The Common Coder’s Scratch Programming Idioms
and Their Impact on Project Remixing

Xingyu Long

Software Innovations Lab

Peeratham Techapalokul*
College of Integrated Science and

Eli Tilevich

Software Innovations Lab

Dept. of Computer Science Technology Dept. of Computer Science
Virginia Tech Rajamangala University of Virginia Tech
Virginia, USA Technology Lanna Virginia, USA

xingyulong@cs.vt.edu

Chiang Mai, Thailand

tilevich@cs.vt.edu

peeratham@rmutl.ac.th

Abstract

As Scratch has become one of the most popular educational
programming languages, understanding its common pro-
gramming idioms can benefit both computing educators and
learners. This understanding can fine-tune the curricular
development to help learners master the fundamentals of
writing idiomatic code in their programming pursuits. Unfor-
tunately, the research community’s understanding of what
constitutes idiomatic Scratch code has been limited. To help
bridge this knowledge gap, we systematically identified id-
ioms as based on canonical source code, presented in widely
available educational materials. We implemented a tool that
automatically detects these idioms to assess their prevalence
within a large dataset of over 70K Scratch projects in differ-
ent experience backgrounds and project categories. Since
communal learning and the practice of remixing are one of
the cornerstones of the Scratch programming community,
we studied the relationship between common programming
idioms and remixes. Having analyzed the original projects
and their remixes, we observed that different idioms may as-
sociate with dissimilar types of code changes. Code changes
in remixes are desirable, as they require a meaningful pro-
gramming effort that spurs the learning process. The ability
to substantially change a project in its remixes hinges on
the project’s code being easy to understand and modify. Our
findings suggest that the presence of certain common idioms
can indeed positively impact the degree of code changes in
remixes. Our findings can help form a foundation of what

“This research was conducted when the author was a postdoctoral fellow
at the Software Innovations Lab, Dept. of Computer Science, Virginia Tech

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SPLASH-E °21, October 20, 2021, Chicago, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9089-7/21/10...$15.00
https://doi.org/10.1145/3484272.3484959

comprises common Scratch programming idioms, thus bene-
fiting both introductory computing education and Scratch
programming tools.

CCS Concepts: » Software and its engineering — Pat-
terns; Visual languages; - Social and professional top-
ics —» Computing education.

Keywords: Programming idioms, Scratch, Block-based pro-
gramming, Novice programmers, Project remixing

ACM Reference Format:

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich. 2021. The
Common Coder’s Scratch Programming Idioms and Their Impact
on Project Remixing. In Proceedings of the 2021 ACM SIGPLAN
International SPLASH-E Symposium (SPLASH-E °21), October 20,
2021, Chicago, IL, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3484272.3484959

1 Introduction

A programming idiom describes a recurring syntactic code
pattern that implements a specific functionality. Because
idiomatic code is conducive to good programming styles,
programmers find programs that contain primarily idiomatic
code easier to understand [26]. Similar to the effectiveness
of design patterns in computing education pedagogy [17],
recognizing programming idioms can be seen as an impor-
tant part of introductory computing education. For more
advanced learners, the awareness of common programming
idioms can also help in transferring programming knowledge
across languages.

Scratch has been a highly successful programming lan-
guage and a learning community for novice and end-user pro-
grammers [24]. Currently, the SCRATCH community has over
68 million registered users with 72 million shared projects
[6]. The block-based visual nature of Scratch enables in-
troductory learners to quickly become familiar with basic
programming knowledge and coding skills, so the language
has become a mainstay of introductory computing classes
in all levels [32]. Despite the abundance of Scratch tutorials
and other learning materials, the prevalence and usage of
common Scratch programming idioms remain unexplored.

https://doi.org/10.1145/3484272.3484959
https://doi.org/10.1145/3484272.3484959
https://doi.org/10.1145/3484272.3484959

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

In this paper, we bridge this knowledge gap by systematically
studying this issue.

Software engineering researchers and practitioners alike
commonly use and widely apply the term programming id-
ioms. Programming idioms usually emerge in a bottom-up
fashion from common use. However, extracting highly re-
curring patterns from a large number of Scratch projects
might not be a suitable strategy to follow in order to satis-
factorily identify common programming idioms in this lan-
guage. Novice programmers often write recurring pieces of
code that reflect their unawareness of better alternatives, or
even misconceptions and bad habits. Therefore, we chose to
extract recurring patterns from canonical sources, program-
ming textbooks authored by seasoned Scratch programmers,
so we could use their crystallized knowledge and experience
as our source of common programming idioms.

Understanding common programming idioms is impor-
tant to be able to effectively use and learn a language. Some
studies have indicated that certain aspects of the Scratch’s
open-ended learning model might not be as effective for all
learners as previously thought, and why models that employ
more guided learning can be beneficial [22]. Some studies
suggest that students might not deeply engage with those
programming concepts that educators expected them to mas-
ter [7, 18]. The highly interactive programming model of
Scratch empowers students to learn through trial and error
by tinkering with source code, in order to associate differ-
ent code fragments with the program output. In the process,
students may end up producing non-idiomatic code patterns
and embracing them as part of their coding practices. In
fact, writing non-idiomatic code repeatedly might have led
learners to poor quality code as observed in prior studies,
such as code smells [30] and bugs [20]. Steering students in
the direction of using idiomatic coding patterns may help
them in effectively mastering the fundamentals of program-
ming, so they can quickly progress toward more advanced
concepts.

In fact, the concept of patterns, which is embodied in pro-
gramming idioms, in introductory programming is not new.
A growing body of research focuses on anti-patterns (e.g.,
code smells, poor coding practices)—that is, patterns that
should be avoided or refactored. For example, Fradrich et al.
found that software bugs afflict a large portion of Scratch
projects [20]. However, the opposite of anti-patterns, as with
programming idioms in Scratch, has been relatively unex-
plored.

The objective of this work is to better understand Scratch
programming idioms by answering the following questions:

e RQ1: What are the common programming idioms in
top 5 Scratch programming books?
By common, we mean comprehensive. That is, we iden-
tify programming idioms as they pertain to both (1)

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich

general programming tasks and (2) most popular Scratch-
specific programming domains (e.g., media computing,
games, animations, etc.).

e RQ2: How common are those idioms in a large, diverse
dataset of Scratch projects?
Our goal is to understand how common these idioms
are across the different categories of Scratch projects.
We created a tool for detecting the identified idioms
and applied it to a large number of Scratch projects to
determine the prevalence of these idioms.

e RQ3: How does the code change within the detected
common idioms when projects are remixed?
Because certain idioms are conducive to program com-
prehension and modification, understanding how these
idioms impact projects remixing can guide the design
of educational strategies. We investigate how code
changes within two types of detected idioms related
to control flow (i.e., NESTED IF ELstE and FOREVER IF/IF
ELsE) between the original projects and their remixes.
We selected these two idioms due to them being related
to control-flow, with high prevalence across different
project categories. Their control-flow structures iso-
late the differences introduced by remixes, so we could
reliably observe how these idioms manifest themselves
in remixing practices.

We identified a total of 11 common idioms that belong
to 2 main categories: 1) Scratch-specific (i.e., CHANGE AND
CLONE, CHANGE AND WAIT, REPEAT CHANGE, SENSOR WAIT
UNTIL NO SENSOR, SWITCH BACKDROP AND BROADCAST, and
BroaDCAST AND SToP) and 2) general programming idioms
(i.e., ITERATE LisT, DELETE ALL ITEMS By VALUE, FOREVER
IF/IF EisE, NESTED IF ELSE, and REPEAT Ask). By analyz-
ing Scratch projects for the presence of the aforementioned
idioms, we discovered the prevalence of these idioms. Addi-
tionally, by investigating how code changes between original
projects and their remixes within the detected NESTED IF
Erse and ForevER IF/IF ELsE idioms, we discovered that the
majority of these changes are code deletions. It suggests that
programmers often remove code blocks in their remixing
projects to achieve their goal and they are more likely to
maintain simpler projects.

This paper makes the following contributions:

1. A catalog of 11 common Scratch programming idioms,
including their definitions and usage scenarios

2. An automated tool for automatically detecting pro-
gramming idioms; we extended Litterbox[20], a state-
of-the-art framework for analyzing Scratch programs

3. A large-scale study that assesses the prevalence of
the studied programming idioms based on a diverse
dataset of over 70K projects

4. A case study of code changes within two common
control-flow idioms detected in the original projects
and their remixes

The Common Coder’s Scratch Programming Idioms and Their Impact on Project Remixing

The remainder of the paper is organized as follows: Section
2 presents background information on programming idioms
and Scratch. Section 3 provides a summary of prior studies
on idioms and patterns in Scratch. Section 4 explains our
approach used to answer the research questions. Section 5
presents the findings of our study. Section 6 discusses the
significance and implications of our findings as well as the
threats to validity of the study in Section 7. Finally, Section
8 presents future work direction and concluding remarks.

2 Background

In this section, we describe the background information
about programming idioms and Scratch, required to under-
stand our technical contributions.

Programming Idioms: A programming idiom refers to
a commonly recurring pattern of code in a given language.
Since programming idioms reflect prevailing programming
styles, they serve as a bottom-up type of programming knowl-
edge, acquired via hands-on programming activities. Struc-
turally, a programming idiom can comprise a single or mul-
tiple code fragments. In general, a programming idiom rep-
resents a simple functionality that the underlying program-
ming language does not directly provide as built-in libraries.
The same programming idiom is often present in different
programming languages, but manifests in different forms
based on the specific language’s programming style (e.g.,
‘iterating over a range:’ ‘for (int i = 0; i < 10; i++)’ in Java
and ‘for i in range(0, 10)’ in Python).

A number of research works study programming idioms.
Early work dating back into 1970’s suggests that program-
ming idioms serve as a useful programming concept that can
be applied to teaching programming to students [27]. Other
studies aim at understanding how idiomatic code is used
and how it impacts software. Alexandru et al.[8] built a cata-
log of ‘Python idioms’ having discovered how they greatly
improve code quality. Smit et al. [28] analyzed a large vol-
ume of open-source projects and discovered that several
coding-conventions positively impact maintainability.

Scratch: Released in 2007, Scratch has since become highly
popular among novice programmers in both formal and in-
formal educational settings [24]. Its intuitive visual program-
ming interface allows programmers to compose a program
by snapping jigsaw-like blocks together. Unlike in general
text-based programming languages, such as Java and Python,
learners in Scratch can quickly learn core programming
concepts without the need to master the language’s syn-
tax. Scratch makes learning programming engaging by em-
powering learners to create media-rich projects that include
animations, games, tutorials, art, music, and stories 1 Scratch
fosters a learning community, in which programmers learn

Lhttps://en.scratch-wiki.info/wiki/Project_Types

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

from each other by sharing and remixing projects. This prac-
tice can be seen as a form of code reuse, similar to forking
in the context of professional software development.

A Scratch program comprises programmable objects (the
Stage and its children objects known as “sprites”). The Stage
and sprite objects are controlled by a set of scripts, which
is a sequence of blocks. Scratch has made several design
choices to keep their language features simple. For example,
a Scratch procedure has no return value and cannot be shared
among different sprite objects. Although minimal in its de-
sign, the Scratch language introduces novice programmers
to several fundamental programming concepts, including
sequences, flow controls, variables, procedural abstractions,
synchronizations, and Boolean conditions.

Another advantage of Scratch is a wide availability of
learning materials, including books, freely available program-
ming tutorials, and community-curated programming tips.
We used these materials as canonical examples of what con-
stitutes “good” Scratch programming style and our source
of idioms.

3 Related Work

In this section, we review the most closely related prior
research efforts.

Our study of programming idioms in Scratch is among
many prior research efforts that aim at better understand-
ing and supporting programmers in this domain. Related
works in this area apply program analysis to Scratch, such
as the studies of code smells [30] and software bugs [20]. A
common approach to automatically analyze coding patterns
is to leverage static program analysis, which operates on
the abstract syntax tree (AST) representation of a program.
Like programming idioms, bug patterns and code smells ex-
hibit unique structural characteristics that can be exploited
by automatic detection approaches. Although designed for
different purposes, some of the prior works provide open-
source reusable program analysis infrastructures to build
upon. In particular, we extended the core functionality of
LitterBox [20], a state-of-the-art Scratch program analysis
framework, to implement our analyzer of programming id-
ioms.

Several prior works have also focused on programming
idioms in Scratch. In particular, Amanullah and Bell con-
ducted a series of studies of programming idioms referred to
in their work as “elementary programming patterns”. Their
early work proposed two main categories of elementary pro-
gramming idioms— loop[15] and selection[16] (‘If” related)
patterns —as a way to help students avoid programmings
problems (e.g., code smells, bug patterns) and assess the
prevalence of these patterns in a large dataset of Scratch
projects [10]. These findings show that elementary patterns
are uncommon among projects created by inexperienced pro-
grammers [11]. Their later work suggests that remixing can

https://en.scratch-wiki.info/wiki/Project_Types

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

help programmers learn elementary patterns. Specifically,
when instances of elementary pattern were detected in an
original project, the same pattern instances were also found,
often in greater number, in its project remixes [12]. Their
most recent work applies elementary programming patterns
to measure how comprehensive a set of Scratch teaching
materials and introductory Python books are in covering
their patterns [13].

Our work differs from the prior research conducted by
Amanullah and Bell in a number of ways. Firstly, our goal
is to comprehensively document common Scratch program-
ming idioms, as based on a representative corpus of canoni-
cal educational materials. Specifically, we draw our idioms
from popular Scratch educational materials, considering not
only general programming but also Scratch-specific idioms.
Secondly, our large-scale study involves dissimilar sets of
projects as subjects to better understand existing patterns of
using common idioms. Specifically, we applied our analysis
to projects that were authored by programmers with dis-
similar levels of programming experience and coming from
different backgrounds (i.e., based on trending projects, class-
room studios, top Scratch programmers, etc.) and categories
(i.e., games, animations, etc.). Finally, we investigated the
types of changes in the idioms’ body between projects and
their remixes. Our case study can thus shed light on how
project remixes use these idioms, with the goal of promoting
the Scratch communal learning.

4 Methods

In this section, we describe the approaches we used to answer
our research questions.

4.1 Identifying programming idioms

To identify programming idioms, the first and the second
authors worked collaboratively by following a two-stage
process:

Stage 1: Gathering Sources Canonical sources of pro-
gramming idioms were compiled from online Scratch pro-
gramming lessons and books. A collaborative document was
kept, with entries for each found programming idiom. Each
entry included screenshots of the idiom’s instances, their
location (e.g., URL, page number), and comments describing
its usage context. This shared document allowed both au-
thors to organize and keep track of any recurring instances
or new idiom candidates discovered so far.

When identifying idioms or structural patterns in code,
one has no choice but to rely on their own experience and
understanding of the studied language’s constructs, their
semantics as well as how they are used in practice to achieve
specific functionalities. Hence, this process is necessarily sub-
jective. To minimize subjectivity in our identification process,
we carefully examined the repeated patterns in code written
by experienced Scratch programmers. That code would be

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich

expected to be idiomatic. We also used the common charac-
teristics of idioms as widely discussed in the literature as a
guideline in classifying each repeated pattern as a potential
idiom. Specifically, we looked for small, reusable, structured
coding patterns written to achieve a particular purpose. This
strategy led us to identifying potential candidates whose
frequencies we used to come up with our final list of idioms
in Stage 2.

Although not all of the examined Scratch resources con-
tained idioms, we were still able to compile our final catalog
of 11 idioms. Some of these resources turned out to be not
a good source of idioms, such as online Scratch program-
ming lessons that often present open-ended instructions.
These exploratory and experimental learning materials re-
flect a Constructionist design, the driving learning philoso-
phy of Scratch. For instance, Google’s “CS First” offers several
project-based lessons that focus on a step-by-step guide with
minimal boilerplate code as a starting point?.

Other types of resources proved to be reliable sources of
idioms that made our final list. As is usually the case, pro-
gramming books in any language can be typically relied on
to contain coding idioms. These books cover similar materi-
als, thus reflecting shared communal knowledge. Specifically,
Scratch programming books often explain fundamental pro-
gramming topics (sequences, variables, control flow, etc.)
by presenting the source code of example projects in major
project categories (games, animations, stories, etc.). These
books represent the main sources that we used when identi-
fying the programming idioms for our study.

Stage 2: Identifying Idioms Each recorded idiom was
evaluated as a candidate to be included into our list of idioms.
Both authors strived to achieve a mutual understanding of
each idiom and its usage context. By resolving disagreements,
the authors reached a consensus on whether to include can-
didate idioms in the catalog. They considered not only how
frequently an idiom recurs across the sources, but also if
other popular programming languages (Java, Python, etc.)
have corresponding idioms, as reflected in a crowd-sourced,
online catalog of idioms curated for major text-based lan-
guages [5]. This stage also provided an opportunity to tenta-
tively name and initially define the idioms’ generic form, as
a starting point of a further iterative refinement process.

The included idioms were divided into two categories: gen-
eral programming idioms and Scratch-specific. We classified
any idioms that appear in other programming languages as
general programming idioms. Scratch-specific idioms come
from usages that perform specific media-computing function-
alities, such as animation, art, games, music, stories. Overall,
we discovered that when it comes to Scratch books, many of
them are published by the O’Reilly Media. Our sources are
the five Scratch textbooks which represent the minimal set
of sources that contain the studied idioms.

Zhttps://csfirst.withgoogle.com/c/cs-first/en/curriculum.html

https://csfirst.withgoogle.com/c/cs-first/en/curriculum.html

The Common Coder’s Scratch Programming Idioms and Their Impact on Project Remixing

Next, we briefly provide a summary of the five aforemen-
tioned books. These books contain a variety of content, both
general and domain-specific. They provide representative
examples for identifying recurring Scratch programming
idioms associated with programming concepts (e.g., condi-
tional statement, for-loop statement, variables, operators,
and etc) and project categories (e.g., animations, art, games,
music, stories, tutorials).

For example, some of this educational content introduces
the fundamentals of Scratch programming (e.g., “Hello Scratch!:
Learn to program by making arcade games [19]” and “Make
Your Own Scratch Games! [14]”) by explaining how to make
computer games. These textbooks provide well-written cod-
ing examples, but may have different target audiences. For
example, major game design concepts and implementation
strategies would be more appropriate for advanced Scratch
programmers, while the basics of writing games in Scratch
would be of primary interest for beginners.

As another example, “Scratch by Example: Programming
for All Ages [31]” introduces the basics of Scratch as well
as illustrates how several advanced programming concepts
should be used, including the list data structure, customized
blocks, and webcam interaction. “Scratch 3 Programming
Playground [29]” provides a large number of idiomatic cod-
ing samples for different common programming tasks by
creating several game-related projects. Finally, “Learn to
Program with Scratch [25]” presents the material centered
around different block types (e.g., a comprehensive overview
and usage examples of each block).

4.2 Studying the prevalence of Scratch
programming idioms

To assess the prevalence of programming idioms, we col-

lected a large representative sampling of Scratch projects

from the “trending” category. We obtained our list of trending

projects via the project fetching API that allows specifying

different query parameters (e.g., https://api.scratch.mit.

edu/explore/projects?limit=16&offset=0&language=en&mode=

trending&q=animation). We chose to focus on trending projects,
as they tend to be more mature in comparison to the projects
in the “recent” category. Trending projects are also likely to
be non-trivial, as indicated by their high visibility among
community members, thus making it possible to exclude
projects that contain only graphical media without any code.
To better understand how idioms are used, we collected ad-
ditional project samples of different groups of programming
backgrounds to compare with the average trending projects.
Specifically, we focused on two specific experience back-
grounds 1) Scratch classroom studios, comprising projects
created by students in formal classroom settings and 2) Top
community-favorite programmers, comprising projects cre-
ated by highly experienced Scratch programmers in the com-
munity. After removed the empty projects (i.e., zero block

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

found in projects), we collected a total of 70K projects dur-
ing March, 2021 (29,771 projects for top Scratchers, 43,340
projects for trending, 730 projects for studio).

We also collected projects from high school and college
classes, which we referred to as studio dataset. Studio is a
project collection in Scratch, a feature commonly used in a
classroom setting to collect and organize projects created
by students. This feature is also used by programmers in
the Scratch community to curate a collection of projects
sharing a similar genre or theme. In our study, we carefully
chose a subset of studios that appear to associate with a
classroom setting. In particular, we collected 25 different
classes which include computer science courses from high
school and college level and 730 projects in total.

For RQ3, we used a small subset of Scratch projects that
have been remixed (forked) multiple times and contained
two common control-flow idioms: FOREVER IF/IF ELsE and
NesTED IF ELsE. Because the analysis required comparing the
original projects with their remixes, we collected a random
sample of twenty remixes for each studied original project.
Not all of the projects met the criteria of having 20 or more
remixes. In summary, the RQ3 dataset comprises a total of
342 projects (59 original projects and their 283 remixes).

Overall, the collected project samples represent all six con-
sidered categories (e.g., animations, games, tutorials, art, mu-
sic, and stories)’. Scratch allows programmers to tag shared
projects with a category name.

4.3 Detecting Programming Idioms

We extended LitterBox [20] to implement a set of analy-
sis routines, each detecting a specific programming idiom.
Source code for our implementation was published at Github
(https://github.com/xingyu-long/LitterBox)

An idiom detection routine operates on the abstract syn-
tax tree (AST) of a parsed Scratch project. It traverses the
AST, collects each visited node’s information to determine
whether the idiom is present based on its definition, adding
the detections to a final report.

For idioms with sequential structures (e.g., CHANGE AND
CLONE, CHANGE AND WAIT, and BROADCAST AND STOP), we
apply our detection tool to all statement sequences contained
in different AST nodes with a nested structure (e.g., ‘forever’,
‘repeat’, ‘if’, etc). For each idiom with complex structures,
we develop a customized detection strategy. For example,
NesTED IF ELsE includes multiple ‘If-else’ code fragments
according to our definition. Our tool detected this idiom
by traversing the nested structure of AST nodes to keep
track of the number of ‘If-Else’ nodes encountered and re-
ported whether this structure exists. To make sure that we
exhaustively cover all edge cases, we developed a suite of
comprehensive test cases for each variety of our idiom de-
tectors.

3https://en.scratch-wiki.info/wiki/Project_Tags

https://api.scratch.mit.edu/explore/projects?limit=16&offset=0&language=en&mode=trending&q=animation
https://api.scratch.mit.edu/explore/projects?limit=16&offset=0&language=en&mode=trending&q=animation
https://api.scratch.mit.edu/explore/projects?limit=16&offset=0&language=en&mode=trending&q=animation
https://github.com/xingyu-long/LitterBox
https://en.scratch-wiki.info/wiki/Project_Tags

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

LitterBox’s modular design made it easy to extend to cre-
ate customized traversal strategies for accessing the target
program elements of the analyzed idioms. Having clearly
defined idioms, experienced developers should be able to
translate the definitions to working code that collects all the
necessary program information needed to detect idioms.

4.4 Computing programming idioms metrics

To assess the prevalence of an idiom, we calculated the per-
centage of the projects in the dataset that contains at least
one instance of the idiom. We performed this calculation
for the projects in different project categories (e.g., games,
animations, storytelling, etc.) and three sample datasets rep-
resenting different programming experiences/backgrounds
(i.e., (1) trending (general), (2) top Scratchers, and (3) studio
projects).

We explored how code changes within the body of the
ForeVER IF/IF ELSE and NESTED IF ELSE idioms across the
original projects and their remixes. We detected these idioms
in the original projects and then collected their block IDs
and identified the corresponding code fragments in their
remixes. We converted the code fragments to textual repre-
sentations to make them amenable to differencing as plain
text. Then, we calculated the type of changes in terms of
deletion, insertion, and update, represented as percentages
of each operation.

5 Findings
In this section, we present the findings that answer our re-
search questions.

5.1 Common Programming Idioms in Scratch (RQ1)

Identified by following the procedure outlined above, the
following idioms are cataloged into general programming
and Scratch-specific groups.

General programming idioms:

1. ITERATE LisT: Similarly as in other programming lan-
guages, a list is a useful data structure for storing mul-
tiple pieces of information. Scratch provides a set of
basic command blocks for reading a list value at a given
index as well as manipulating the stored values (e.g.,
adding and deleting item by its value from the list).
This idiom is used to iterate the list values and perform
actions on each accessed value [1]. Fig 1) shows an
example of this idiom.

2. DELETE ALL ITEMS By VALUE: Scratch supports storing
in a list values of string and number types only. Addi-
tionally, all operations on a list are based on either the
item indices or the item values. This specific list-based
idiom removes all list items that matches a specified
item value [2]. Fig. 2 shows the generic form of this
idiom.

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich

Figure 1. ITERATE LisT

‘F\
v \
not list » oontains ? ’
delete . of list »

Figure 2. DELETE ALL ITEMS By VALUE

3. Forever IF/IF ELsk: This idiom provides a way to con-

tinuously monitor a given Boolean condition [25]. For
if-then inside the body of forever block, it perform no
action when the condition is false and perform speci-
fied actions whenever the condition is true. The need
for this usage scenario is so common that historically
Scratch introduced it as one of its control blocks but
later removed it in Scratch 2.0 [3]. A less common vari-
ation of this idiom, when if-then-else block is used in
place of if-then block, provides a way to also perform
specific actions continuously when the monitored con-
dition is not met.

. NEsSTED IF ELsE: Selecting one among multiple code

fragments to execute based on their conditions is a
common programming idiom in any language [25].
Some programming languages allows multiple else if
to be inserted between then and else parts to specify
additional conditions. In Scratch, this multi-branch
control structure is achieved by repeatedly nesting the
if-then-else block within the else part of the previous if-
then-else block. Fig. 3 shows an example of this idiom.

. REPEAT Ask: Scratch provides the ask () and wait

block to prompt for text input from the user [25]. The most
recent text input is then stored in the “answer” block. This
idiom performs input validation by continuously asking for
user input until a valid text input is submitted [25]. Fig.4
shows an example of this idiom.

Scratch-specific Programming Idioms:

Figure 3. NESTED IF ELSE

ask @ and wait

ask @ and wait

T

Figure 4. REPEAT AsK

6. CHANGE AND CLONE: Creating clones is analogous to

instantiating objects, a Scratch clone inherits attribute
values (e.g., local variable, position, visibility, etc.) from
a sprite parent, which can be viewed as the clone’s
prototype. This idiom sets sprite attributes that become
the initial attribute values of a soon-to-be created clone.
The idiom contains one or more side-effect command
blocks (e.g., change [variable v1 by (1)) that precede
the create clone of [myself]. Fig. 5showsanexample
of this idiom.

change local_variable v by 0

Figure 5. CHANGE AND CLONE

. CHANGE AND WAIT: This idiom introduces delay in between
command blocks that have immediate effects on the program
output (e.g., setting an object’s position). Executing these
blocks in sequence would result in instant changes that are
imperceptible to the human eye. To create an illusion of
smooth changes over a period of time (e.g., a moving object),
a wait block (e.g., wait 0.01 sec) is used to insert a small
delay between each included block (or a sequence of blocks
that needs to be executed without delays) [19]. Fig. 6 shows
an example of this idiom.

The Common Coder’s Scratch Programming Idioms and Their Impact on Project Remixing

8.

9.

10.

11.

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

D_4

move @ steps

Figure 6. CHANGE AND WAIT

REPEAT CHANGE: Scratch projects are often made up of sev-
eral low-level, elementary animated elements that can be
combined to create increasingly complex animations, often
used by storytelling and game projects. This idiom is used
in many elementary animations (e.g., fading a sprite’s trans-
parency, growing a sprite’s size) by repeating a sequence of
side-effect causing blocks (e.g., position, size, graphic effects)
a specified number of times. Fig. 7 shows an example of this
idiom.

setxto pick random @ to m

setyto pick random @ to @

Figure 7. REPEAT CHANGE

SENSOR WAIT UNTIL No SENsoOR: To handle user input events,
an infinite loop (i.e., forever block) is often used alongside
sensor blocks to monitor specific user input events. However,
using an if block to check whether a user input event (e.g.,
mouse clicks, key presses) is present can trigger event-based
code more than once at a time, resulting in an unwanted
program behavior in some scenarios. This idiom ensures
that a stream of events of the same type will not re-trigger
event-based code by using await until [sensor block]
block to wait for the absence of the event first. Fig. 8 shows
an example of this idiom.

SwitcH BACKDROP AND BROADCAST: The Stage serves not
only as a parent object for all sprites in a project, but also
as a visual container that renders the background (called
a backdrop in Scratch). This idiom sets a backdrop as the
visual context, and then coordinates sprites accordingly via
a broadcast block.

BroADCAST AND SToP: This idiom diverts program flow
from one script to other scripts when a certain condition is
met. This idiom coordinates various parts of a program in
response to a specific program state. Fig. 9 shows a common
use case of this idiom. A script handles an exceptional case

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

o oty v

Figure 8. SENSOR WAIT UNTIL NO SENSOR

in which an error message is broadcast and the execution of
that script is stopped.

@
=2

Figure 9. BROADCAST AND STOP

5.2 Prevalence of programming idioms (RQ2)

Table 1 provides the statistical summary of the trending
dataset. We calculate the mean, standard deviation, and five-
number summary of the basic Scratch program elements
(blocks, procedures, scripts, and sprites) in 43,340 project
samples. The size of the project samples in terms of number
of blocks varies widely, as indicated by a high standard de-
viation of numBlocks. On average, a project in our dataset
contains 374 blocks, 29 scripts, and 7 sprites.

Table 2 presents the prevalence of each programming
idiom in three datasets: trending, top Scratchers, and studio
projects.

Overall, each programming idiom is similarly prevalent
across the three datasets. The top three most prevalent id-
ioms are CHANGE AND WAIT, REPEAT CHANGE, and FORr-
EVER IF/IF ELSE, respectively. Each of these three idioms are
present in over one third (33%) of project samples. Notably,
the top two idioms are often present in more than half of the
project samples.

Moderately prevalent idioms are CHANGE AND CLONE
and NEsSTED IF ELsE. These idioms are present from 10%
to 21% of the project samples except in the studio dataset

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich

where they are less prevalent (5.75%). Broadcast-related id-
ioms (i.e., SWITCH BACKDROP AND BROADCAST and BROAD-
cAST AND StoP) are less prevalent, with most of them present
in less than 5% of the projects, although Switca BAckDROP
AND BROADCAST is present at a relatively higher percent-
age (9.18%) in the studio dataset. Finally, list-related idioms
(i.e., DELETE ALL ITEMS BY VALUE, ITERATE LisT) and REPEAT
Ask are uncommon, detected in less than 0.3% of the sample
projects in all three datasets.

From the studio dataset, SENsSOR WAIT UNTIL NO SENSOR,
DELETE ALL ITEMS BY VALUE, and ITERATE LisT show no
prevalence (0%). A possible explanation is that introductory
Scratch programming courses often adopt an exploratory
style for coding assignments. Also, many courses might in-
troduce students to Scratch programming early in the cur-
riculum and then transition to text-based languages, thus
reducing the opportunities for students to apply more ad-
vanced Scratch idioms.

To better understand the distribution of programming id-
ioms, we further investigated how prevalent the identified
idioms are in the trending dataset across different project
categories. Table 3 presents the results. CHANGE AND WAIT
and REPEAT CHANGE, commonly used idioms for creating
animation, are similarly prevalent across different project cat-
egories, especially in animations, games, and stories. These
idioms were detected in a range of 41% to 77% of the projects.
The prevalence of FOrReVER IF/IF ELSE varies noticeably
across project categories. Specifically, less than 28% of the
animation, art, and storytelling projects contain this idiom,
while 74.44% of games and 53.18% tutorials projects contain
this idiom at least once. Especially, those two idioms are
less than 10% in the art category, and they show 3.15% for
NEsTED IF ELSE and 7.71% for CHANGE AND CLONE.

Broadcast-related idioms (SwiTcH BACKDROP AND BROAD-
cAsT and BROADCAST AND STOP) appear in less than 10% of
projects in each category. We found that only BRoaADCAST
AND SToP in game projects is 9.43%, which is higher than
Broadcast-related idioms in other project categories. The id-
ioms related to the list data structure (i.e., ITERATE LisT) are
uncommon, found only in stories, appearing in only 0.01% of
all projects. Other uncommon idioms include SENsor WAIT
UnTIL No SENSOR, and REPEAT Ask whose prevalence is less
than 4% across project categories, used in less than 1% of all
projects.

5.3 Idioms and code changes through remixing
(RQ3)
We explored how code changes within the body of two com-
mon control-flow idioms. We considered three types of op-
erations: block insertion, block deletion, and value update.
Fig. 10 shows a partial example of the analyzed code
changes. The original and its remixed instance of the For-
EVER IF/IF ELsE idiom appear on the left and right sides,
respectively. This example shows how code changed in two

The Common Coder’s Scratch Programming Idioms and Their Impact on Project Remixing

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

Statistic N Mean St.Dev Min Pctl(25) Median Pctl(75) Max
numBlock 43,340 374.62 966.50 1 25 99 347 28031
numProcedure 43,340 2.77 9.94 0 0 0 1 285
numScript 43,340 29.13 65.68 0 4 10 29 2314
numSprite 43,340 6.77 10.01 0 2 4 8 332

Table 1. Basic summary statistics of trending dataset

Programming idiom Trending Top Scratchers Studio
Change And Wait 60.23% 58.43% 64.79%
Repeat Change 58.31% 63.96% 42.19%
Forever IF/IF Else 39.79% 40.86% 52.88%
Change And Clone 17.54% 20.48% 5.75%
Nested IF Else 10.69% 12.68% 5.75%
Broadcast And Stop 2.86% 3.82% 4.25%
Switch Backdrop And Broadcast 2.52% 3.01% 9.18%
Sensor Wait Until No Sensor 1.14% 1.72% 0
Delete All Items By Value 0.10% 0.14% 0
Repeat Ask 0.05% 0.08% 0.27%
Iterate List < 0.01% 0.03% 0

Table 2. Prevalence of programming idioms in trending, top Scratchers and studio datasets

Programming idiom % in Animations % in Art % in Games % in Music % in Stories % in Tutorials
Change And Wait 76.62% 41.45% 65.50% 48.46% 73.26% 51.76%
Repeat Change 70.38% 42.51% 70.67% 49.08% 68.60% 46.46%
Forever IF/IF Else 26.92% 23.55% 74.44% 32.18% 27.11% 53.18%
Change And Clone 19.70% 7.71% 30.51% 13.41% 21.92% 11.27%
Nested IF Else 9.20% 3.15% 22.87% 6.21% 14.11% 7.87%
Broadcast And Stop 1.78% 0.80% 9.43% 2.27% 0.96% 2.30%
Switch Backdrop And Broadcast 3.66% 1.06% 2.78% 1.7% 3.31% 2.24%
Sensor Wait Until No Sensor 0.82% 0.39% 3.18% 0.74% 0.92% 0.85%
Delete All Items By Value 0.03% 0.05% 0.43% 0.06% 0.01% 0.05%
Repeat Ask 0 0 0.21% 0.01% 0.06% 0.01%
Iterate List 0 0 0 0 0.01% 0

Table 3. Prevalence of programming idioms in each project category subset within the trending dataset

places. The first change is the insertion of two more blocks
within the “if-then” block. The other change is the modi-
fied Boolean expression of the existing “if” block, with extra
operator blocks that include several sensing-related blocks.
Our analysis captures these changes as 3 insertions.

We analyzed a total of 367 instances of NESTED IF ELSE
and 739 instances of FOREVER IF/IF ELSE. The two program-
ming idioms have dissimilar characteristics of code changes
across the original projects and their remixes. Tables 4 and
5 summarize the change operations that occurred within
the body of the analyzed idiom instances. The results on

both of these tables show that the majority of code changes
are deletions with ~82% for NESTED IF ELsE and ~54% for
Forever IF/IF ELsE. Although the percentages of deletions in
both idioms are similarly high, the percentages of insertions
are markedly different. Block insertions account for almost
27% of all code changes in FOREVER IF/IF ELSE as compared
to about 5% in sHow No NESTED IF ELSE.

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

left arrow v

5 blocks

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich

s

7 blocks (2 new blocks)

Figure 10. Insertion example for FOREVER IF/IF ELSE in original and its remix

Operation % of change of line
Delete 81.66%
Update 13.58%
Insert 4.76%

Table 4. Prevalence of operations found in NESTED IF ELSE

Operation % of change of line
Delete 53.95%
Insert 26.55%
Update 19.50%

Table 5. Prevalence of operations found in FOREVER IF/IF
ELSE

6 Discussion

In this section, we discuss how the prevalence of program-
ming idioms and code changes in the remixes may be lever-
aged by computing learners and educators.

6.1 Identifying Scratch Idioms

Similarly to prior approaches, we found the task of identify-
ing common Scratch programming idioms quite challenging.
What comprises an idiom can be a highly subjective question.
The issue at hand is to determine the prevalence threshold,
exceeding which an idiom would be considered for inclusion.
Some idioms prominently featured in language tutorials may
not manifest themselves prominently in actual application
codebases. In fact, a related work effort reports a similar
observation regarding a different set of idioms [10]. Their
results show that the top three recurring patterns appear in
only 19% to 34% of over 200k project samples, while the rest
of the patterns appear in less than 10% of the samples.

This insight suggests that the Scratch application codebase
is rife with non-idiomatic coding practices. One possible

explanation for this insight is that Scratch programmers
tend to code in more experimental styles typical of bottom-
up programming practices, more concerned with the end
result rather than with the specifics and quality of their code.

This phenomenon also reflects how workarounds simi-
lar to those documented in Scratch’s learning resources [4]
may be commonly found among projects created by novice
programmers. To identify the common programming idioms
as they pertain to actual programming practices, one might
explore applying the software mining techniques [9] on the
actual application codebases rather than systematically con-
sulting textbooks and tutorials.

6.2 Programming Idioms in Novice Programming
Practices

Our findings suggest that novice programmers can success-
fully recognize and make use of programming idioms. Some
idioms are highly prevalent (i.e., CHANGE AND WAIT, RE-
PEAT CHANGE, and FOREVER IF/IF ELsE), while several others
(e.g., ITERATE LisT, REPEAT ASK, etc.), not so much. The low
prevalence of many idioms may be due to their more specific
use cases, and advanced usage scenarios. Nevertheless, the
presence of the observed highly recurring idioms suggests
that novice programmers, similar to professional program-
mers, find idioms natural to learn and apply in their coding
practices. A similar observation has been discussed in prior
work about the naturalness of event-based programming
styles among Scratch novice programmers [21].

Although highly recurring idioms are applicable regard-
less of the project categories, many of the studied idioms are
often domain-specific. Any Scratch project has at least some
graphics, making animation-related idioms (i.e., CHANGE
AND WAIT, REPEAT CHANGE) highly prevalent. However,
some idioms are more prevalent within certain project cat-
egories. For example, FOREVER IF/IF ELSE in the games and
tutorials category represent more than 50% of all projects
and tend to be less common in the art category (~23%).

Tutorial projects present an interesting case, as they seem
to reflect the average of all categories. The likely impetus for

The Common Coder’s Scratch Programming Idioms and Their Impact on Project Remixing

creating these projects is the natural desire of programmers
to share their knowledge and expertise with their fellow pro-
grammers. It is perhaps for this reason, that tutorial projects
often contain the idioms commonly used across all categories
(e.g., art, game, storytelling) that we studied.

6.3 Programming Idioms and Introductory
Computing

The low-prevalent idioms suggest possible opportunities for
educational interventions. For example, the fact that ITER-
ATE LIST is not commonly present suggests that list data
structures are underused in the application codebase. Per-
haps introductory learners are unaware of this data structure
and its common applications. Hence, it might be more ef-
fective to teach programming constructs in terms of their
relevant idioms, so learners can quickly start becoming fa-
miliarized with the usage of programming constructs and
apply them appropriately in their programming practices. In
the case of the list data structure, educators can more explic-
itly introduce the list idioms as part of tutorials and sample
projects to promote the usage of this important data struc-
ture in introductory programming. Similarly, REPEAT AsK,
used for validating text, a common idiom in other program-
ming languages for securing the program input. Perhaps
better familiarity is all that is required for not only using the
ask and answer blocks, but also for the practice of validating
input becoming a standard tool for Scratch programmers.

6.4 Roles of Programming Idioms in Remixing
Practices

Khawas et al.[23] explored the overall changes between the
projects and their remixes. They found that programmers
often insert blocks than delete them. However, the insertions
exceed deletions only by a small margin. In our work, we also
made it a point to study how the code fragment within the
idiom’s body changes between projects and their remixes.
Specifically, we determined that in two common flow control
idioms, programmers more frequently delete than insert code
blocks in the remixes (i.e., 81.66% in NESTED IF ELSE, 53.95%
in FOREVER IF/IF ELSE).

From Tables 5 and 4, the insertion in NESTED IF ELSE is
lower than in FOREVER IF/IF ELsE, and the potential reason
for this discrepancy is that NESTED IF ELSE contains spe-
cific operations in potential scenarios, which programmers
usually keep or delete as a whole. The FOREVER IF/IF ELSE
idiom allows more editing flexibility, so programmers tend
to actually insert code blocks into this idiom. The dissimilar
percentages of code insertions between the two common
flow-control idioms raise an interesting question: do these
differences correlate with the degree of cognitive effort re-
quired to understand each idiom?

As we determined, the majority of changes for these two
idioms in the remixes are deletions. This observation sug-
gests that programmers remix projects by retaining existing

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

control structures, from which they replace much of the
contained code blocks. Driven by this observation, one may
consider providing students with generic forms or examples
of common idioms (i.e., skeletal idiom code). Then one can
guide students to fill in the necessary logic, so as to more ef-
fectively master these idioms. This observation may present
opportunities for educators and designers of language learn-
ing environments.

7 Threats to validity

The validity of our analysis results may be endangered by a
few factors. The programming idioms we documented and
studied are limited by the Scratch programming materials
available at the time of the study. New prevailing idioms may
be uncovered with any changes in the language features, the
community’s programming practices or educational inter-
ventions in this language.

To ensure the accuracy of our idiom detection and to avoid
introducing false positives, we implemented a suite of test
cases for each detection algorithm. We also implemented
more generalized detectors to detect idioms with certain
variants.

To investigate changes within idioms, we only selected
two most common control flow idioms, as their structures
reliably isolate the differences between the original projects
and their remixes, so we could precisely measure these dif-
ferences. Hence, our findings may not be representative of
the actual changes across all common idioms introduced by
programmers in their remixes.

8 Conclusion and Future Work

Our work sheds light on common Scratch programming
idioms. Our large-scale study experiment assesses not only
the prevalence of Scratch programming idioms, but also
how programmers tend to change code within two common
idioms between the remixed projects and their sources. The
results of our work identify common programming idioms, a
piece of knowledge that can benefit novice programmers as
a way to help them learn the language faster. The net effect
would be promoting effective programming practices among
introductory learners, writing idiomatic high quality code.

Possible future work directions include exploring common
programming idioms in this domain from the perspective of
novice programmers as well as applying software mining and
natural language techniques to extract idioms from existing
application codebases[9].

Acknowledgments

The authors would like to thank the anonymous reviewers
and our shepherd, Meghan Allen, for their valuable feed-
back that helped improve this manuscript. This research was
supported in part by NSF through the grants #1744722 and
1712131.

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

References
[1] 2021. Example for iterating the list. https://programming-idioms.org/

[2] 2021.

[10

[11

[12

(16
(17

[18

—

—

—

]

—

—

[t T

idiom/6/iterate-over-list-values.

Example for removing from the list.
https://programming-idioms.org/idiom/136/remove-all-occurrences-
of-a-value-from-a-list.

2021. Forever If (). https://en.scratch-wiki.info/wiki/Forever_If ()_
(block).

2021. List of Block Workarounds. https://en.scratch-wiki.info/wiki/
List_of Block_Workarounds.

2021. Online programming idioms. https://programming-idioms.org/.
2021. Scratch’s statistics. https://scratch.mit.edu/statistics/.
Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and
how we know: An exploratory study on the Scratch repository. In
Proceedings of the 2016 ACM Conference on International Computing
Education Research. 53-61.

Carol V Alexandru, José] Merchante, Sebastiano Panichella, Sebastian
Proksch, Harald C Gall, and Gregorio Robles. 2018. On the usage of
pythonic idioms. In Proceedings of the 2018 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. 1-11.

Miltiadis Allamanis and Charles Sutton. 2014. Mining idioms from
source code. In Proceedings of the 22nd acm sigsoft international sym-
posium on foundations of software engineering. 472—483.

Kashif Amanullah and Tim Bell. 2018. Analysing students’ scratch
programs and addressing issues using elementary patterns. In 2018
IEEE Frontiers in Education Conference (FIE). IEEE, 1-5.

Kashif Amanullah and Tim Bell. 2019. Analysis of progression of
scratch users based on their use of elementary patterns. In 2019 14th
International Conference on Computer Science & Education (ICCSE).
IEEE, 573-578.

Kashif Amanullah and Tim Bell. 2019. Evaluating the use of remixing in
scratch projects based on repertoire, lines of code (loc), and elementary
patterns. In 2019 IEEE Frontiers in Education Conference (FIE). IEEE,
1-8.

Kashif Amanullah and Tim Bell. 2020. Teaching Resources for Young
Programmers: the use of Patterns. In 2020 IEEE Frontiers in Education
Conference (FIE). IEEE, 1-9.

A. Anthropy. 2019. Make Your Own Scratch Games! No Starch Press.
https://books.google.com/books?id=QVv6DwWAAQBA)

Owen Astrachan and Eugene Wallingford. 1998. Loop patterns. In
Proc. Fifth Pattern Languages of Programs Conference, Allerton Park,
Illinois.

J. Bergin. 1999. Pattern for selection version 4. https://csis.pace.edu/
~bergin/patterns/.

Michael J Clancy and Marcia C Linn. 1999. Patterns and pedagogy.
ACM SIGCSE Bulletin 31, 1 (1999), 37-42.

Deborah A. Fields, Michael Giang, and Yasmin Kafai. [n.d.]. Program-
ming in the Wild: Trends in Youth Computational Participation in
the Online Scratch Community. In Proceedings of the 9th Workshop

elements

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

Xingyu Long, Peeratham Techapalokul, and Eli Tilevich

in Primary and Secondary Computing Education (New York, NY, USA,
2014-11-05) (WiPSCE ’14). Association for Computing Machinery, 2-11.
https://doi.org/10.1145/2670757.2670768

G. Ford, M. Ford, and S. Ford. 2017. Hello Scratch!: Learn to Program by
Making Arcade Games. Manning Publications. https://books.google.
com/books?id=Te4jvgAACAA)

Christoph Fradrich, Florian Obermiiller, Nina Kérber, Ute Heuer, and
Gordon Fraser. 2020. Common bugs in scratch programs. In Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education. 89-95.

Michal Gordon, Assaf Marron, and Orni Meerbaum-Salant. 2012.
Spaghetti for the main course? Observations on the naturalness of
scenario-based programming. In Proceedings of the 17th ACM annual

conference on Innovation and technology in computer science education.
198-203.

Paul A hner, John Sweller, and Richard E Clark. 2006. Why Minimal
Guidance During Instruction Does Not Work: An Analysis of the
Failure of Constructuvist, Discovery, Problem-Based, Experimental,
and Inquiry-Based Teaching. Educational Psychologist 42, 2 (2006).
Prapti Khawas, Peeratham Techapalokul, and Eli Tilevich. 2019. Un-
mixing remixes: The how and why of not starting projects from Scratch.
In 2019 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). IEEE, 169-173.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The scratch programming language and
environment. ACM Transactions on Computing Education (TOCE) 10, 4
(2010), 1-15.

M. Marji. 2014. Learn to Program with Scratch: A Visual Introduction
to Programming with Games, Art, Science, and Math. No Starch Press.
https://books.google.com/books?id=sYVIAWAAQBA|

Howard A Peell. 1987. An APL idiom inventory. In Proceedings of the
international conference on APL: APL in transition. 362-368.

Alan] Perlis and Spencer Rugaber. 1979. Programming with idioms in
APL. ACM SIGAPL APL Quote Quad 9, 4-P1 (1979), 232-235.

Michael Smit, Barry Gergel, and H James Hoover. 2011. Code conven-
tion adherence in evolving software. In 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, 504-507.

A. Sweigart. 2021. Scratch 3 Programming Playground: Learn to Program
by Making Cool Games. No Starch Press. https://books.google.com/
books?id=L967DWAAQBA)

Peeratham Techapalokul and Eli Tilevich. 2017. Understanding recur-
ring quality problems and their impact on code sharing in block-based
software. In 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 43-51.

E.A. Vlieg. 2016. Scratch by Example: Programming for All Ages. Apress.
https://books.google.com/books?id=kxoPDQAAQBA]

David Weintrop and Uri Wilensky. 2015. To block or not to block, that
is the question: students’ perceptions of blocks-based programming.
In Proceedings of the 14th international conference on interaction design
and children. 199-208.

https://programming-idioms.org/idiom/6/iterate-over-list-values
https://programming-idioms.org/idiom/6/iterate-over-list-values
https://programming-idioms.org/idiom/136/remove-all-occurrences-of-a-value-from-a-list
https://programming-idioms.org/idiom/136/remove-all-occurrences-of-a-value-from-a-list
https://en.scratch-wiki.info/wiki/Forever_If_()_(block)
https://en.scratch-wiki.info/wiki/Forever_If_()_(block)
https://en.scratch-wiki.info/wiki/List_of_Block_Workarounds
https://en.scratch-wiki.info/wiki/List_of_Block_Workarounds
https://programming-idioms.org/
https://scratch.mit.edu/statistics/
https://books.google.com/books?id=QVv6DwAAQBAJ
https://csis.pace.edu/~bergin/patterns/
https://csis.pace.edu/~bergin/patterns/
https://doi.org/10.1145/2670757.2670768
https://books.google.com/books?id=Te4jvgAACAAJ
https://books.google.com/books?id=Te4jvgAACAAJ
https://books.google.com/books?id=sYvlAwAAQBAJ
https://books.google.com/books?id=L967DwAAQBAJ
https://books.google.com/books?id=L967DwAAQBAJ
https://books.google.com/books?id=kxoPDQAAQBAJ

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methods
	4.1 Identifying programming idioms
	4.2 Studying the prevalence of Scratch programming idioms
	4.3 Detecting Programming Idioms
	4.4 Computing programming idioms metrics

	5 Findings
	5.1 Common Programming Idioms in Scratch (RQ1)
	5.2 Prevalence of programming idioms (RQ2)
	5.3 Idioms and code changes through remixing (RQ3)

	6 Discussion
	6.1 Identifying Scratch Idioms
	6.2 Programming Idioms in Novice Programming Practices
	6.3 Programming Idioms and Introductory Computing
	6.4 Roles of Programming Idioms in Remixing Practices

	7 Threats to validity
	8 Conclusion and Future Work
	Acknowledgments
	References

