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Abstract
We give an algorithm for source identification of a mixture of k product distributions on n bits. This
is a fundamental problem in machine learning with many applications. Our algorithm identifies
the source parameters of an identifiable mixture, given, as input, approximate values of multilinear
moments (derived, for instance, from a sufficiently large sample), using 2O(k2)nO(k) arithmetic oper-
ations. Our result is the first explicit bound on the computational complexity of source identification
of such mixtures. The running time improves previous results by Feldman, O’Donnell, and Servedio
(FOCS 2005) and Chen and Moitra (STOC 2019) that guaranteed only learning the mixture (without
parametric identification of the source). Our analysis gives a quantitative version of a qualitative
characterization of identifiable sources that is due to Tahmasebi, Motahari, and Maddah-Ali (ISIT
2018).

1. Introduction

1.1. The problem

Consider observable random variables X1, . . . , Xn that are distributed on a common range R. In
a finite mixture model, the joint distribution on these random variables is governed by a hidden or
latent random variableH supported on {1, . . . , k}, such thatX1, . . . , Xn are statistically independent
conditional on H . We consider the case of a finite range R. The hardest and most fundamental
case is when the range is binary (i.e., R = {0, 1}) and there are no further constraints relating the
distributions at the observables; the case of larger R reduces to this case (see Feldman et al. (2008),
for example). We will refer to observable random variables with binary range as “observable bits.”

This paper provides a novel algorithm that identifies the source parameters of a mixture of k
product distributions on n ≥ 3k − 3 observable bits. The algorithm requires that at least 3k − 3 of
the observable bits are ζ-separated (definition below), a sufficient condition for identifiability.

The inputs to our algorithm are empirical estimates of the “multilinear moments” E(XS) where
XS =

∏
i∈S Xi and |S| ≤ 3k − 3. The expectation of a Bernoulli random variable can be estimated

to within an additive factor of ε with sample size roughly 1/ε2. Hence, we will assume our empirical
moments deviate from their true values by an error of at most ε < ζO(k2 log k).
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The algorithm identifies the parameters of the mixture model to an accuracy of ζ−O(k2 log k)ε.
This is also roughly (up to a different constant hidden by the big-Oh notation) the statistical distance
between the empirical distribution and the output (i.e., the learned) distribution. The runtime of our
algorithm is 2O(k2)nO(k) arithmetic operations.1 2 Under a stronger assumption that all observable
bits are ζ-separated, the runtime improves to 2O(k2)n.

Our runtime of 2O(k2)nO(k) improves on the best previous kO(k3)nO(k2);3 for n extremely large
relative to k this is an improvement from nO(k2) to nO(k). The most interesting algorithmic and
statistical aspects of the problem, however, are best brought out by considering k as the primary
parameter; from this perspective (by taking n subexponential in k), it is then evident that our principal
contribution is a runtime improvement from exp((1 + o(1))k3) to exp((1 + o(1))k2).

1.2. Mixture models

Finite mixture models were pioneered in the late 1800s in Newcomb (1886); Pearson (1894) in the
context of applications in astronomy and the mathematical theory of evolution. It is difficult to do
justice to the vast literature in statistics on mixture models; see, e.g., the surveys Everitt and Hand
(1981); Titterington et al. (1985); Lindsay (1995); McLachlan et al. (2019). The computational
complexity of learning mixture models was studied starting with the seminal papers Kearns et al.
(1994); Cryan et al. (2001); Dasgupta (1999); Freund and Mansour (1999). The machine learning
community has shown recent interest in learning mixtures of product distributions for pattern recog-
nition. Motivating applications abound in population genetics, bioinformatics, image recognition,
text classification, and other areas, e.g., Pritchard et al. (2000); Ji et al. (2005); Juan and Vidal (2004);
Juan and Vidal (2002). The algorithms in this context are primarily based on the method of iterative
Expectation Maximization (EM) clustering (e.g., Juan et al. (2004); Li et al. (2016); Palmer et al.
(2016); Carreira-Perpiñán and Renals (2000)). As detailed further below, in this genre provable
guarantees of source identification are provided in Najafi et al. (2020), but the runtime depends
exponentially on the sample size, and a very large n is required. In the theory of computing literature,
special cases and variants of learning mixtures of product distributions were considered in Cryan et al.
(2001); Freund and Mansour (1999); Chaudhuri and Rao (2008); Arora et al. (2012); Anandkumar
et al. (2012a,b); Rabani et al. (2014); Li et al. (2015); Kim et al. (2019); Chen and Moitra (2019);
Gordon et al. (2020). A more detailed account on the previous results Feldman et al. (2008); Chen
and Moitra (2019) on mixture learning is given below.

1.3. Identification (parameter estimation) vs. learning

The question of source identification dates back in the statistics literature at least to 1950 Koopmans
and Reiersol (1950); Koopmans (1950); Teicher (1963); Blischke (1964); Yakowitz and Spragins
(1968). This is still a thriving area of research (see, e.g., Carreira-Perpiñán and Renals (2000);
Allman et al. (2009); Vandermeulen and Scott (2015); Tahmasebi et al. (2018); Ritchie et al. (2020);
Aragam et al. (2020)). From a computational perspective, the “learning” vs. “source identification”

1. We note that the runtime relates to the post-sampling computation, after aggregating the empirically observed
frequencies. There are good reasons for making this distinction. Collecting the sample and computing the frequencies
is computationally trivial. It can often be done under a streaming model or in parallel. Or the frequencies might be
available from an external source.

2. We suppress here dependence on the mixture weights.
3. This previous work actually focused on the “learning” problem; see Section 1.3. We suppress here dependence on the

learning accuracy.
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contrast was raised in Freund and Mansour (1999), in the context that interests us here of learning a
mixture of several (in that work, two) binary product distributions. “Learning” means computing
any hypothetical model that generates observable statistics close to the empirical ones. “Source
identification” means computing a model that is close in parameter space to the true model underlying
the empirical statistics. Clearly, source identification is a more challenging goal that implies also
learning. Source identification is desirable for a variety of reasons. A key reason is the danger
of overfitting a model to the empirical data, thereby ruining its predictive guarantees (see, for
instance, Koller and Friedman (2009) ch. 16). Another reason is that source identification is
necessary for the quantification of causal relations between the hidden variable and the observable
variables (see Pearl (2009); Spirtes et al. (2000) for an introduction to graphical causal models)—here
identification, but not learning, provides explanatory value along with the possibility of effective
intervention. Finally, whether in the causal context or otherwise, identification provides the statistician
with semantics—an actual characterization of the process generating the data—which may be far
more useful than the mere ability to artificially generate samples from the same distribution.

The distinction between learning and source identification has two main aspects. First, a
distribution on observable variables might be inherently explainable by two (or more) far-apart
models, ruling out source identification. Thus, we must restrict our attention to a class of identifiable
models, for which the mapping of model to distribution on observables is one-to-one. In this paper,
we consider the case that there are at least 2k − 1 observables that are ζ-separated. An observable
bit X is separated if the k conditional probabilities Pr[X = 1 | H = j], j = 1, . . . , k are mutually
distinct, and ζ-separated if every two values differ by at least ζ > 0. (Necessarily ζ ≤ 1

k−1 .) Having
2k − 1 observables that are separated is a sufficient condition for identification Tahmasebi et al.
(2018). 4

Second, even if a model is identifiable in the limit of perfect statistics (infinite sample size), the
available empirical statistics might be insufficiently accurate, yet still allow for the learning objective.
It is obvious, though, that a learning algorithm that runs on data produced by an identifiable source
and is required to achieve sufficiently high accuracy also implicitly identifies the source.5 However, a
learning algorithm might learn a mixture model without this implying that the empirical data enables
identification. In fact, the ground-breaking work of Feldman et al. (2008) gives an (nk/ε)O(k3)

time algorithm for learning a model of k-mixture of n binary product distributions that generates
a distribution on the observables within statistical distance ε of the empirical statistics. A faster
kO(k3)(n/ε)O(k2) time learning algorithm is given in Chen and Moitra (2019).6 The algorithms in
these papers are not guaranteed, under any assumptions, to identify the source to any particular
accuracy ε; in fact the algorithms succeed even in cases where the source is not identifiable.

1.4. Our work

Our contribution is twofold. First, we prove a quantitative version of the identifiability criterion:
namely, for any given ζ > 0, we establish (roughly; see later for exact statements) that any two
models which differ by η in parameter space, differ in their statistics by at least ηζO(k2 log k). 7 This,

4. Depending on the parameters, fewer sources may suffice. But in some cases 2k − 1 are necessary, including the
important case when the Xi are iid conditional on H , which we call the “power distribution” case Rabani et al. (2014),
since terms of the form

∏n
i=1 Pr[Xi = 1 | H = j] are replaced by (Pr[X1 = 1 | H = j])n.

5. This is because the space of source parameters is compact and the mapping to observable statistics is continuous.
6. Notice, in particular, footnote 2 in that paper.
7. To simplify the informal discussion, we state most of the bounds in the rest of this paragraph just for η ≥ ζO(k2 log k).
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of course, implies that the algorithms of Feldman et al. (2008); Chen and Moitra (2019) can be used
for source identification, assuming ζ-separation and sufficiently small target accuracy ε = ζO(k2 log k).
Second, we improve substantially over the runtime of these two algorithms, so that (even under
the conditions under which our result imples that those algorithms can perform identification), our
source identification algorithm is more efficient. Specifically, if we have at least 3k − 3 observables
that are ζ-separated, our algorithm requires empirical statistics accuracy ζO(k2 log k) (i.e., sample size
ζ−O(k2 log k)) and has a runtime of 2O(k2)nO(k) arithmetic operations. Our algorithm can also identify
the source using the minimum of 2k−1 ζ-separated observables; but then we require input accuracy
ζO(k3) (but the same 2O(k2)nO(k) runtime). If all observables are ζ-separated, then the runtime
improves to8 2O(k2)n (with the same input accuracies, according to the number of variables). Our
contributions establish quantitative bounds on the qualitative sufficiency of ζ-separation of Tahmasebi
et al. (2018); the results in that paper are entirely non-algorithmic. The only explicit algorithmic
result on source identification that we are aware of is Najafi et al. (2020). Their algorithm, which runs
under a somewhat more general assumption than ζ-separation, requires complete enumeration over
the choice of mixture constituent that generated each sample point, for a sufficiently large sample.
Thus, it is prohibitively expensive, requiring at least n = exp(k2) observable random variables (as
compared with 3k − 3), and runtime that is doubly exponential, namely kexp(k2).

1.5. The new method: bootstrapping synthetic bits

The main idea underlying our algorithm is the following. Given sufficiently many ζ-separated
observables, for which we have sufficiently accurate empirical multilinear moments,9 we show how
to construct “synthetic bits” for which we can compute highly accurate power moments, i.e., the
moments that occur in the far more restricted problem of power distributions. The higher moments
of these synthetic bits are created out of linear combinations of multilinear moments of the original
bits. This mechanism in its idealized form (i.e., for perfect statistics) suffices to re-prove the theorem
of Tahmasebi et al. (2018) that 2k − 1 separated observables suffice for source identification. The
next challenge we face is to bound the coefficients of the multilinear monomials in these linear
combinations, as this affects the required accuracy of the empirical statistics (thus, the required
sample size). The synthetic bits method reduces the problem to the special case of identification of
a mixture of k power distributions, i.e., when the Xi-s are iid conditional on H . This special case
is effectively an extension of the theory of orthogonal polynomials on the reals and the classical
moment problem Schmüdgen (2017); Simon (2015), and methods such as Prony’s method or the
Matrix Pencil method were shown to solve it Rabani et al. (2014); Li et al. (2015); Kim et al. (2019);
Gordon et al. (2020). Despite the power distributions case being so highly constrained, it has useful
applications, e.g., in reconstructing population histories and in learning topic models (see the above
references). We can use these existing algorithms to recover the mixture of power distributions on
synthetic bits. That in turn enables recovery of the mixture of product distributions on the observable
bits. The best algorithm for power distributions to date Gordon et al. (2020) requires estimates of the
first 2k moments of the synthetic bits to within accuracy ζO(k), and has runtime O(k2+o(1)). Thus,
this component of our runtime is cheap; the runtime bound of our algorithm is dominated by the

8. Here we suppress a O(log log(ε−1)) term.
9. We call these empirical moments as we expect them to obtained by sampling; but our theorems depend only on their

being sufficiently accurate.
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exhaustive search for 3k− 3 observables that are ζ-separated (unless all observables are known to be
ζ-separated), and by the construction of the 2k synthetic bits.

2. Preliminaries and main theorem

Notation There is a hidden variable H ranging in [k], and n binary observable variables Xi; write
mij := Pr[Xi = 1 | H = j]. The distribution of the hidden variable is denoted πj := Pr(H = j).
The model parameters are thus (πj)j∈[k] and (mij)i∈[n],j∈[k] (up to permuting [k]).

Vectors are row vectors unless otherwise indicated. For S ⊆ [n] define the random variable
XS =

∏
i∈S Xi. We make extensive use of Hadamard product for vectors u = (u1, . . . , uk),

v = (v1, . . . , vk):

� : Rk × Rk → Rk (1)

u� v = (u1v1, . . . , ukvk) (2)

The identity for this product is the all-ones vector 1. We associate with vector u the linear operator
u� = diag(u), a k × k diagonal matrix, so that

v · u� = u� v.

Let mi be the row vector (mi1, . . . ,mik). Following Chen and Moitra (2019) here and in (4), let
M ∈ R2[n]×k be the matrix with rows indexed by subsets S = {i1, . . . , is} ⊆ [n], with rows

MS = mi1 �mi2 � · · · �mis . (3)

In particular, M∅ = 1 and M{i} = mi for all i ∈ [m].
Observe that source identification is not possible if M has less than full column rank, i.e.,

rankM < k, as then the mixing weights cannot be unique.
For a collection of subsets S ⊆ 2[n], let M[S] denote the restriction of M to the rows MS , S ∈ S .

E.g., M = M[2[n]].

The empirical multi-linear moments For a finite sample drawn from the model, we let g̃(S) be
the empirical estimate of E[XS ], i.e., the fraction of samples for which

∏
i∈S Xi = 1. These g̃(S) for

S ⊆ [n] are the complete list of “observables” of the model. Each converges, in the infinite-sample
limit, to the value g(S) := E[XS ],

g(S) = MSπ
T = MSπ�1T.

Comparison to the iid case The fact that we have access only to multi-linear moments is the key
constraint of the problem. Compare with the “power” case, i.e., when we know in advance that
all rows mi are identical. (That is, the Xi are iid conditional on H .) Then the statistics of X2 tell
us nothing about rv X1. But the statistics of X1X2 do tell us something new about X1: X1X2

is distributed as would be a binary observable whose row had entries (m2
11, . . . ,m

2
1k). With 2k

rows, we obtain the first 2k moments of the k-sparse distribution corresponding to m1 (i.e., the
real-valued, k-sparse distribution which places atomic probability πj at m1j ∈ R, also called a
“k-spike” distribution). From this point on, one may apply the time-honored method of Prony to
identify the source. For details, a runtime analysis, and further references, see Gordon et al. (2020).
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Much of the interest of the present problem, by contrast, is due precisely to the fact that we
cannot read out higher moments of the distributions corresponding to any of the bits Xi, because no
relationship is assumed among the various rows of m. How to nonetheless obtain higher moments of
individual rows, is the challenge our algorithm tackles.

Main theorem In what follows ζ is an assumed separation parameter, and πmin is an assumed
lower bound on mixture weights.

Theorem 1
(i) Given access to the joint statistics of n observable bits among which at least 3k − 3 which

are ζ-separated, with all statistics available to additive accuracy ε for ε ≤ (πmin)
O(log k)ζO(k2 log k),

our algorithm runs in time 2O(k2)nO(k) and computes the model parameters (π and all row values
mij) to within accuracy εζ−O(k2 log k)(πmin)

−O(log k).
(ii) If all rows are ζ-separated, then a slightly simpler version of our algorithm identifies the

source (to within the same accuracy, given the same input accuracy, as in (i)), in runtime 2O(k2)n.
(iii) If only 2k − 1 ζ-separated rows are available, another simpler version of our algorithm

also identifies the source, but the loss factor on the accuracy is (πmin)
−kζ−O(k3) and consequently

one must start with ε ≤ (πmin)
kζO(k3) which requires sample complexity comparable to prior work,

but achieving the same improved runtime as in (i).

3. Algorithm

Further definitions It will be very useful to put our observables in matrix form. Let S, T ⊆ [n]
be disjoint sets and take any A ⊆ 2S ,B ⊆ 2T . Then the matrix CBA is observable (meaning every
entry of it is a function of the joint statistics of the observable random variables X1, . . . , Xn), where

CBA := M[B]π�M[A]>. (4)

Let C̃BA := [g̃(B ∪A)]B∈B,A∈A be the corresponding matrix of empirical moments.
We use ‖·‖ to denote operator norm for matrices (w.r.t. Euclidean norm in the domain and range).

Strategy If m possesses 2k − 1 or 3k − 3 (depending on the version of the algorithm; this affects
only runtime) ζ-separated rows of m, and given empirical statistics within the required distance
from perfect statistics, our algorithm will identify the model (to within similar accuracy). This
includes even rows which are not themselves ζ-separated; all we need is that some 2k − 1 or 3k − 3
rows be ζ-separated. The algorithm has the following structure: range over all nO(k) subsets of the
rows; run the identification algorithm using that set. If the set does not suffice for identification
(which can happen only if the set includes some non-ζ-separated rows), this will be flagged by the
algorithm. Any two such runs which do terminate successfully, must result in very close parameter
reconstructions.

3.1. Synthetic bits and bootstrapping

We start with the 2k − 1-observables version of the algorithm. Our final algorithm in section 3.1.2,
which uses 3k − 3 observables and achieves better runtime, will use a slightly more complicated
construction, but the main ideas are present in the simpler variant here.

6



SOURCE IDENTIFICATION FOR MIXTURES OF PRODUCT DISTRIBUTIONS

3.1.1. CONSTRUCTING HIGHER MOMENTS OF A ROW, USING 2k − 2 OTHER ROWS

In what follows we show how to compute moments of arbitrary degree of the k-spike distribution
associated with any bit Xi, given access to any additional 2k − 2 ζ-separated observable bits. For
concreteness, let X1 (corresponding to the row m1) be the variable for which we want to find higher
moments. (We don’t require that m1 be ζ-separated for the moment computation, although that will
be needed in a subsequent step of the algorithm.) Let S = {2, . . . , k}, T = {k + 1, . . . , 2k − 1} be
the indices of the 2k − 2 other ζ-separated rows, partitioned into two sets of k − 1 rows each.

The only thing that our statistics tell us about row m1 in isolation is its first moment: E(X1) =
m1π�1>. Equivalently this quantity is also the expectation the k-spike distribution associated with
X1. It will be critical to obtain higher moments of this distribution. The second moment is equal to
(m1 �m1)π�1>, and more generally (with m�r1 denoting the r-fold Hadamard product of m1 with
itself), the r’th moment is m�r1 π�1> for any r. We will need to have the 1, . . . , 2k’th moments in
order to solve for m1 and π.

We show in Appendix B that there exist subsetsA = {A1, . . . , Ak} ⊆ 2S , B = {B1, . . . , Bk} ⊆
2T of size k each such that A := M[A] ∈ Rk×k and B := M[B] ∈ Rk×k are invertible. Moreover,
we’ll have A1 = ∅ = B1 so that the first row of M[A] and M[B] will be the vector 1. Then the
matrix CBA = Bπ�A

T (as defined in (4)) is an invertible, observable matrix.
Now consider the vector

v1 := m1π�A
T = (E[X1XA1 ], . . . ,E[X1XAk

]).

Each coordinate E[X1XAi ] = E[XAi∪{1}] is a multi-linear moment and is therefore observable. In
the algorithm, our starting point will be approximations to multi-linear moments, and we will address
that shortly, but for now we write down the algorithm as it would run with perfect statistics.

While we’d like to find m�2
1 directly, we won’t be able to do so, and instead we’ll settle for

computing the vector u1 satisfying
u1B := m1.

This u1 is unique since B is invertible, and it gives the coefficients needed to express m1 as a linear
combination of the rows of B. We can in fact compute u1 from observables, because

u1 = v1C
−1
BA. (5)

We can verify (5) algebraically:

v1(CBA)
−1B = v1(A

T)−1π−1
� B−1B = v1(A

T)−1π−1
� = m1π�A

T(AT)−1π−1
� = m1. (6)

Conceptually what (6) means is that u1B, a linear combination of rows of B, defines a random
variable that has been synthesized out of the XB`

random variables, and shares the same expectations
as X1 conditional on any setting of H . We call this the method of synthetic bits. Our algorithm
consists of repeatedly bootstrapping synthetic bits.

To be more explicit, use u1 = (u11, . . . , u1k) to define a new random variable Y :=
∑k

`=1 u1`XB`
.

Y has been synthesized out of XB1 , . . . , XBk
. Y has the same expectation as X1, conditioned

on the value of the hidden variable H , since

E(X1 | H = j) = (m1)j =

k∑
`=1

u1` E(XB`
| H = j) = E(Y | H = j).

Moreover, given the value of H , X1 and Y are independent, because {1} ∩B` = ∅.

7
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Bootstrapping to obtain the second moment. As a consequence of (6), we can perform the
bootstrapping step which is at the heart of our algorithm. We are interested in obtaining the vector

v2 := m�2
1 π�A

T

which is a linear image (under the mapping π�AT) of a random variable distributed as the product
of two random variables which are independent conditional on H; each distributed as X1 conditional
on H . This we get by setting

v2 := (E(X1Y XA1), . . . ,E(X1Y XAk
)) (7)

Since A1 = ∅, the entry (v2)1 = E(X1Y ) = m�2
1 π�1T is exactly our desired second moment. To

get access to v2, we observe that even though we don’t necessarily have two independent copies of
m1 among our rows, our synthetic bit Y provides the needed independence from X1. As a matter
of notation, for our collection B ⊆ 2T , we define B + {1} to consist of the sets B` ∪ {1} for each
B` ∈ B.

Now we can write

v2 = m�2
1 π�A

T = (m1 � (u1B))π�A
T = u1CB+{1},A (8)

Since we already have u1, and since CB+{1},A is observable, expression (8) can be used to compute
v2.

Bootstrapping to all moments. The generalization of the second moment computation is this.
Given vector ur−1 defined by ur−1 := m

�(r−1)
1 B−1, we define vr and ur and show how to compute

them:

Definition Computation

vr := m�r1 π�A
T = (m1 � (ur−1B))π�A

> = ur−1CB+{1},A (9)

ur := m�r1 B−1 = m�r1 π�A
TAT−1

π−1
� B−1 = vrC

−1
BA. (10)

In the actual algorithm, we’ll be working with empirical approximations of vr, ur, and CBA, which
we’ll denote ṽr, ũr, and C̃BA, respectively. A key part of the technical work will be in bounding
error amplification. In order to compute ṽr and ũr, we’ll use (following (9),(10)) the following
assignments, where all quantities are empirical estimates:

ṽr := ũr−1C̃B+{1},A (11)

ũr := ṽr(C̃BA)
−1 (12)

It is important to note that the bootstrapping can be performed only because ũr−1 places weight
solely upon rows in B ⊆ 2T . Then the bootstrapping yields an expression for ṽr that contains
moments involving X1 as well as the entries in T . But once we compute ũr, we regain a coefficient
vector for a synthetic bit, that again places weight solely upon rows in B.

The fact that both the computation of ṽr (in (11)) and of ũr (in (12)) work stably and not only in
the perfect-statistics limit, relies upon the following:

Corollary 2 If all empirical multilinear moments are within ε < ζΩ(k2) of their true values, then∥∥∥C̃BA −CBA

∥∥∥ ≤ kε and
∥∥∥C̃−1
BA − C̃−1

BA

∥∥∥ ≤ ζ−O(k2)π−2
minε.

8
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Proof This will be an immediate consequence of Lemma 11.

From this, we can bound the increase in error due to each subsequent application of (11) and (12).

Lemma 3 If all empirical multilinear moments are within ε < ζΩ(k2) of their true values, then for
all i,

‖ũi − ui‖∞ < ζ−O(k2)π−2
min ‖ũi−1 − ui−1‖∞ and ‖ṽr − vr‖ ≤ ζ−O(k2)π−2

min ‖ṽi−1 − vi−1‖∞ .

Proof This follows from Lemma 12, which is itself a consequence of Lemma 11.

Nevertheless, if we compute each ṽr and ũr as described above, we would need to start with
accuracies ε < ζΩ(k3) in order to retain accuracy after bootstrapping O(k) times, as is required by
the above algorithm. To avoid this, we’ll need to reduce the number of iterations by using 3k − 3,
rather than 2k − 1, ζ-separated rows.

3.1.2. IMPROVED ERROR CONTROL: CONSTRUCTING HIGHER MOMENTS USING 3k − 3
ζ-SEPARATED ROWS

In order to avoid performing k iterations to compute ṽk and ũk, we’ll use another set of rows,
B′ = {B′1, . . . , B′k} ⊆ 2T

′
of size k, where T ′ is disjoint from S and T , and B′1 = ∅. Now we’ll

introduce B′ := M[B′] and CB′A := B′π�A
T, both of which will be invertible as before.

Previously, ui was a linear combination of the rows of B such that uiB = m�i1 . We’ll introduce
a new, but similar, sequence of vectors u′i where u′iB

′ = m�i1 and u′i is obtained from vi by
u′i = viC

−1
B′A. In the algorithm, we’ll only have access to the approximations ũ′i and C̃B′A and we’ll

compute each successive ũ′i by ũ′i = ṽiC̃
−1
B′A.

The advantage we obtain over the more straightforward process of the previous section, results
from our ability to compute v2i using u2i−1 and u′

2i−1 ; in that way, we are able to get away with
performing only 1 + lg k iterations to compute any of v1, . . . , v2k.

To describe the computation, we first define the sum of two collections of subsets U ,V ⊆ 2[n] by

U + V := {U ∪ V : U ∈ U , V ∈ V} .

Now let x and y be vectors indexed by the the subsets in B and B′, respectively. Recall that
B ⊆ 2T ,B′ ⊆ 2T

′
, where T ∩ T ′ = ∅. Then |B + B′| = k2 and each subset in B + B′ can be

uniquely written as B` ∪B′j for `, j ∈ [k]. We define the Kronecker product (x⊗ y) ∈ RB+B′ to be
the vector indexed by subsets in B + B′ given by

(x⊗ y)B`∪B′j := xB`
yB′j

for any `, j ∈ [k]. To access v2i , we write

v2i = m�2i

1 π�A
T = ((u2i−1B)� (u′2i−1B))π�A

T = (u2i−1 ⊗ u′2i−1)CB+B′,A,

expressing the row v2i as the linear of combination of the k2 rows corresponding to the subsets in
B + B′.

Of course, we’ll need to compute v` for ` not a power of 2. We can do this using a slight
modification of the recursive procedure where for i = 1, . . . , 1+ lg k and j = 1, . . . , 2i, we compute

ṽ` := (ũj ⊗ ũ′2i)CB+B′,A (13)

9
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where ` = j + 2i, and we’ve computed ũj in a prior iteration for all j ≤ 2i.
Under this modification, each ṽi is produced in only 1 + lg k iterations each of which involves a

matrix multiplication by C̃−1
BA or a convolution followed by multiplication by CB+B′,A, each step

of which can increase the error in total by ζ−O(k2 log k)π−2
min. By starting with empirical moments

accurate to within ζΩ(k2 log k)π2k
min, we can ensure that the resulting vectors ṽi and ũi are sufficiently

close to start solving for m1 and π.
We provide pseudocode for this “3k − 3 rows” version of the algorithm, see Fig. 1.

Flagging a failure condition If the chosen rows S∪T ∪T ′ fail to all be ζ-separated, the algorithm
might fail. However, we will detect such failure. The conditions that we actually need so that
the algorithm should work, are these: (a) C̃BA and C̃B′,A should have a large least singular value.
(It does not actually matter whether all rows we use are ζ-separated, that was merely a sufficient
condition for this well-conditioning.) We compute this singular value explicitly and simply dismiss
the triple S, T, T ′ if this condition fails. (b) The first row of B, namely {1} in the numbering used in
the pseudocode for Algorithm 1, should be ζ-separated. If condition (a) holds but this condition fails,
we will detect the failure in line 12 of the algorithm, because the Hankel matrix will have insufficient
eigenvalue gap (see Cor. 12 of Gordon et al. (2020)).

3.2. Solving the power distribution problem

Once we’ve computed ṽ1, . . . , ṽ2k, we have access to all of the moments of the k-spike distribution
corresponding to observable X1. (The ith moment equals (ṽi)1, just as in Eqn. (7)). Recall, these are
the moments of a mixture of k Bernoulli random variables, where the r’th moment corresponds to
drawing a mixture component j with probability πj , then setting the Bernoulli random variable to 1
with probability mr

1j . The problem of recovering the parameters (i.e., the vectors m1 and π) from
approximate moments of this form has been extensively studied, and many algorithms have been
provided. We use the algorithm LEARNPOWERDISTRIBUTION from Gordon et al. (2020), which
on inputs accurate to within ε, outputs parameters m̃1 and π̃ to within accuracy 1

πmin
ζ−O(k)ε while

running in time (arithmetic operations) k2+o(1).

3.3. Recovering the remaining parameters

Once we have estimates for m1 and π, we can simply solve for A, B, and B′ using the fact that
AT = π−1

� (Vdm(m1))
−1V where

V = (v0; . . . ; vk−1)

is the matrix with rows vi and Vdm(m1) is the Vandermonde matrix with rows m�i1 for i =
0, . . . , k − 1. Note that here we finally do require that m1 be ζ-separated. We can thus solve for AT.

To solve for B we use B = CBA(A
T)−1π−1

� . Likewise for B′ we use B′ = CB′A(A
T)−1π−1

� .
Now for any row i not already computed, we need only pick any other set S = {S1, . . . , Sk} of

k linearly independent rows supported on a set not containing i, and we can solve for mi by writing

mi = (E[XiXS1 ], . . . ,E[XiXSk
])M[S]T−1

π−1
�

In particular, by setting S = A we can solve for all rows in [n] \ S and by setting S = B we can
solve for all rows in [n] \ T . Together, this suffices to solve for all rows.

10
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3.4. Runtime

The algorithm contains three main parts:

1. Find disjoint S, T, T ′ ⊂ [n] and A ⊂ 2S , B ⊂ 2T , and B′ ⊂ 2T
′
, which is complexity

nO(k)2O(k2). First we require nO(k) iterations to check all possible disjoint S, T, T ′. Then,
2O(k2) operations are required in each iteration to check all size k subsets of the 2k−1 rows of
M[2S ],M[2T ] and M[2T

′
].

2. Nested loops to compute higher order moments ṽ, and the corresponding ũ. This step takes
time O(poly(k)).

3. Applying the power distribution result. This can be done in timeO(k2+o(1)+k(log2 k) log log(ε−1))
(see Corollary 16).

This gives runtime complexity of nO(k)2O(k2) +O(k2+o(1) + k(log2 k) log log(ε−1)). If all sources
are ζ-separated, we do not need to iterate over choices of S, T, T ′, so the runtime improves to
2O(k2) +O(k2+o(1) + k log2(k) log log(ε−1)).

3.5. Analyzing the algorithm

The analysis of the algorithm appears in Appendix A. Crucially, the analysis will depend on the
condition number bound for the matrix M, stated below and proved in Appendix B.

3.6. The core stability bound

Definition 4 We define β := (ζ/2)k−1

k . We will often simplify expressions with the bound β ≥ ζ2k.

Theorem 5 Let S be a set of k − 1 ζ-separated vectors m1, . . . ,mk−1. Then there exists a set
J ⊆ 2S , |J | = k, such that σk(M[J ]) ≥ βk2−3k/2k−3/2 and σmax(M[J ]) ≤ k. The first row of
M[J ] is 1 (corresponding to ∅ ∈ J).

Bounding the condition number of M[2S ]. Most of our work will go into lower bounding the
k’th singular value of M[2S ]. This is where the ζ-separation condition is essential. (Even the non-
quantitative result that M[2S ] has full column rank is not trivial; indeed, the result of Tahmasebi et al.
(2018) that sources can be identified from 2k − 1 separated bits, is implied by the non-quantitative
version of this section, omitted here, which employs the same approach but is considerably shorter.)

The proof of Theorem 5 is in Appendix B.
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1 Let B ⊆ 2{1,...,k−1},B′ ⊆ 2{k,...,2k−2},A ⊆ 2{2k−1,...,3k−3}, with |A| = |B| = |B′| = k maximizing
min{σk(C̃BA), σk(C̃B′A)}.

2 If this min is below πminζ
O(k2), terminate.

3 Denote B = {B1, . . . , Bk}, B′ = {B′1, . . . , B′k}, andA = {A1, . . . , Ak}. Without loss of generality
B1 = {1}.

4 ṽ0 ← (g̃(A1); . . . ; g̃(Ak)).
5 ṽ1 ← (g̃(A1 ∪ {1}); . . . ; g̃(Ak ∪ {1})).
6 ũ1 ← ṽ1(C̃BA)

−1.
7 ũ′1 ← ṽ1(C̃B′A)

−1.
for i = 1, . . . , 1 + lg k do

for j = 1, . . . , 2i−1 do
8 ṽ2i−1+j ← (ũj ⊗ ũ′2i−1)C̃B+B′,A.
9 ũ2i−1+j ← ṽ2i−1+j(C̃BA)

−1.
end

10 ũ′
2i
← ṽ2i(C̃B′A)

−1.
end

11 Let Hk+1 be the (k + 1)× (k + 1) Hankel matrix with entries given by [Hk+1]
k
i,j=0 = (ṽi+j)1.

12 If the second-smallest eigenvalue of Hk+1 is below πmin
2 (ζ/16)2k−2, terminate.

13 m̃1, π̃ ← LEARNPOWERDISTRIBUTION(Hk+1).
14 Ṽ ← (ṽ0; . . . ; ṽk−1).

15 Vdm(m̃1)← (m̃�0
1 ; . . . ; m̃

�(k−1)
1 ).

16 ÃT ← π̃−1
� (Vdm(m̃1))

−1Ṽ .
17 B̃← C̃BA(Ã

T)−1π−1
� .

18 B̃′ ← C̃B′A(Ã
T)−1π−1

� .

19 For every i ∈ [n] \ [k], m̃i ← (g̃(A1 ∪ {i}), . . . , g̃(Ak ∪ {i}))T
(
ÃT
)−1

π̃−1
� .

20 For every i ∈ {2, . . . , k}, m̃i ← (g̃(B1 ∪ {i}), . . . , g̃(Bk ∪ {i}))T
(
B̃T
)−1

π̃−1
� .

Algorithm 1: Identifies a mixture of product distributions given 3k − 3 ζ-separated observable bits
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Appendix A. Analyzing the Algorithm

As we have seen the algorithm consists of bootstrapping steps which, as indicated in Eqns. (11), (12),
lift us “forward” from ũr−1 to ṽr and then “back” to ũr. We must now control the loss in accuracy
of the statistics, in each of these steps. It turns out that the first of these is easier and less expensive
in accuracy; while the second, in which we “invert” from approximate statistics to obtain a linear
combination of sources, is harder and also more expensive. In this section we show how to control
these steps. We rely for this control on a condition number bound (which is not in itself algorithmic
and is due entirely to the ζ-separation), which will be given in Appendix B. Throughout the analysis,
we’ll assume that every multi-linear moment we use is known with additive error bounded by

ε := ζC1k2 log kπC2 log k
min

for constants C1, C2. Choosing C1 := 60, C2 := 8 is sufficient to give us final error ζΩ(k2 log k).

A.1. Bounding ‖ũj − uj‖ for j ≤ 2k

The following Lemma is a consequence of Theorem 5 to be proven in the next section:

Lemma 6 When the input mixture contains 3k − 3 ζ-separated rows, we can find disjoint sets
S, T, T ′ ⊆ [n] of size k − 1 each and subsets A ⊆ 2S ,B ⊆ 2T ,B′ ⊆ 2T

′
with |A| , |B| = k such

that the matrices A := M[A], B := M[B], and B′ := M[B′] satisfy

1. The first row of A, B, and B′ is the all-ones vector, 1.

2. σk(A), σk(B), σk(B
′) ≥ βk2−3k/2k−3/2.

3. σmax(M[A]), σmax(M[B]), σmax(M[B]) ≤ k.

And the matrices CBA = Bπ�A
T and CB′A = B′π�A

T satisfy

1. σmax(CBA), σmax(CB′A) ≤ k2.

2. σk(CBA), σk(CB′A) ≥ β2k2−3kk−3πmin.

Proof This follows immediately from Theorem 5, the definition CBA = M[B]π�M[A]T, and the
min-max characterization of the first and last singular values.

Corollary 7
∥∥(CBA)−1

∥∥ ≤ ζ−10k2π−1
min.

Proof
∥∥(CBA)−1

∥∥ ≤ (ζ−3k)2k23kk3π−1
min ≤ ζ−10k2π−1

min

Corollary 8
∥∥A−1

∥∥ , ∥∥B−1
∥∥ , ∥∥(B′)−1

∥∥ ≤ ζ−6k2 .

Lemma 9 ‖ui‖ ≤ ζ−6k2 , and ‖vi‖ ≤ ζ−1.

Proof We observe that ‖ui‖ =
∥∥m�i1 B−1

∥∥ ≤ k
∥∥B−1

∥∥ ≤ β−k23k/2k3/2 ≤ ζ−6k2 . On the other
hand, ‖vi‖ ≤ k ≤ ζ−1, since vi is a vector of moments of products of Bernoulli random variables.
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Proposition 10 ‖CBA‖ ,
∥∥CB+B′,A

∥∥ ≤ k3. If all moments are within ε of their true values,∥∥∥C̃BA∥∥∥ , ∥∥∥C̃B+B′,A

∥∥∥ ≤ 2k3.

Lemma 11 If all multilinear moments are within ε of their true values, then∥∥∥C̃BA −CBA

∥∥∥
2
≤ ζ−1ε,

∥∥∥C̃B+B′,A −CB+B′,A

∥∥∥ ≤ ζ−2ε,

and ∥∥∥C̃−1
BA −C−1

BA

∥∥∥ ≤ ζ−26k2π−2
minε.

Proof The first two inequalities just use ‖·‖2 ≤ ‖·‖F . For the final inequality we use Lemma 33:∥∥∥C̃−1
BA −C−1

BA

∥∥∥ ≤ 2
∥∥C−1
BA
∥∥2
∥∥∥CBA − C̃BA

∥∥∥ ≤ β−4k26k+1k7π−2
minε

Lemma 12 When the assumptions of Lemma 11 are satisfied, we have for any i ∈ [2k] and
j = dlog ie,

‖ṽi − vi‖ , ‖ũj − uj‖ ,
∥∥ũ′j − u′j∥∥ ≤ ζ−42ik2π−2i

minε.

Proof Recall that we initialize the algorithm with

ṽ1 ← (g̃(A1 ∪ {1}), . . . , g̃(Ak ∪ {1})), ũ1 ← ṽ1(C̃BA)
−1, ũ′1 ← ṽ1(C̃B′A)

−1.

First, we observe that ‖ṽ1 − v1‖ ≤ ε by assumption. Since ũ1, ũ
′
1 are computed in the same manner

here as in the loop, we’ll bound that error in the induction. Now assume that the claim holds up to
i− 1. Recall that in each iteration of the outer loop we compute

ṽ2i ← (ũ2i−1 ⊗ ũ′2i−1)C̃B+B′,A, ũ2i ← ṽ2i(C̃BA)
−1, ũ′2i ← ṽ2iC̃B′A.

We’ll first focus on bounding ‖ṽ2i − v2i‖∞. To do this we write

ṽ2i − v2i = (ũ2i−1 ⊗ ũ′2i−1)C̃B+B′,A − (u2i−1 ⊗ u′2i−1)CB+B′,A

and letting w = ũ2i−1 − u2i−1 , w′ = ũ′
2i−1 − u2i−1 , and E = C̃B+B′,A −CB+B′,A we can bound

the norm of the difference as follows, using the bilinearity of the Kronecker product, Lemma 9, and
the induction hypothesis:

‖ṽ2i − v2i‖ =
∥∥∥(ũ2i−1 ⊗ ũ′2i−1)C̃B+B′,A − (u2i−1 ⊗ u′2i−1)CB+B′,A

∥∥∥
≤
∥∥∥(w ⊗ ũ′2i−1)C̃B+B′,A

∥∥∥+ ∥∥∥(ũ2i−1 ⊗ w′)C̃B+B′,A

∥∥∥+ ∥∥(ũ2i−1 ⊗ ũ′2i−1)E
∥∥

≤ 2ζ−42(i−1)k2π
−2(i−1)
min ζ−6k2k3ε+ ζ−12k2ζ−2ε

≤ ζ−(42(i−1)+16)k2π
−2(i−1)
min ε
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Now we can bound ‖ũ2i − u2i‖∞ by observing that

ũ2i − u2i = ṽ2iC̃
−1
BA − v2iC

−1
BA.

Let z = ṽ2i − v2i and let D = C̃−1
BA −C−1

BA. The above equation becomes

ũ2i − u2i = (v2i + z)(C−1
BA +D)− v2iC

−1
BA = v2iC

−1
BA + zC−1

BA + zD

and after taking norms and using the triangle inequality we obtain

‖ũ2i − u2i‖ ≤ ‖v2iD‖+
∥∥zC−1

BA
∥∥+ ‖zD‖

By Corollary 7, Lemma 9 and the induction hypothesis, we get

‖ũ2i − u2i‖ ≤ ζ−1ζ−26k2π−2
minε+ ζ−(42(i−1)+16)k2π

−2(i−1)
min εζ−16k2π−1

min

+ ζ−(42(i−1)+16)k2π
−2(i−1)
min ζ−26k2π−2

minε

≤ ζ−26k2−1π−2
minε+ ζ−(42(i−1)+20)k2π

−2(i−1)−1
min ε+ ζ−(42(i−1)+42)k2π

−2(i−1)
min π−2

minε

≤ ζ−42ik2π−2i
minε

For j not a power of 2, we can do the same analysis, and since the error bound is increasing in j, the
result will follow.

Corollary 13 Algorithm 1 will produce vectors ṽi for i ≤ 2k satisfying

‖ṽi − vi‖ ≤ ζ−42k2(1+lg k)π
−2(1+lg k)
min ε.

A.2. Applying the power distribution result

Definition 14 Given a mixtureM of k Bernoulli random variables with probabilities m1, . . . ,mk

and mixing probabilities π1, . . . , πk, respectively, let [Hk+1]
k
i,j=0 = µi+j be the matrix of moments

of the distribution.

Theorem 15 (Theorem 17 from Gordon et al. (2020)) Given a mixture M = (m,π) as above
where m is ζ-separated, there is an algorithm, LEARNPOWERDISTRIBUTION, that takes a Han-
kel matrix [H̃k+1]

k
i,j=0 = µ̃i+j of approximate moments of M satisfying

∥∥∥H̃k+1 −Hk+1

∥∥∥
2
≤

πmin2
−γζ16k (for some γ ≥ 1) and outputs a model M̃ = (m̃, π̃) satisfying

‖m̃−m‖∞ , ‖π̃ − π‖∞ ≤ 2−γ

using O(k2 log k + k log2 k · log(log ζ−1 + log π−1
min + γ)) arithmetic operations.

Corollary 16 The output (m̃1, π̃) of LEARNPOWERDISTRIBUTION in line 14 of Algorithm 1 will
satisfy

‖m̃1 −m1‖ , ‖π̃ − π‖ ≤ ζ−42k2(1+lg k)−16k−1π−3−2 lg k
min ε.

This step will use O(k2 log k + k log2 k · log log(ε−1)) arithmetic operations.

18



SOURCE IDENTIFICATION FOR MIXTURES OF PRODUCT DISTRIBUTIONS

Proof Every entry (ṽi)1 satisfies ‖(ṽi)1 − (vi)1‖ ≤ ζ−42k2(1+lg k)π
−2(1+lg k)
min ε so∥∥∥H̃k+1 −Hk+1

∥∥∥ ≤ ζ−42k2(1+lg k)π
−2(1+lg k)
min ε

which implies that

‖m̃1 −m1‖∞ , ‖π̃ − π‖∞ ≤ ζ
−42k2(1+lg k)−16kπ

−2(1+lg k)−1
min ε.

Finally, we add a factor of ζ−1 to convert back to the Euclidean norm to get the stated bound.

A.3. Solving for the rest of the model

Once we’ve computed m̃1 and π̃, we’ll use them to compute the remaining model parameters. In
this section we bound the additional error introduced by these computations.

Proposition 17 ‖Vdm(m̃1)−Vdm(m1)‖ ≤ ζ−1 ‖m̃1 −m1‖.

Claim 18 (Claim 26 in Gordon et al. (2020))
∥∥Vdm(m1)

−1
∥∥ ≤ 2k/ζk−1 ≤ ζ−2k when m1 is

ζ-separated.

Lemma 19 The computed Ã produced by Algorithm 1 will satisfy∥∥∥Ã−A
∥∥∥ ≤ ζ−42k2(1+lg k)−20k−6π−5−2 lg k

min ε.

Proof Recall Ṽ = (ṽ0; . . . ; ṽk−1) from Algorithm 1 and V = (v0; . . . ; vk−1) is its real-value
analog. First, we observe that

∥∥∥Ṽ ∥∥∥ ≤ ‖V ‖ ≤ ζ−2 and
∥∥Vdm(m̃1)

−1
∥∥ ≤ ζ−3k by Lemma 33 and

Claim 18. Now
∥∥π̃−1
� − π−1

�
∥∥ ≤ ζ−42k2(1+lg k)−16k−2π−5−2 lg k

min ε by Lemma 33 and Corollary 16.
Thus, ∥∥π̃−1

� − π−1
�
∥∥ ∥∥(Vdm(m̃1))

−1
∥∥ ∥∥∥Ṽ ∥∥∥ ≤ ζ−42k2(1+lg k)−18k−5π−5−2 lg k

min ε.

Now
∥∥(Vdm(m̃1))

−1 − (Vdm(m1))
−1
∥∥ ≤ ζ−42k2(1+lg k)−20k−2π−3−2 lg k

min ε by Lemma 33, so∥∥π̃−1
�
∥∥ ∥∥(Vdm(m̃1))

−1 − (Vdm(m1))
−1
∥∥ ∥∥∥Ṽ ∥∥∥ ≤ ζ−42k2(1+lg k)−20k−4π−4−2 lg k

min ε.

Finally,
∥∥∥Ṽ − V ∥∥∥ ≤ ζ−42k2(1+lg k)−1π1−2 lg k

min ε so that∥∥π−1
�
∥∥ ∥∥(Vdm(m̃1))

−1
∥∥ ∥∥∥Ṽ − V ∥∥∥ ≤ ζ−42k2(1+lg k)−3k−1π−3−2 lg k

min ε.

Putting these together, we easily obtain∥∥∥Ã−A
∥∥∥ =

∥∥∥π̃−1
� (Vdm(m̃1))

−1Ṽ − π−1
� (Vdm(m1))

−1V
∥∥∥

≤
∥∥π̃−1
� − π−1

�
∥∥ ∥∥(Vdm(m̃1))

−1
∥∥ ∥∥∥Ṽ ∥∥∥+ ∥∥π̃−1

�
∥∥ ∥∥(Vdm(m̃1))

−1 − (Vdm(m1))
−1
∥∥ ∥∥∥Ṽ ∥∥∥

+
∥∥π−1
�
∥∥ ∥∥(Vdm(m̃1))

−1
∥∥ ∥∥∥Ṽ − V ∥∥∥ (∥∥Vdm(m1)

−1E2

∥∥+ ‖E1V ‖∞)

+ ‖w‖
∥∥Vdm(m̃1)

−1
∥∥ ∥∥∥Ṽ ∥∥∥

≤ ζ−42k2(1+lg k)−20k−6π−5−2 lg k
min ε.

19



GORDON MAZAHERI RABANI SCHULMAN

Lemma 20 The matrices Ã, B̃, and B̃′ satisfy∥∥∥Ã−1
∥∥∥ , ∥∥∥B̃−1

∥∥∥ , ∥∥∥(B̃′)−1
∥∥∥ ≤ ζ−7k2 .

Proof By Lemma 33 and Corollary 8.

Lemma 21 The matrices B̃′ and B̃ produced by Algorithm 1 will satisfy∥∥∥B̃′ −B′
∥∥∥ , ∥∥∥B̃−B

∥∥∥ ≤ ζ−42k2(1+lg k)−14k2−20k−16π−6−2 lg k
min ε.

Proof We’ll prove the claim for B̃; the proof is identical for B̃′. We can bound B̃−B using the same
tools as in the previous bounds. First, we bound

∥∥∥C̃BA −CBA

∥∥∥ ∥∥∥Ã−1
∥∥∥ ∥∥π̃−1

�
∥∥ ≤ ζ−7k2−2π−1

minε.
Now ∥∥∥C̃BA∥∥∥ ∥∥∥Ã−1 −A−1

∥∥∥ ∥∥π̃−1
�
∥∥ ≤ ζ−4ζ−42k2(1+lg k)−14k2−20k−11π−6−2 lg k

min ε

and ∥∥∥C̃BA∥∥∥ ∥∥∥Ã−1
∥∥∥ ∥∥π̃−1

� − π−1
�
∥∥ ≤ ζ−4ζ−7k2ζ−42k2(1+lg k)−7k2−16k−6π−5−2 lg k

min ε.

The resulting bound is ∥∥∥B̃−B
∥∥∥ =

∥∥∥C̃BA(ÃT)−1π−1
� −CBA(A

T)−1π�

∥∥∥
≤
∥∥∥C̃BA −CBA

∥∥∥ ∥∥∥Ã−1
∥∥∥ ∥∥π̃−1

�
∥∥

+
∥∥∥C̃BA∥∥∥ ∥∥∥Ã−1 −A−1

∥∥∥ ∥∥π̃−1
�
∥∥

+
∥∥∥C̃BA∥∥∥ ∥∥∥Ã−1

∥∥∥ ∥∥π̃−1
� − π−1

�
∥∥

≤ ζ−42k2(1+lg k)−14k2−20k−16π−6−2 lg k
min ε.

Lemma 22 Algorithm 1 will compute m̃i satisfying

‖m̃i −mi‖∞ ≤ ζ
−42k2(1+lg k)−14k2−20k−19π−5−2 lg k

min ε

for all i.

Proof We’ll compute the bound using the inversion of B̃ since this will give us the worst case.
Let ỹ = (g̃(B1 ∪ {i}), . . . , g̃(Bk ∪ {1}) and let y = (g(B1 ∪ {i}), . . . , g(Bk ∪ {1}). We note that
‖ỹ − y‖ ≤ ζ−1ζ−1ε by assumption, and ‖ỹ‖ ≤ ζ−2. Then

‖ỹ − y‖
∥∥∥B̃−1

∥∥∥ ∥∥π̃−1
�
∥∥ ≤ ζ−7k2−2π−2

minε,
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‖ỹ‖
∥∥∥B̃−1 −B−1

∥∥∥ ∥∥π̃−1
�
∥∥ ≤ ζ−42k2(1+lg k)−14k2−20k−19π−8−2 lg k

min ε,

and
‖ỹ‖

∥∥∥B̃−1
∥∥∥ ∥∥π̃−1

� − π−1
�
∥∥ ≤ ζ−42k2(1+lg k)−16k−7k2−3π−5−2 lg k

min ε2.

Of the three terms, the middle one clearly dominates so that we get

‖m̃i −mi‖ =
∥∥∥ỹB̃−1π̃−1

� − yB−1π−1
�

∥∥∥
≤ ‖ỹ − y‖

∥∥∥B̃−1
∥∥∥ ∥∥π̃−1

�
∥∥+ ‖ỹ‖ ∥∥∥B̃−1 −B−1

∥∥∥ ∥∥π̃−1
�
∥∥+ ‖ỹ‖ ∥∥∥B̃−1

∥∥∥ ∥∥π̃−1
� − π−1

�
∥∥

≤ ζ−42k2(1+lg k)−14k2−20k−19π−8−2 lg k
min ε

Appendix B. Proof of Theorem 5

We start with some definitions. Let V(i) be the subspace of Rk spanned by the i’th standard basis
vector, and P(i) the projection onto V(i) w.r.t. usual inner product (i.e., as a matrix, all 0’s except a 1 in
entry (i, i)). For a separated vector v = (v1, . . . , vk) define the Lagrange interpolation polynomials
pv,i by pv,i(vj) = δij . We then have the matrix equation

pv,i(v�) = P(i). (14)

Write pv,i(x) =
∑k−1

j=0 pv,i,jx
j . Define the “coefficient norm” of a polynomial by ‖pv,i‖c =∑k−1

j=0 j · |pv,i,j |.

Definition 23 For any subspace U ⊆ Rn, let PU denote the orthogonal projection onto U and let
P⊥U denote the orthogonal projection onto the orthogonal complement subspace. Then I = PU +P⊥U .

In the following, ‖·‖ will always denote the 2→ 2 operator norm of a matrix.

Definition 24 (U -operator norm) Given a subspace U ⊆ Rn, we can define the U -operator norm
of a matrix C ∈ Rm×n, denoted ‖C‖U , as follows:

‖C‖U := max
06=u∈U

‖Cu‖ / ‖u‖ .

Lemma 25 Let U be any subspace of Rn and let C ∈ Rn×n. For all n ≥ 1,
∥∥P⊥UCn∥∥U ≤

n‖C‖n−1‖P⊥UC‖U .

Proof We need to show that for all n ≥ 2,

max
06=u∈U

∥∥∥P⊥UCnu∥∥∥ / ‖u‖ ≤ n ‖C‖n−1 max
06=u∈U

∥∥∥P⊥UCu∥∥∥ / ‖u‖ .
Using that ‖PU‖ ,

∥∥P⊥U ∥∥ ≤ 1, we have∥∥∥P⊥UCnu∥∥∥ =
∥∥∥P⊥UC(PU + P⊥U )Cn−1u

∥∥∥ ≤ ∥∥∥P⊥UCPUCn−1u
∥∥∥+ ∥∥∥P⊥UCP⊥UCn−1u

∥∥∥ .
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So (using
∥∥Cn−1

∥∥ ≤ ‖C‖n−1 and ‖PU‖ ≤ 1 in the first term, and
∥∥P⊥U ∥∥ ≤ 1 in the second term)

max
06=u∈U

∥∥∥P⊥UCnu∥∥∥ / ‖u‖ ≤ ‖C‖n−1 max
06=u∈U

∥∥∥P⊥UCu∥∥∥ / ‖u‖+ ‖C‖ max
06=u∈U

∥∥∥P⊥UCn−1u
∥∥∥ / ‖u‖

and applying induction this is

≤ (‖C‖n−1 + (n− 1) ‖C‖n−1) max
06=u∈U

∥∥∥P⊥UCu∥∥∥ / ‖u‖ .

Recall from Section 3 that the coefficient norms of the interpolation polynomials are ‖pv,i‖c =∑k−1
0 j |pv,i,j |.

Lemma 26
∥∥P⊥U P(i)

∥∥
U
≤ ‖pv,i‖c ·

∥∥P⊥U v�∥∥U .

Proof We are to show that max06=u∈U
∥∥P⊥U P(i)u

∥∥ / ‖u‖ ≤ ‖pv,i‖cmax06=u∈U
∥∥P⊥U v�u∥∥ / ‖u‖.

We have

max
u

∥∥∥P⊥U P(i)u
∥∥∥ / ‖u‖ = max

u

∥∥∥P⊥U pv,i(v�)u∥∥∥ / ‖u‖ ≤∑
j

max
u
|pv,i,j | ·

∥∥∥P⊥U (v�)ju∥∥∥ / ‖u‖ .
Note that ‖v�‖ ≤ 1. So applying Lemma 25:

max
06=u∈U

∥∥∥P⊥U P(i)u
∥∥∥ / ‖u‖ ≤∑

j

|pv,i,j | j max
06=u∈U

∥∥∥P⊥U v�u∥∥∥ / ‖u‖ = ‖pv,i‖c max
06=u∈U

∥∥∥P⊥U v�u∥∥∥ / ‖u‖ .

Lemma 27 Let 1 ∈ U ( Rk (strict containment). Then there is an i s.t. ‖P⊥U P(i)1/
√
k‖ ≥ 1/k.

Proof Fixing any unit vector v ∈ U⊥, we have for all i that ‖P⊥U P(i)1/
√
k‖ ≥ ‖v∗P(i)1/

√
k‖.

Select an i s.t. |vi| ≥ 1√
k

. Then ‖v∗P(i)1/
√
k‖ ≥ 1/k.

Lemma 28 Let 1 ∈ U ⊂ Rk. Then ‖P⊥U v�‖U > β.

Proof By Lemma 27, there is an i s.t.
∥∥P⊥U P(i)

∥∥
U
> 1/k. Applying Lemma 26 to this i, we have

that
∥∥P⊥U v�∥∥U ≥ 1

k‖pv,i‖c
. Now we need an upper bound on ‖pv,i‖c. Recall pv,i(x) =

∏
j 6=i(x−λj)∏
j 6=i(λi−λj) .

Simply by upper-bounding all λj by 1 and lower-bounding all separations by ζ, we have the bound
‖pv,i‖c ≤ ζ

1−k∑k−1
`′=0 `

′(k−1
`′

)
≤ (k − 1)(2/ζ)k−1.

Lemma 29 Fix ζ-separated vectors m1, . . . ,mk−1. Then there exist k row vectors v1, . . . , vk, with
v1 = 1/

√
k, and for ` ≥ 1, v`+1 := m` � u where u is a unit vector in U` := span {v1, . . . , v`},

and such that
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• Any unit vector in U` can be formed as a linear combination of the rows in [mR]R⊆[`−1] with
coefficients bounded in maximum magnitude by β1−`.

Proof We prove the slightly tighter bound β1−`/
√
k. We induct on `. For ` = 1 the bound

is exact by construction. For ` > 1, apply Lemma 28 to find a unit vector u∗ ∈ U`−1 such
that

∥∥P⊥U (m` � u∗)
∥∥ > β. Set v` := m` � u∗. Then U` = span(U`−1,P⊥U (m` � u∗)). The

operator norm of (m`)� is ≤ 1 so ‖m` � u∗‖ ≤ 1. Any unit vector u ∈ U` can be written as
c1u

(`−1) + c2(m` � u∗) for u(`−1) ∈ U`−1 a unit vector and where |c2| ≤ β−1 and |c1| ≤ β−1.
(This is just the operator norm of the inverse of

[
1 0√

1−β2 β

]
.) By the induction hypothesis, we can

expand u(`−1) and u∗ in terms of mR⊆[`−2] as follows:

u = c1u
(`−1) + c2(m` � u∗)

= c1

∑
R⊆[`−2]

αRmR + c2m`

∑
R⊆[`−2]

α′RmR

=
∑

R⊆[`−2]

(
c1αRmR + c2α

′
RmR∪{`}

)
where ‖α‖∞ , ‖α′‖∞ ≤ β2−`/

√
k. The claim follows immediately.

Corollary 30 For any unit column vector z ∈ Rk, the matrix M[2S ] satisfies
∥∥M[2S ]z

∥∥
∞ ≥ β

k2−k.

Proof By Lemma 29, we know that we can write zT = λTM where λ ∈ R2k and ‖λ‖∞ ≤ β−k.
Thus, 1 = ‖z‖2 =

∑
R⊆S λRmRz. There must be some R ⊆ S for which |λRmRz| ≥ 1/2k. Since

|λR| ≤ β−k we immediately get that ‖Mz‖∞ ≥ |mRz| ≥ βk2−k.

For a subset T with |T | > k− 1, the bound on the largest singular value of M[2T ] increases to k2|T |

while the lower bound remains unchanged.

Corollary 31 σmax(M[2S ]) ≤ k2k−1 and σk(M[2S ]) ≥ βk2−k/k.

Proof The largest singular value of M[2S ] is easily upper bounded by k2k−1. Lemma 29 gives the
bound on σk.

Bounding the condition number of a k× k submatrix of M[2S ]. We can now use the following
result from Feldman et al. (2008) to find a k × k submatrix that is similarly well-conditioned.

Lemma 32 (Corollary 6 in Feldman et al. (2008)) Let A ∈ Rk×n with k < n, and let σk(A) ≥ ε.
Then there exists a subset of the columns J ⊆ [n] with |J | = k such that σk(AJ) ≥ ε/

√
k(n− k) + 1.

Proof of Theorem 5. The upper bound is trivial since all entries are in [0, 1]. The lower bound follows
by applying Lemma 32 to Corollary 31.
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Appendix C. Miscellaneous Proofs

Lemma 33 For an invertible n × n matrix M and a perturbed matrix M̃ , if
∥∥∥M̃ −M∥∥∥ = ε ≤

σn(M)/2, then ∥∥∥M̃−1 −M−1
∥∥∥ ≤ 2

∥∥M−1
∥∥2
ε, and

∥∥∥M̃−1
∥∥∥ ≤ 2

∥∥M−1
∥∥ .

Proof First, we observe that∥∥∥M̃−1
∥∥∥ =

1

σn(M̃)
≤ 1

σn(M)− σn(M)/2
≤ 2

∥∥M−1
∥∥ .

We use the identity M̃−1 −M−1 = M̃−1
(
M − M̃

)
M−1.∥∥∥M̃−1 −M−1

∥∥∥ =
∥∥∥M̃−1

(
M − M̃

)
M−1

∥∥∥ ≤ 2
∥∥M−1

∥∥2
∥∥∥M − M̃∥∥∥ .
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