uniqueness is provided in Appendix C.

We now show that the circulation-free condition implies an important property of the

market. Adopting a term from statistical physics, we say that a market is in detailed balance

at prices π if for every i, j, the payments from i to j equal those from j to i. The payment

from i to j is dijπj so (applying (2.6)) the detailed balance conditions are

(4.3)
πiCij
πδjPi(π)

=
πjCji
πδiPj(π)

( = total payments in each direction across edge ij),

or

(4.4)
π1+δ
i Cij
Pi(π)

=
π1+δ
j Cji

Pj(π)

Theorem 10. At equilibrium r, a market satisfying the circulation-free condition (B) is in

detailed balance.

Proof.

Lemma 11. There exist prices π satisfying the detailed balance conditions (4.4).

Proof. For p a price vector, let pmax = maxj pj , pmin = minj pj , and p̃ = pmax/pmin. Let | · |
denote geometric mean, so |p| =

∏n
1 p

1/n
i .

Let K = {p : |p| = 1, p̃ ≤ γψ}. Let f 0 : K→ Rn,

(f 0(p))j = (ψjPj(p))
1

1+δ .

Let f : K → Rn, (f(p))j = (f 0(p))j/|f 0(p)|. By (4.2), a fixed point of f is a solution

of (4.4).

We now claim that f maps K into K. By construction, |f(p)| = 1; what we have to show

is that f̃(p) ≤ γψ. This is equivalent to showing that f̃ 0(p) ≤ γψ. We have

(f 0(p))j ≤
(
ψγ

pδmin

) 1
1+δ

(f 0(p))j ≥
(

mini ψi
pδmax

) 1
1+δ

=

(
1

pδmax

) 1
1+δ

so for p ∈ K,

f̃ 0(p) ≤
(
ψγp̃δ

) 1
1+δ ≤

(
ψγ(γψ)δ

) 1
1+δ = γψ

justifying the claim. Since K is compact and convex and f is continuous on K, the Brouwer

fixed point theorem ensures f has a fixed point in K. �
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Now, using the demand functions (2.6), we compute the total demand at j given detailed-

balance prices π:

(4.5)
∑
i

dij(π) =
∑
i

πiCij

π1+δ
j Pi(π)

=
∑
i

π−δi π1+δ
j Cji

π1+δ
j Pj(π)

=
1

Pj(π)

∑
i

Cji
πδi

= 1

where in the second equality we have applied the detailed balance conditions (4.4).

Thus, prices π satisfying detailed balance (Lemma 11 has shown these exist) necessarily

satisfy the conditions (2.9) characterizing an equilibrium r. Since this equilibrium is known

from classical results (or, to make this self-contained, from Lemma 27) to be unique, it

follows that the equilibrium prices r satisfy detailed balance. �

On the basis of Theorem 10 we can now rewrite identity (4.4) as

(4.6) r1+δ
j CjiRi = r1+δ

i CijRj

Substituting this expression into the definition (3.2) gives the remarkable fact that for markets

satisfying the circulation-free condition (B), K is symmetric, and can be rewritten

(4.7) Kij =

√
CijCji
RirδiRjrδj

.

4.3.2. Bound on the equilibrium prices. We stated earlier that ψ can be regarded as a rough

measure of the price disparity in the market. We justify this in Proposition 13.

Lemma 12. maxi∼j
ri
rj
≤ γ.

Proof. Let i ∼ j be such that µ = ri
rj

= maxi′∼j′
ri′
rj′

. Applying (4.6):

µ1+δ =
r1+δ
i

r1+δ
j

=
CjiRi

CijRj

=
Cji
∑

k
Cik
rδk

Cij
∑

`
Cj`
rδ`

≤
(
µ2rj
ri

)δ
Cji
∑

k Cik
Cij
∑

`Cj`
=
µδCji

∑
k Cik

Cij
∑

`Cj`
≤ µδγCji∑

`Cj`
≤ µδγ.

�

Proposition 13. For the equilibrium prices r,

1

γ

(
ψj
ψi

) 1
1+2δ

≤ rj
ri
≤ γ

(
ψj
ψi

) 1
1+2δ

Proof. First we note the inequalities

(4.8) r−δi γ−δ ≤ Ri ≤ r−δi γ1+δ

For the lower bound on Ri, we apply Definition 2.5, in the numerator using that there is

a Ci` ≥ 1, and in the denominator using Lemma 12. The upper bound is similar, simply
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using the definition of γ. Now to show the proposition, observe that (4.2) and (4.4) yield by

telescoping product another expression for ψj:

(4.9) ψj =
r1+δ
j Ri0

r1+δ
i0

Rj

so ψj
ψi

=
r1+δj Ri

r1+δi Rj
. The proposition follows by application of (4.8) to Ri and Rj . �

4.4. Spectral bounds on the convergence rate. For circulation-free markets we can obtain

more precise bounds on convergence rate than for general markets. In order to do this we

define:

Definition 14. The convergence rate χ(C) of market C (at a fixed value of the parameter δ,

which is suppressed), is defined to be (where ‖ · ‖∗ is any vector norm—the choice does not

affect the definition):

χ(C) = sup
β̄(0)

lim
t→∞

1

t
log

(
‖β̄(0)‖∗
‖β̄(t)‖∗

)
.

It will follow from Theorem 15 that the convergence rate is nonnegative and that rate zero

can occur only in a market that partitions into disconnected submarkets, a case excluded by

assumption (A). We can therefore confine attention to markets with positive convergence

rate. We call the inverse of the convergence rate the convergence time: roughly, this is the

time within which any perturbation from equilibrium will shrink in norm by a constant factor.

One may think of it as the “half-life” of perturbations from equilibrium.

There is a well-developed theory in which the connectivity of an undirected graph is use-

fully measured by a single number, its algebraic connectivity, defined as the second eigen-

value λ of the Laplacian matrix associated with the graph. (This is also equal to the spectral

gap since the first eigenvalue of the Laplacian is always 0.) We emphasize that rapid equili-

bration can occur even in very sparsely connected markets. (For example, sparse but random

connections almost always generate a rapidly-equilibrating network.) It is not local degree,

but global quality of interconnection, that matters.

For a symmetric matrix A let λ↓i(A) denote the i’th-largest, and λ↑i(A) the i’th-smallest,

eigenvalue; recall A has an orthogonal basis of eigenvectors. Recalling the formation of

Laplacians in (3.1), it is well known that for any symmetric nonnegativeA, 0 = λ↑1(∆(A)) ≤
. . . ≤ λ↑n(∆(A)) ≤ 2; and that the rank of ker(∆(A)) is the number of connected compo-

nents of A. Note that ∆ is invariant to scaling of its argument, or homogeneous of degree 0.

As argued in Section 4.3.1, under condition (B),K is symmetric, and therefore so areW and



THE INVISIBLE HAND OF LAPLACE 19

0.5 1.0 1.5 2.0
λ

0.5

1.0

1.5

2.0

Q(1, λ)

Q 1
4
, λ

Q(0, λ)

FIGURE 2. Q(δ, λ): linear in δ, quadratic in λ

LĈ . Taking A = W we have from Eqn. 3.6 that λ↑i(LĈ) = 1−λ↓i(K); applying Theorem 2,

(3.8), we find that D̃ = −(1 + 2δ)LĈ + δLĈ
2. Therefore, defining Q to be

(4.10) Q(δ, λ) = (1 + 2δ)λ− δλ2,

we conclude that our dynamics generator D̃ has a real spectrum, determined as follows by

LĈ : for every eigenvalue λ ofLĈ ,−Q(δ, λ) is an eigenvalue of D̃, with the same eigenvector.

Figure 2 shows Q for λ in [0, 2] for several values of δ. The slowest-converging mode of our

system (recall the dynamics are (2.19)) is the eigenvector corresponding to the eigenvalue

λ↓2(D̃), because (with ‖ · ‖ denoting Euclidean norm):

(i) For all β̄(0) satisfying (2.20), ‖β̄(t)‖ ≤ ‖β̄(0)‖ · eλ↓2(D̃)t

(ii) For some β̄(0) 6= 0 satisfying (2.20), ‖β̄(t)‖ = ‖β̄(0)‖ · eλ↓2(D̃)t

The quadratic dependence of the dynamics on the Laplacian marks an interesting change

from the usual linear dependence that arises in the context of continuous-time Markov chains.

Qualitatively however, predictions are similar because for λ near 0, Q scales to first order

proportionally to λ.

Based on Theorem 2, Assumption (B), Properties (i),(ii) and Definition 14 we have:

Theorem 15 (Convergence Rate Characterization for Circulation-Free Markets).

χ(C) = −λ↓2(D) = λ↑2(Q(δ, LC)).

We note that the kernel of LC equals span(B~1); this is an immediate consequence of

Theorem 2 and our comment following (2.13) regarding the right-kernel of D.

Only for markets with extremely large Laplacian spectral gaps can the largest nonzero

eigenvalue of D̃ not correspond to the smallest nonzero eigenvalue of LĈ . If we want to

express Theorem 15 directly in terms of the spectrum of the Laplacian (i.e., exchange the Q
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and λ↑2 operations) then this possibility creates a small technical complication, accounted

for in Theorem 16 by the “2” within the min:

Theorem 16 (Convergence Rate for Circulation-Free Markets, version 2). Q(δ, λ↑2(LC)) ≥
χ(C) ≥ min{Q(δ, λ↑2(LC)), 2}.

Proof. Due to Theorem 15 every eigenvalue λ of LC maps to an eigenvalue −Q(δ, λ) =

−(1 + 2δ)λ+ δλ2 of D̃ = BDB−1. The mapping Q is monotone increasing in λ throughout

[0, 1 + 1
2δ

]; if 1 + 1
2δ
< 2 it then descends, symmetrically, to 2 at λ = 2. Also, Q(δ, 1

δ
) = 2.

(See Figure 2.) Thus, sufficient conditions that λ↓2(D̃) = −Q(δ, λ↑2(LC)) include (a) that

the spectrum of LC is contained in [0, 1 + 1
2δ

], or (b) that λ↑2(LC) ≤ 1
δ
.

Clause (a) will occur if W is “far from bipartite,” in particular if there is sufficient local

consumption of goods (i.e., the coefficients Cjj are large enough). Clause (b) is in particular

guaranteed if δ ≤ 1/2.

Even outside these favorable cases, note that for any λ > 1 + 1
2δ

, Q(δ, λ) ≥ 2. Conse-

quently in all cases:

(4.11) −Q(δ, λ↑2(LC)) ≤ λ↓2(D̃) ≤ max{−Q(δ, λ↑2(LC)),−2}

�

Remark 17. A famous pair of inequalities connects between combinatorial notion of con-

nectivity, and the algebraic one which refines it. These are the discrete Cheeger inequalities

(see e.g., [13, 2, 1, 60]). They show for any weighted graph W that

(4.12) φ(W )2/2 ≤ λ↑2(∆(W )) ≤ 2φ(W )

where φ(W ) is the edge expansion, defined in (3.13).

4.4.1. A simple application. We can apply Theorem 16 to contrast the two markets illus-

trated in Figure 1. With Cij = 1 for every edge here (including self-loops), every participant

has the same “degree,” that is, there is a k such that |{j : Cij = 1}| = |{j : Cji = 1}| = k

for all i; consequently equilibrium prices are uniform. Specifically, each market has ten par-

ticipants and locally the markets have the same parameters: each participant is interested in

some three goods (equally), and not at all in any other good. Where the markets differ is in

their global connectivity. The market on the right is connected only by a long cycle; price

disturbances have to propagate all the way around the cycle. That on the left (known as the

Petersen graph) has smaller diameter (every two agents are within distance 2, compared with

5 on the right), and between any two agents one may find 3 edge-disjoint paths (compared
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with only 2 on the right). Thus both in terms of distances and in terms of resilience to discon-

nection, the market on the left is better connected. One should expect prices in the market

on the left to converge more rapidly, and Theorem 16 affirms this intuition. For the Petersen

market, λ↑2(LC) = 2/3; while for the cycle market, λ↑2(LC) = (3 −
√

5)/6 ∼= 0.1273.

We can compare the convergence rates at, say, δ = 1/4: we find for the Petersen market

Q(1/4, λ↑2(LC)) = 8/9 ∼= 0.8889 and for the cycle market Q(1/4, λ↑2(LC)) ∼= 0.1869.

Thus the convergence time for prices in the cycle market is over four times longer than it is

in the Petersen market, demonstrating that the impact of market structure upon convergence

time can be very substantial, even in small markets.

4.5. Market comparisons; stability of the Laplacian. The dependence of LĈ on C is

somewhat indirect: one must first obtain the stationary prices r, then combine this with the

market parameters C to form K as in (3.2), and finally apply (3.6). It is worth asking, there-

fore, whether it is possible to obtain useful bounds with less detailed information, e.g., if only

the stationary prices (which might easily be observed, with some noise) or only the trading

patterns are known. Likewise, even if in principle we can collect full information about LĈ ,

in practice we will know less. What are the the implications for the bounds on dynamics

and convergence time? This is a continuation of the question we posed for general markets

in Remark 9. In the circulation-free case we can give even more precise answers thanks to

Lemma 18 which establishes stability of symmetric matrix Laplacians. (This lemma seems

to be new. Analogous lemmas are known, which apply in more general circumstances but

yield weaker conclusions [21].) First, a definition: For two n× n symmetric weighted adja-

cency matrices W, W̃ , let

(4.13) ν = ν(W, W̃ ) =

(
max
i,j

Wij

W̃ij

)
·

(
max
i,j

W̃ij

Wij

)
,

with the ratios taken as 1 when both numerator and denominator are 0. (Thus ν ≥ 1, with

ν = 1 only if there is a c 6= 0 s.t. W = cW̃ .)

Lemma 18 (Laplacian Stability). For two n × n symmetric weighted adjacency matrices

W, W̃ ,

λ↑2(∆(W̃ )) ≤ ν(W, W̃ ) · λ↑2(∆(W )).

For all values of ν this bound is best possible.

(Proof in Appendix A.)
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In order to apply the lemma we need to bound ν; for this we will rely on the market

disparity measures γ and ψ. The first part of the comparison theorem assumes knowledge

only of γ, ψ, and the underlying graph, which we describe with the matrix U :

(4.14) Uij = 1 if Cij > 0, Uij = 0 if Cij = 0.

The second part of the comparison theorem assumes that we know the graph, and γ, and the

equilibrium prices. If one is studying a functioning market near equilibrium then likely one

can observe the prices. Let E denote the weighted adjacency matrix

(4.15) Eij =
√
rirj on edges i ∼ j of the network (and 0 elsewhere).

Theorem 19 (Market Comparison Bounds). In the following expression, (1) For bounds

using the unweighted Laplacian, set L = ∆(U) and u = ψγ2+δ; (2) For bounds using the

equilibrium prices Laplacian, set L = ∆(E) and u = γ1+δ.

Q(δ,min{uλ↑2(L), 1 +
1

2δ
,

n

n− 1
}) ≥ χ(C) = −λ↓2(D̃) ≥ min{Q(δ,

λ↑2(L)

u
), 2}.

Before beginning the proof we make several notes upon this theorem. First, in order to

apply either bounds (1) or (2), one must know a little more than just the current prices in

the market: one must also know at least which allocations (of good j to participant i) are

nonzero. Second, (2) is stated in terms of the equilibrium prices, which in principle are

unknown, but this is not a significant limitation since all our results pertain to the regime in

which dynamic prices are a small perturbation of equilibrium. Third, the “min” expressions

complicate the bounds in the theorem, but the main cases of interest for the theorem are

those in which u is small (so not much is lost by the eigenvalue bound) and λ↑2(L) is not too

large (so it, and not λ↑n(L), is decisive in the dynamics). In these situations, the expression

simplifies to

Q(δ, uλ↑2(L)) ≥ χ(C) ≥ Q(δ,
λ↑2(L)

u
).

A sufficient condition for this simplification is that δ ≤ 1 and uλ↑2(L) ≤ 1; see Remark 23.

Also before proving Theorem 19 let us exhibit that ψ can be exponential in the network

size even if γ is bounded. It is therefore highly advantageous to know the equilibrium prices

(i.e., use bound (2)) when applying these results.

Example 20. Take δ = 1. Fix any a > 1 and create a market among participants 1, . . . , n

arranged in a chain, as follows. Cij is nonzero only for |i− j| ≤ 1. For such i, j, Cij = aj−i.

Up to some edge-effects, prices in this network are proportional to a2i. Thus ψ ∈ Θ(a2n).

Toward proving Theorem 19 we start with a lemma about the equilibrium prices:



THE INVISIBLE HAND OF LAPLACE 23

Lemma 21. For any i ∼ j, γ−2−2δ ≤ CijCji
rδiRir

δ
jRj
≤ 1. That is, γ−1−δ ≤ Kij ≤ 1.

Proof. The upper bound follows by dropping most terms in the denominator, leaving only

rδi
Cij
rδj
rδj

Cji
rδi

.

For the lower bound we apply the upper bound in (4.8) to both Ri and Rj; this upper

bounds the denominator by γ2+2δ. The numerator is lower bounded by 1. �

Proof of Theorem 19: The proof breaks into two lemmas. The first is a general bound

on the convergence rate of our market (with weighted adjacency matrix W and Laplacian

LC = ∆(W )), in terms of two features of any other weighted adjacency matrix W ′: the

spectrum of its Laplacian, and ν(W,W ′). The second lemma bounds ν(W,U) and ν(W,E);

applying the first lemma with each of these bounds then yields each of the parts of the

theorem.

Lemma 22. Let ν = ν(W,W ′). Then

−Q(δ,min{νλ↑2(∆(W ′)), 1 +
1

2δ
, 1 +

1

n− 1
}) ≤ λ↓2(D̃)

≤ −Q(δ,min{λ↑2(∆(W ′))/ν, 1/δ}).

Proof. For the first inequality in the Lemma, recall λ↓2(D̃) ≥ −Q(δ, λ↑2(LC)) from (4.11);

also note that Q(δ, λ) is monotone increasing in λ until the global maximum at 1 + 1
2δ

.

We have two upper bounds on λ↑2(LC): λ↑2(LC) ≤ νλ↑2(∆(W ′)) from Lemma 18, and

λ↑2(LC) ≤ 1 + 1
n−1

because Tr(LC) ≤ n (see (3.1)) and λ↑1(LC) = 0. The first inequality

follows.

For the second inequality, sinceQ(δ, 1
δ
) = 2, the upper bound equals max{−Q(δ, λ↑2(∆(W ′))/ν),−2}.

Now recall λ↓2(D̃) ≤ max{−Q(δ, λ↑2(LC)),−2} from (4.11). If λ↓2(D̃) > −2 then nec-

essarily Q(δ, λ↑2(LC)) < 2, and then we must have λ↑2(LC) < min{1/δ, 2}. This implies

Q(δ, x) is monotone for x ∈ [0, λ↑2(LC)]; then applying λ↑2(∆(W ′))/ν ≤ λ↑2(LC) from

Lemma 18, we find Q(δ, λ↑2(LC)) ≥ Q(δ, λ↑2(∆(W ′))/ν). �

Remark 23. In many cases of interest the bounds in Lemma 22 will be determined by the

λ↑2(∆(W ′)) term. Specifically, this is the case if νλ↑2(∆(W ′)) ≤ min{1, 1/δ}. (Note,

Q(δ, x) is monotone increasing and ≤ 2 for x ∈ [0, 1/δ]. This demonstrates the case

δ ≥ 1 because then 1/δ ≤ 1 + 1
2δ
, 1 + 1

n−1
. For δ < 1, use that max0≤x≤1 Q(δ, x) =

min1≤x≤2 Q(δ, x).) More generally, this will also be the case in any network with λ↑2(∆(W ′))

small enough (i.e., a network that is not an excellent expander), unless ν is large (but if

ν is large then of course one cannot expect much benefit from the comparison theorem).
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Nevertheless it is worth pointing out an example, even with ν = 1, in which the bound is

not determined by λ↑2(∆(W ′)). Take the complete bipartite graph K2,2 with uniform edge

weights. Its Laplacian spectrum is 0, 1, 1, 2. For δ > 1/2 the critical eigenvalue here is not

λ↑2(∆(K2,2)) = 1, but λ↑4(∆(K2,2)) = 2, and correspondingly the convergence rate is 2.

Lemma 24. ν(W,U) ≤ ψγ2+δ and ν(W,E) ≤ γ1+δ.

Proof. Consider from (3.5) the entries of the weighted adjacency matrix. Applying (4.7) and

(2.16) we have Wij =

√
CijCjir

1−δ
i r1−δj

RiRj
, and using Lemma 21 gives

(4.16)
√
rirjγ

−1−δ ≤ Wij ≤
√
rirj.

Earlier (Section 4.3) we bounded the variation in prices in terms of γψ, and so we have that

if Wij 6= 0 then for any i′, j′: Wi′j′/Wij ≤ ψγ2+δ. This implies the first bound in the lemma.

The second bound in the lemma follows immediately from (4.16). �

This completes the proof of Theorem 19. �

Remark 25 (on the necessity of the dependences on γ and ψ in Theorem 19). First, con-

cerning γ: it is clear that the bounds in the theorem must depend on γ because very “weak”

edges, those expressing little interest of participant i in good j, are in the unweighted graph

indistinguishable from any other edge. Weak edges express themselves in our parameters by

forcing γ to be large.

Next, concerning ψ: the main difference in the strengths of Parts 1 and 2 of the theorem is

that in the latter we do not lose the factor of ψ due to the disparity in desirability of goods.

One might ask whether the dependence on ψ in the bound of Part 1 is an artifact of the anal-

ysis. The answer is that it is not: it is unavoidable. In markets with very unbalanced prices,

even if γ is bounded, the Laplacian ∆(U) of the unweighted graph can be an exponentially

poor proxy for the actual market Laplacian LC . We show this in Appendix B.

4.6. Markets subject to noise. The entire discussion above—like most work in general

equilibrium theory—has presumed that we are discussing the market as a “closed system” (to

use terminology from physics) and, moreover, that the Samuelson dynamics are implemented

perfectly by the agents. However, in economics no less than in physics, it is necessary to

consider open systems, subject to random noise from external sources. Moreover the agents

themselves might not be perfectly reliable and deterministic actors.
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In this setting one can no longer write down the state of the market as a particular vector

β. Instead, the state at time t is a probability distribution with density ρ(t, β) over vectors β.

This is analogous to what is called in physics a thermal state.

There is a well-known framework for extending the linear dynamics (2.19) for a sym-

metric matrix D̃, to the noisy case. This is the Ornstein-Uhlenbeck stochastic differential

equation [66]

(4.17) β̇ = D̃β + V Ω̇

where Ω is a Wiener process and V is any real matrix (which shapes how the Wiener process

impacts the otherwise deterministic dynamics). We recollect that B~1 is in the right-kernel

of D̃, which represents the fact that there is no force in the market counterbalancing overall

inflation or deflation of prices. In order to discuss a normalized thermal state we therefore

need to project the dynamics into the orthogonal, (n − 1)-dimensional subspace. Set J to

be the all-ones matrix, Π = I − 1
n
J , and consider P = BΠB−1 as a projection operator on

column vectors; the invariant subspace of this projection is ImP = (B−1~1)⊥. Set βP = Pβ.

Then the noise-free dynamics (2.19) within the subspace (B−1~1)⊥ are β̇P = D̃βP . For the

noise process we restrict ourselves to isotropic diffusion V =
√

2I . So (4.17) is instantiated

by

(4.18) β̇P = D̃βP +
√

2P Ω̇

which again leaves (B−1~1)⊥ invariant. Under these time dynamics, from an initial condi-

tion, we have at time t a density ρP (t, βP ) on (B−1~1)⊥. Let φ be the following quadratic

“confining potential” on the subspace (B−1~1)⊥:

φ(βP ) = −1

2
β∗P D̃βP

Note φ is nondegenerate (i.e., 0 only at the origin). Now the stochastic time evolution (4.18)

can be written as a Fokker-Planck equation [54] for the density:

(4.19)
∂ρP
∂t

= ∇ · (∇ρP + ρP∇φ)

Here∇ is the gradient operator w.r.t. β and∇ ·∇ =
∑

∂2

∂2βi
is the “analytic Laplacian” [35]

(which is negative semi-definite). These dynamics diagonalize in the basis of eigenvectors

of D̃. It is known [66, 54, 41] that ρP converges for large t to the Gaussian density

(4.20)

(
n∏
i=2

−λ↓i(D̃)

2π

)1/2

e−φ
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(One can readily verify that this density is stationary for (4.19).) Thus the stationary distri-

bution along the i’th eigenvector is Gaussian about the origin with variance −1/λ↓i(D̃).

Applying the preceding discussion to the slowest mode (i.e., λ↓2(D̃)) of the system, we

can now make a concrete conclusion regarding the “thermal” steady state:

Theorem 26 (Steady State Distribution). In steady state, for a market subject to the infin-

itesimal noise model described above, the distribution on βP is multivariate normal, with

maximum directional variance proportional to 1/χ(C). (Equivalently, proportional to the

half-life of perturbations in the isolated market.)

We can state this theorem as a scaling law. (Our proof shows the law only for infinitesimal

white Gaussian noise. But we believe it is robust.)

The following two quantities are proportional to each other:

(1) The convergence time of prices to equilibrium—for the market in isolation (i.e., under

the pure dynamics (2.11)).

(2) The variance of prices—for the market in steady-state distribution at a fixed level of

external noise.

This connection between two properties of a system with restorative and diffusive forces—

its speed of response to an externally-forced disturbance, vs. the variance of its properties in

a thermal state—is a classic one in physics, known as a fluctuation-dissipation theorem.

We conclude with a note on the magnitude of the effect under discussion. Earlier we al-

ready illustrated with a concrete example how strongly the connectivity of a graph can affect

its leading Laplacian eigenvalue. In fact, it is well understood in the graph theory literature

what the extreme possible values of this eigenvalue are—with the following consequence (in

view of Theorem 26). Fix any k ≥ 3 and fix the CES parameter δ. For connected networks

of n agents in which all Cij are 0 or 1, and every node has k neighbors, χ(C) may range

from a constant (independent of n, the number of agents) down to a constant times 1/n2.

Thus even in markets of such limited form, the variance of the price distribution is sensitive

to the market structure by a factor as large as O(n2).

5. DISCUSSION

5.1. Some context for our work.

Markov Chain Monte Carlo (MCMC). Some of the key tools we have been relying on

were developed by theoretical computer scientists and probabilists for the study of so-called

MCMC algorithms. Such algorithms have their roots in the early 1950s [46], but deeper



THE INVISIBLE HAND OF LAPLACE 27

understanding, and in the particular of the importance of edge connectivity in convergence

rates, awaited the late 1980s [60]. This is still an active field [59, 49, 45]. The preponderance

of work has focused on reversible processes but [48] is a key exception.

Distributed computing and control theory. In a consensus problem, multiple agents, commu-

nicating over a (usually fixed but sometimes dynamic) graph, start out with individual inputs

and are trying to compute a consensus value. Sometimes this is called sensor fusion. In an

alignment problem, agents are trying to physically align themselves, somewhat like birds

within a flock. For both of these problems (and many similar variants), researchers have in-

vestigated a variety of message-passing distributed protocols such as gossip algorithms and

belief propagation. By and large these are first-order iterative adjustment methods—namely,

varieties of tâtonnement; and the Laplacian of the communication graph plays a key role in

the convergence analysis. See [52] for a survey of this literature.

Network effects. There has been substantial recent interest in analyzing how network struc-

tures affect resilience and contagion in economies; for a broad overview see [12]. Interest-

ingly, the primary connectivity parameter considered in the economics literature has been

vertex degrees, a purely local measure that has almost no bearing on the global connectivity

(as measured by expansion and in the symmetric case by spectral gap) that has been essential

to our work.

Formation of trading links. For some game-theoretic issues, see e.g., [38, 36, 11].

Modeling price dynamics. A variety of both non-trading (abstract auctioneer) and trad-

ing processes have been offered as models for Walrasian tâtonnement—even if only in or-

der to justify market stability.6 The question has been particularly studied in the context

of Arrow-Debreu markets: although it was shown early [4, 7, 67] that for gross substi-

tutes, continuous-time tâtonnement converges to an equilibrium, Scarf [57] famously showed

that without this assumption, it may not. This spurred the study of alternative forms of

tâtonnement [58, 39, 61, 69, 37, 30, 34, 40, 9], with stronger convergence properties. (The

connection between convergence of tâtonnement and of Newton’s method also led to Smale’s

study [63] of algorithmic complexity over R.) Work on the stability of tâtonnement began

with Hicks [31], who discussed its local stability under some conditions; Samuelson [55, 56]

6F. M. Fisher, 2011 [23]: “Whether or not the actual economy is stable, we largely lack a convincing theory

of why that should be so. Lacking such a theory, we do not have an adequate theory of value, and there is an

important lacuna in the center of microeconomic theory. . . To only look at situations where the Invisible Hand

has finished its work cannot lead to a real understanding of how that work is accomplished.”
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showed that the Hicksian conditions are neither sufficient nor necessary for stability, and

Metzler [47] showed that the Hicksian conditions are sufficient in the gross substitutes case.

Not all study of market dynamics has been on non-trading processes; out-of-equilibrium

trade models have also been developed and shown to converge, such as the Edgeworth pro-

cess [68], [50] (and see [44] §2.9), the Hahn process [27, 28], or an exchange model of

Smale [62]; however, these are less relevant to our study for several reasons, including that

the first requires coordination of large coalitions; the second and third converge to an equi-

librium that generally does not agree with the specified endowments; and the third is nonde-

terministic, as it depends upon the sequence of trade encounters. For more see, e.g., [22, 16].

Simply put, although it would be desirable to pursue our topic in a trading process, no model

with all the needed properties has yet been settled on.

It should be said that neither tâtonnement nor the existing trading models are fully re-

ductionist theories; that is, we do not have a model of individual strategic transactions from

which emerges at the market level an Arrow-Debreu market with the stated dynamics and

which equilibrates to the given endowments. Nonetheless, if one seeks quantitative state-

ments, one must work in a definite model. In the last two decades laboratory evidence has

accumulated in support of tâtonnement dynamics [53, 3, 33, 26, 19] even in markets such

as Scarf’s or Gale’s [25] where it makes surprising predictions. And it is notable that the

tâtonnement process is predictive of experimental trading dynamics, despite formally in-

volving no trade. (For more on these dynamics see [44, 51].) Because of its combination

of laboratory support and mathematical clarity, we have focused on tâtonnement and specif-

ically Samuelson dynamics in this paper.

Markets and algorithms. Recent work in computer science [17, 24, 18, 10, 15, 14, 8] fo-

cuses on tâtonnement and related processes [71] as algorithms. These papers propose sev-

eral discrete-time interpretations of Samuelson dynamics, and establish global upper bounds

on the convergence time. The highlight of this line of work from our perspective is the pa-

per [14] that relates discrete-time tâtonnement to the gradient descent optimization method,

and upper bounds its convergence time across the CES spectrum (including the complements

case, ρ < 0). However, none of these papers quantify rate of convergence in terms of the

market structure—in fact their framework does not consider the market structure at all, and

they provide only one-sided (upper) bounds on the convergence time.

5.2. Limitations of our work, and future directions. Since the intended application is to

systems (markets) whose properties will never be exactly known (or even constant in time),
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a key component of the work has been stability theorems showing that our characterization

of the market convergence rate is insensitive to inaccuracies in the market parameters; and

that rate bounds can even be obtained without measuring the market parameters but only

observing prices and knowing which allocations are nonzero.

Nevertheless, we regard these results as essentially a proof-of-concept for the project of

quantifying the stability of prices in a market, as a function of the structure of trade. An

incomplete list of challenges follows.

(1) Our results apply to utilities in CES form. It is likely that they can be generalized to

nested CES functions or other more flexible classes of utilities.

(2) Our results hold only in an infinitesimal neighborhood of equilibrium because we

have made no assumption about the form of the dynamics away from equilibrium. It

is plausible to make one more step without assuming a concrete expression for the

dynamics away from equilibrium, by assuming a bound on the quadratic correction

terms. With such a bound, one might perhaps be able to extend our convergence rate

bounds to a correspondingly-sized finite (as opposed to infinitesimal) neighborhood

of equilibrium; and one might be able to obtain an analogue of our price variance

result, if the Ornstein-Uhlenbeck solution can be mimicked for sufficiently similar

PDEs. (E.g., either of the terms on the RHS of (4.17) might be multiplied by some

slowly changing function of β.)

(3) The restrictive technical assumption (B) makes possible both treatment of markets-

with-noise, as well as tighter bounds on convergence rate of isolated markets. It

would be very valuable to obtain some analogue of the first of these without assump-

tion (B). As regards the second, this goes to the question of whether the Cheeger

inequalities hold up for directed graphs. Recently Mehta and the second author [45]

were able to show that one of these inequalities breaks down badly. However, the

counterexamples are rather delicate, and it is conceivable that reasonable assump-

tions in the market setting (e.g., bounds on asymmetry in trade) would restore the

inequalities (perhaps weakened) and enable application of spectral methods.

(4) A natural next step may be a similar study of economic models with production.

Possibly, oscillatory phenomena may occur which do not in our markets.
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APPENDIX A. PROOF OF LEMMA 18 (LAPLACIAN STABILITY)

Recall that the lemma states that for any two weighted, symmetric adjacency matrices

W, W̃ ,

λ↑2(∆(W̃ )) ≤ ν(W, W̃ ) · λ↑2(∆(W ))

and that for all values of ν this bound is best possible.

We may assume that W is connected, as otherwise its spectrum is simply the union, with

multiplicity, of the spectra of the connected components.

Note that there is always a c > 0 s.t.Wij ≤ ν1/2cW̃ij ≤ νWij for all i, j (and this serves as

an alternative definition of ν). Recalling that ∆ is invariant under rescaling of its argument,

we may assume that W̃ has been scaled so that Wij ≤ ν1/2W̃ij ≤ νWij for all i, j.

For brevity in this section let ζ = ζ(W ) = W~1 and ζ̃ = ζ(W̃ ). Let Z = (diag(ζ))1/2 and

Z̃ = (diag(ζ̃))1/2. (So also ζ = Z2~1 and ζ̃ = Z̃
2~1.) Let L = ∆(W ) and L̃ = ∆(W̃ ).

We know (comments following (3.6)) that kerL = span Z~1 and ker L̃ = span Z̃~1. By the

spectral theorem,

λ↑2(L) = inf
x: x∗ Z~1=0

x∗Lx

x∗x

and applying the linear transformation b = Z−1 x we have

(A.1) λ↑2(L) = inf
b: b∗ ζ=0

b∗ ZLZ b

b∗ Z2 b

Note that
b∗ ZLZ b

b∗ Z2 b
=

∑
i<jWij(bi − bj)2∑

i b
2
i ζ i

=: RW (b)

RW (b) is known as the Raleigh quotient of b in W .

Let b be a vector achieving (A.1), that is to say, a second-to-least eigenvector of L. So

b∗ ζ = 0 and λ↑2(L) = b∗ ZLZ b
b∗ Z2 b

.

We use b to produce a proxy b̂ for a second eigenvector of L̃:

b̂ = b− b∗ ζ̃

~1∗ ζ̃
~1

This satisfies b̂∗ ζ̃ = 0. So

λ↑2(L̃) ≤ RW̃ (b̂) =

∑
i<j W̃ij(b̂i − b̂j)2∑

i b̂
2
i ζ̃ i

=

∑
i<j W̃ij(bi − bj)2∑

i b̂
2
i ζ̃ i

Upper bounding the entries of W̃ , we have

. . . ≤ ν1/2

∑
i<jWij(bi − bj)2∑

i b̂
2
i ζ̃ i
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and lower bounding the entries of η̃, we have

. . . ≤ ν

∑
i<jWij(bi − bj)2∑

i b̂
2
i ζ i

= ν

∑
i<jWij(bi − bj)2∑

i b
2
i ζ i

∑
i b

2
i ζ i∑

i b̂
2
i ζ i

= νRW (b)

∑
i b

2
i ζ i∑

i b̂
2
i ζ i

= νλ↑2(L)

∑
i b

2
i ζ i∑

i b̂
2
i ζ i

We need to lower bound the last denominator. Recall that there is a t s.t. b̂i = bi − t. Let

f(t) =
∑

i ζ i(bi − t)2. Then f is a quadratic in t with positive leading coefficient (recall

the ζ i are positive), and ∂f/∂t = 2t
∑

i ζ i−2
∑

i bi ζ i = 2t
∑

i ζ i; so f achieves its global

minimum at t = 0. Consequently,
∑
i b

2
i ζi∑

i b̂
2
i ζi
≤ 1 and therefore

λ↑2(L̃) ≤ νλ↑2(L).

Turning to optimality of the lemma: a tight example must focus the “W ” weight away from

the “b” weight, so that large jumps in b occur only across weakly-weighted edges. This is

achieved in a chain W of three edges in which the middle edge has weight 1 and the outside

edges have weight x. One may calculate that λ↑2(∆(W )) = 1
1+x

. Now consider W̃ in which

the outside edges have weight x/ν. Then λ↑2(∆(W̃ ))/λ↑2(∆(W )) = ν 1+x
ν+x

. Fixing any ν

and taking the limit of large x we see that the supremum of this ratio is ν. �

APPENDIX B. EXAMPLE SHOWING EXPONENTIAL RATIO BETWEEN THE

CONVERGENCE RATES OF LC AND ∆(U).

In the example we use δ = 1. Fix any constant a > 1 and create a market among partici-

pants −n, . . . , n arranged in a chain, so that Cij > 0 if and only if |i− j| ≤ 1. We will show

how to set the coefficients Cij in a bounded range so that ri = a|i|. We describe the Cij’s for

i ≥ 0; the construction will be symmetric about the origin. Set all Cii = 1; then (4.6) is, first

for the edge (0, 1), then for (i, i+ 1), 1 ≤ i ≤ n− 2, and then for the edge (n− 1, n):

C01

1 + 2C01a−1
=

a2C10

C10 + a−1 + C12a−2
(B.1)

Ci,i+1a
2i

a1−iCi,i−1 + a−i + Ci,i+1a−i−1
=

a2i+2Ci+1,i

a−iCi+1,i + a−i−1 + Ci+1,i+2a−i−2
(B.2)

Cn−1,na
2n−2

a2−nCn−1,n−2 + a−n+1 + Cn−1,na−n
=

a2nCn,n−1

a−n+1Cn,n−1 + a−n
(B.3)

Next specialize to taking all Ci,i+1 = a. Then (B.2) becomes

a2i+1

a1−iCi,i−1 + 2a−i
=

a2i+2Ci+1,i

a−iCi+1,i + 2a−i−1



32 THE INVISIBLE HAND OF LAPLACE

It turns out that Ci+1,i converges rapidly to a−2 which we can see from writing Ci,i−1 =

a−2 + αi, Ci+1,i = a−2 + αi+1, and deriving the recurrence αi+1 = g(αi) where

g(x) :=
−x

a2 + 2a

maps the interval (−a−2, 1) into itself.

It remains only to show that the boundary conditions can be satisfied consistent with these

choices. In (B.1), which becomes a/3 = a2C10/(C10 + 2/a), we have C10 = 2
3a2−a , which

lies in the interval (−a−2, 1) for any a > 1. We must verify that there is a positive solution

to (B.3): this becomes an−1/(a3−n + 2a1−n) = anCn,n−1/(a
1−nCn,n−1 + a−n) and is solved

by Cn,n−1 = 1
a4+2a2−a which is indeed bounded away from 0.

Now that we have such a simple representation for the equilibrium prices, we can examine

the weighted graph. Note that all nonzero entries of K (recall (4.7)) are within a constant

factor of 1. From (2.16) we have Bii = a|i|/2, and then from (3.5) that the weight of edge

Wi,i+1 is within a constant factor of a|i|. Therefore, splitting this graph about the origin, we

see that its conductance is proportional to a−n. From the discrete Cheeger inequalities we

can conclude that the algebraic connectivity, too, is exponentially small in n. The algebraic

connectivity of the unweighted chain, by contrast, is far larger, being proportional to 1/n2.

Thus, in this market, price equilibration is exponentially slower than that of a market that

has the same connectivity structure but in which all goods have the same price.

APPENDIX C. UNIQUENESS OF THE MARKET EQUILIBRIUM

Lemma 27. There can be at most one equilibrium price vector.

Proof. Suppose there are two distinct vectors r, r′ solving the equilibrium equations (2.9),

with j a vertex minimizing r′j/rj and having an in-neighbor (that is, an i s.t. Cij > 0) which

does not minimize this ratio. Rescale r′ so r′j = rj , r′i ≥ ri for all i, and r′i > ri for some in-

neighbor i of j. Observe that since δ > 0, the quantity ri/Ri is a nondecreasing function of

the price vector r, and moreover strictly increasing in ri and in any rk for k an out-neighbor

of i. Then applying (2.9):

r′1+δ
j =

∑
i

r′iCij
R′i

>
∑
i

riCij
Ri

= r1+δ
j

a contradiction. �
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