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Summary 

Demonstration of continuously tunable photonic quantum walks in the frequency domain with 
high-dimensionally entangled photon pairs. 

Abstract 
Quantum walks in atomic systems are especially well-suited for the simulation of many-body 
physics and can potentially offer an exponential speedup in solving certain black box problems. 
The ability to control the duration of a walk unlocks its full potential for quantum search algorithms 
and quantum simulation. Photonics offers an alternate route to simulating such nonclassical 
behavior in a more robust platform. However, in implementations to date, any change to the 
effective duration of a photonic quantum walk has required some modification of the device or 
system footprint. Here we report quantum walks of biphoton frequency combs where the duration 
of the walk, or circuit depth, is tunable over a continuous range without any change to the physical 
dimensions of the system. The walkers in our platform are discrete frequency modes and the 
coupling between these modes is mediated by electro-optic modulation of the waveguide refractive 
index. Through control of the phase across different modes, we demonstrate a rich variety of 
behavior: from walks exhibiting ballistic transport or strong energy confinement, to subspaces 
featuring scattering centers or local traps. We also explore the role of entanglement dimensionality 
in the creation of energy bound states, which illustrate the potential for these walks to quantify 
entanglement in high-dimensional systems. 

INTRODUCTION 
A quantum particle can exist in a superposition of paths, or modes, and interference between the 
probability amplitudes of these outcomes results in phenomena unique to random walks of 
quantum systems (1–3) – enhanced propagation, otherwise called ballistic transport (4), or 
Anderson localization, where the wavefunction becomes confined in a disordered system (5, 6). 
Quantum walks of two or more particles can exhibit nonclassical phenomena such as bunching or 
antibunching for bosons and fermions, respectively (7). The complex dynamics observed in such 
walks cannot be explained by classical models and, therefore, can serve as a probe of entanglement 
or interactions between particles (1, 7–11). Owing to the variety of nonclassical behavior they can 
exhibit, quantum walks have the potential to provide a dramatic speed up in certain computational 
tasks like physical database searches (12) and tests of graph isomorphism (13). 



 

 

Quantum walks come in two flavors – continuous and discrete (14). Discrete-time quantum walks 
can evolve through a sequence of discrete events characterized by a “coin flip” that scatters the 
walker into adjacent modes. In continuous-time quantum walks, the state evolves through 
continuous tunneling to neighboring modes. Such walks have been observed in atomic systems (1) 
and their depth is determined by the evolution time of the quantum state. Continuous evolution of 
the quantum state, coupled with the ability to choose an arbitrary walk duration, allows one to 
explore a wide range of parameter space. Consequently, these walks are especially well-suited to 
simulating Hamiltonian dynamics (9) and solving certain black box problems exponentially faster 
(15). To achieve even comparable performance with discrete quantum walks, additional system 
complexity is required, primarily through an extra degree of freedom (14).  

Walks of correlated particles have also been implemented in photonic systems as they offer a more 
robust platform in terms of decoherence and room-temperature operation (2, 3, 9, 16, 17). 
However, photonic quantum walks demonstrated to date suffer from the drawback that their circuit 
depth can only be incremented by physically altering the footprint of the system. Here we report 
continuous quantum walks with photon pairs entangled across multiple, discrete frequency modes 
(8, 18) where the effective duration of the walk is fully tunable without necessitating any physical 
change to the system. With arbitrary control of the phase across different modes, we demonstrate 
walks exhibiting enhanced ballistic transport or strong energy confinement, as well as subspaces 
featuring scattering or trapping of two-photon correlations. We also explore the role of 
entanglement dimensionality in creating energy bound states – states whose energy remains 
unaltered over the duration of a walk – and show that their sensitivity to multilevel entanglement 
hints at the potential for such walks to quantify entanglement in high-dimensional systems. 

FREQUENCY DOMAIN QUANTUM WALKS WITH TUNABLE DEPTH 
A photon can “walk” across different modes in any one of its many degrees of freedom, whether 
it be time (2, 3), path (8, 16, 17, 19), orbital angular momentum(20), or frequency (21–23). All 
that is required to observe such behavior is the presence of coupling between different modes in 
the particular degree of freedom. In the case of a quantum walk in the frequency domain, this 
coupling is mediated by a periodic (temporal) modulation of the waveguide refractive index. Such 
coupling, or mode-splitting, can be realized in electro-optic phase modulators driven with a single 
sinusoidal radiofrequency (RF) tone. The effect of this perturbation is that the wavefunction of a 
photon traversing the waveguide picks up a factor of 𝑒!" #$%&!'. Here, 𝛿 corresponds to the 
strength of the modulating RF field and 𝜔( denotes the frequency of this RF modulation. Viewed 
from the perspective of the frequency domain, phase modulation scatters a single frequency into a 
comb-like spectrum with adjacent frequency modes separated by 𝜔) in frequency [Fig. 1a]. The 
amplitude of a comb line a distance 𝑛𝜔) away from the original frequency is given by nth-order 
Bessel function 𝐽*(𝛿). In analogy to quantum walks based on path encoding, the depth of such a 
frequency domain quantum walk can be incremented simply by cascading one modulator after 
another. However, a particular strength of the frequency domain approach is that a cascade of 𝑛 
identical phase modulators is equivalent to increasing the strength of the modulating RF field in a 
single modulator by this factor of 𝑛. In other words, the depth of the walk can be tuned over a 
continuous range by simply modifying the strength of the modulating RF field. This is in contrast 
to quantum walks in the spatial domain where evolution of the state is determined by propagation 
length (9, 24).  

Fig. 1a shows results from quantum walks of a single photon that starts out in a single frequency 



 

 

mode. As the strength of the modulating RF field (d) increases, the extent to which the input mode 
scatters to outer frequency modes also increases. In Fig. 1a, the output photon distribution is plotted 
as a function of modulation strength d, which in our platform is equivalent to the effective walk 
duration. The “rabbit ears” observed in this distribution signify the presence of ballistic energy 
transport – a signature of random walks with quantum systems. In particular, the standard deviation 
of the output photon distribution grows linearly with 𝛿 (25). For a classical random walk, transport 
to neighboring modes is not nearly as fast and its standard deviation grows only as √𝛿 (25).  
Quantum walks of entangled particles, particularly those featuring high-dimensional 
entanglement, exhibit a richer variety of behavior than is possible with just a single photon 
occupying a single frequency mode. To explore the effect of entanglement on quantum walks in 
the frequency domain, we studied the evolution of two-photon quantum frequency combs, 
commonly referred to as biphoton frequency combs (BFCs) [Fig. 1b], as they traverse the system.  
 

QUANTUM WALKS AND MULTI-LEVEL ENTANGLEMENT 
BFCs have been generated directly in on-chip optical microresonators (26–29) or carved from 
continuous down-conversion spectra (30). For results reported here, BFCs were generated by the 
latter approach as it allows flexibility in the choice of comb linewidth (Dl) and free spectral range 
(FSR). Broadband time-energy entangled photons (~5 THz) were generated by type-0 down-
conversion in a periodically-poled lithium niobate waveguide (PPLN). In this process, a pump 
photon from a continuous wave laser (~775 nm) is converted into a pair of daughter photons in the 
telecommunications band (~1520-1580 nm). As energy is conserved in this process, the energies 
(frequencies) of the daughter photons must add up to that of the pump photon. In other words, the 
two photons in an entangled pair are anticorrelated in frequency. This two-photon spectrum is 
carved into a BFC using a Fourier transform pulse shaper. The 3dB linewidth of each frequency 
mode is set to 9 GHz – the resolution limit of our pulse shaper. To ensure minimal crosstalk 
between adjacent modes, the FSR of the BFC is chosen to be 25 GHz. 
The pulse shaper is used to not only manipulate the amplitude of the biphoton spectrum, but also 
its phase prior to any quantum walk. In particular, the spectral phase can be set to vary continuously 
or to make discrete jumps from one mode to the next. Once the desired state has been prepared, it 
is sent to an electro-optic phase modulator that implements the mode-mixing operations which 
give rise to a quantum walk. Our modulator is driven with a 25 GHz sinusoidal RF waveform, 
identical to the FSR of the BFC, with the RF power tunable over a continuous range. Downstream 
of the modulator is a second pulse shaper, which selects a pair of output frequencies and routes 
each one to a superconducting nanowire single-photon detector (SNSPD). Two-photon events 
between different frequency modes are identified by correlations in their arrival time and this data 
is used to construct a measurement of the joint spectral intensity (JSI) of the BFC – a two-photon 
correlation map that illustrates the effects of a quantum walk in energy (frequency) space.  

Enhanced ballistic energy transport 
As noted earlier, one hallmark of a quantum walk is the observation of ballistic energy transport 
of the quantum state across modes of the system. We demonstrate even stronger transport for the 
case of a BFC entangled across eight dimensions and having the form |𝜓⟩ = 1/
√8	∑ |𝑚,−𝑚⟩+,-

(./ , where S and I  denote the signal (high-frequency) and idler (low-frequency) 



 

 

photons, respectively. The JSI of this state, i.e., in the absence of any RF modulation, is completely 
anticorrelated in frequency [Fig. 2a]. Each pixel on the antidiagonal corresponds to the same two-
photon energy, i.e., the sum of mode indices of any pixel on this line is zero. Note that the sum of 
the mode indices on any line parallel to the antidiagonal is a constant and corresponds to a different 
value for the total energy of the two-photon state. In Fig. 2b we show the JSI of this state after a 
quantum walk when the modulator is driven to a depth  𝛿 = 4.6 (see supplementary material for 
the JSI measurements at various modulation depths). Experimental data clearly show diffusion, or 
transport, of two-photon correlations away from the original JSI, which matches results expected 
from theory (see supplementary material). Transport perpendicular to the sum-frequency axis 
(antidiagonal) and toward the top right corner of the JSI corresponds to events where the overall 
energy of the biphoton increases, i.e., the modulator transfers energy to the two-photon state. The 
converse, when the biphoton transfers energy to the modulator, manifests as transport toward lower 
left corner of the JSI. In other words, what we observe is two photons experiencing the same 
frequency shift, which resembles, but is qualitatively different from, bosonic bunching (Hong-Ou-
Mandel interference) in the frequency domain (31).  

To quantify this energy transfer, we tabulate the total number events along the antidiagonal, as 
well as along each line parallel to the antidiagonal, to determine to the probability of a biphoton 
exiting the system with a particular total energy. Energy transfer between the quantum circuit and 
the two-photon state, expressed in terms of the sum of photon mode indices, is plotted in Fig. 2d 
as a function of modulation depth 𝛿. The standard deviation of the biphoton energy at the output, 
as in the single photon case, is linear with 𝛿 [Fig. 5a]. However, this linear rate of energy transfer 
is roughly twice as fast in the case of entangled photons. Such enhanced energy transport was 
previously demonstrated with high-dimensional, path-entangled photon pairs (8). 

Energy bound state 
We break new ground in photonic quantum walks by demonstrating the opposite of ballistic energy 
transport – strong confinement of the biphoton energy. To achieve this, we modify the spectral 
phase of the BFC to create a state of the form |𝜓⟩ = 1/√8	∑ 𝑒!(0|𝑚,−𝑚⟩+,-

(./ , i.e., a state in 
which adjacent modes have a 𝜋 phase with respect to one another. This operation can be viewed 
as a linear spectral phase ramp, which is equivalent to delaying one photon with respect to its 
entangled counterpart by half the modulation period. As a result of this delay, photons in an 
entangled pair acquire equal but opposite frequency shifts. This is clearly illustrated in the JSI 
measurement after a quantum walk [Fig. 2c], which shows that frequency correlations remain 
largely confined to the antidiagonal of the JSI measurement. In other words, the energy of the two-
photon state is mostly unchanged. As the duration of the walk (modulation depth d) increases, 
frequency correlations merely propagate outward along the antidiagonal to include new 
combinations of high and low photon energies [see Fig. S3]. However, this energy gain or loss is 
correlated within a photon pair. If the idler gains some energy, the signal loses that same amount 
of energy with the result that the total energy of the state is preserved.  
Time domain perspective 

The evolution of the biphoton, as depicted by two-photon correlation maps [Figs. 2b, c], can also 
be understood from a time-domain illustration of the quantum walk that considers the effect of 
electro-optic phase modulation on the time correlation function of entangled photons (32). In Fig. 
4, the strength of the modulating RF waveform is shown (in blue) as a function of time. The signal 



 

 

photon, which can arrive at the modulator at any time owing to the random nature of the pair 
generation process, is designated by a blue arrow. In Fig. 4 we only show one possible arrival time. 
Here, for example, the signal reaches the modulator when the phase of the modulating RF 
waveform is 𝜋/6 . While the idler photon also reaches the modulator at a random time, its arrival 
is highly correlated with that of the signal photon. This correlation is characterized by a distribution 
of possible values for the delay between signal and idler. The distribution, in delay space, is given 
by the Fourier transform of the complex biphoton spectrum (33). Consequently, for a narrowband 
biphoton spectrum with entanglement across a limited number of dimensions [“8-dimensional 
entanglement” in Fig. 4], there is wide range of possible values for the relative delay between 
signal and idler. As the entanglement dimensionality of the state increases, i.e., as the biphoton 
spectrum gets broader, the distribution of possible delays gets narrower [“64-dimensional 
entanglement” in Fig. 4]. The discretization of the biphoton spectrum in frequency space, owing 
to its comb-like structure, results in a distribution of relative arrival times that repeats at integer 
multiples of the inverse comb FSR. Since the spacing between comb lines matches the frequency 
of the RF waveform, this repetition of the distribution in arrival times occurs at integer multiples 
modulation period. The net effect is that both photons “see” nearly the same phase modulation 
slope (𝑑𝜙/𝑑𝑡), which means they experience correlated instantaneous frequency shifts (34) 
[“Correlated quantum walk” in Fig. 4]. 

For the energy bound state, the situation is slightly different. Here there is a p phase difference 
between adjacent comb lines, which corresponds to a linear spectral phase ramp or simply a time 
delay. This time delay corresponds to exactly half the RF modulation period. In other words, the 
distribution in the relative arrival of signal and idler is now spaced at half-integer multiples of the 
modulation period. Here, unlike in the case of ballistic transport described earlier, photons in an 
entangled pair experience anticorrelated instantaneous frequency shifts [“Anticorrelated quantum 
walk” in Fig. 4], which manifests through confinement of two-photon correlations to the 
antidiagonal (sum-frequency axis) of a JSI measurement.  

Controllable diffusion in energy subspaces 
The cases of enhanced ballistic scattering [Fig. 2b] and energy confinement [Fig. 2c] are a good 
illustration of the role spectral phase plays in the evolution of two-photon correlations. While the 
diffusion of correlations along, or perpendicular to, the antidiagonal represent the most 
straightforward forms of transport, they encompass but a subset of possible behavior that one can 
observe. For example, by preparing BFCs with quadratic spectral phase, we observe remarkable 
features in two-photon correlations – distinct energy subspaces featuring ballistic scattering or 
energy confinement. Figs. 3a, b show results from such quantum walks with a 16-dimensional 
entangled state. Increasing the number frequency modes across which the photons are entangled 
(16 compared to 8 in preceding experiments) allows us to clearly delineate regions exhibiting 
correlated energy transfer (scattering) from those exhibiting anticorrelated energy transfer 
(confinement). In Fig. 3b, we employ an additional linear phase pattern, reduce the dispersion, and 
increase the modulation depth to pin a single site where correlations are “trapped”  to the center of 
the JSI.  
While the two-photon correlation maps in Figs. 3a, b employ quadratic spectral phase, one can 
certainly employ more complex spectral phase patterns to engineer the features of quantum walks. 
As a result, the relative delay between the photon pair is controlled by the frequency derivative of 
the biphoton spectral phase in each frequency subspace. In other words, each input frequency mode 



 

 

pair, or lattice point, exhibits modified scattering amplitudes that depend on the relative phase of 
the modulating RF waveform. This allows one to simulate certain features of walks with 
inhomogeneous potentials.     
Effects of high-dimensional entanglement  

The critical role played by spectral phase hints at strong differences between quantum walks 
featuring coherent superpositions of multiple frequency pairs |𝑚,−𝑚⟩+, as compared to mixtures 
of those same frequency pairs. While both states possess identical frequency correlations, in the 
latter the relative phase between any two basis states (|𝑚,−𝑚⟩+, and |𝑚′, −𝑚′⟩+, for 𝑚 ≠ 𝑚′) is 
completely random. To simulate the effect of this random phase, we construct a JSI measurement 
of the mixed state by adding together JSI measurements resulting from quantum walks of 
individual frequency pairs |𝑚,−𝑚⟩+, for 𝑚 = 1,… ,8 (see supplementary material). A clear effect 
of incoherence is that two-photon correlations are smeared out without any sharp or well-defined 
features [Fig. 3c]. 

These results, taken together with walks presented earlier, suggest that the total energy of the two-
photon state after a quantum walk can serve as an indicium of the coherence between frequency 
mode pairs. One metric to quantify this is the standard deviation of biphoton energy measured at 
the output. This is presented in terms of the mode index (single-photon case) and the sum of mode 
indices (two-photon case), as function of walk duration, in Fig. 5a. We see a clear indication of 
enhanced energy transfer for the two-photon state. In the limit of infinite multi-level entanglement, 
energy transfer increases at twice the rate for two-photon correlations compared to the single-
photon quantum walk since both photons experience exactly the same frequency shift.    

To elucidate the effect of the entanglement dimensionality, we present data for biphoton energy 
transfer in the cases of enhanced ballistic scattering [Fig. 5c] and strong energy confinement [Fig. 
5d]. Fig. 5b shows how the standard deviation of the output biphoton energy changes as the degree 
of multi-level entanglement increases for a fixed walk depth (𝛿 = 6.1). The clear change in the 
distribution of biphoton energies as a function of entanglement dimensionality, especially in the 
case of the energy bound state, point to how these results can potentially be used to certify, or even 
quantify, high-dimensional frequency-bin entanglement (28, 29).            
DISCUSSION 

In this article, we have explored the use of electro-optic modulation in a waveguide to realize 
single-photon and two-photon quantum walks in the frequency domain. Unlike analogous systems 
in the spatial domain, where the effective walk duration is determined by propagation length, our 
spectral platform reaches arbitrary walk depths without the need for any physical reconfiguration 
of the system. All that is needed is a change in the voltage swing of the modulating RF waveform. 
Furthermore, our experiments were carried out primarily using commercial telecommunications 
equipment with little need for any specialized fabrication. Consequently, we were able to delve 
more deeply into the role of mode-dependent phase on two-particle quantum walks that feature 
multi-level entanglement. 
An avenue ripe for further exploration relates to entanglement certification. The most 
straightforward way to certify high-dimensional frequency-bin entanglement, under the 
assumption of a symmetric noise model, is through a measurement of the time correlation function. 
However, such a measurement becomes challenging as the degree of multi-level entanglement 



 

 

(and biphoton bandwidth) increases because features in the substructure of the time correlation 
function become finer than the timing jitter of conventional SNSPDs (~60-80 ps). Consequently, 
time domain techniques are limited in their ability to probe high-dimensional entanglement (35). 
While frequency mixing techniques have been developed to overcome this limitation (28–30), they 
become onerous for high-dimensional states. The quantum walks demonstrated here and energy 
bound states in particular show promise as a tool to probe the joint temporal correlation of 
broadband, high-dimensional quantum frequency combs. Our results show that the width or timing 
uncertainty in the time correlation function is mapped to the spread in biphoton energies at the 
output of a quantum walk. While a rigorous proof is needed to establish the validity of this 
technique for entanglement certification and quantification (36), these walks clearly allow one to 
probe temporal features in the biphoton that cannot be resolved by direct measurements. 
Another key feature of our system is that the uniformity of potentials at each lattice site, i.e., the 
respective mode coupling coefficients, is not limited by any fabrication tolerances as it is in the 
case of coupled waveguide arrays. This homogeneity can be a disadvantage from the standpoint 
of demonstrating phenomena like Bloch oscillations and Anderson localization (1, 6)– effects that 
stem from site-to-site variations in lattice potentials. However, quantum walks in the spectral 
domain can accommodate inhomogeneous potentials by using resonant structures (22) or loop-
based architectures where an element capable of suitable frequency transformations (37) is updated 
on each roundtrip photons make through the loop.  Further complexity can also be introduced by 
using a second degree of freedom, like the time domain, to provide a high-dimensional “coin flip” 
(38, 39). Such walks can be used to implement quantum algorithms that certify isomorphism 
between two high-degree strongly regular graphs (13), for example.  

In sum, quantum walks in the frequency domain offer an interesting and alternate route for 
studying quantum walk behaviors. Our spectral platform offers more versatility from the 
standpoints of choosing an arbitrary walk depth and manipulating the phase across all modes in 
states featuring a high degree of multi-level entanglement. In addition to applications directed to 
search (12) and simulation (7), the phenomena we demonstrated also shows potential for 
quantifying entanglement in high-dimensional systems. 

 
Materials and methods 

The experimental setup is depicted in Fig. 6. We use a continuous-wave 775 nm laser with about 
1 mW power shining on a periodically poled lithium niobite (PPLN) crystal to generate broadband 
time-frequency entangled photons with about 40 nm (5 THz) bandwidth, with a power of about 5 
nW. A pulse shaper is then used to carve this spectrum to make a biphoton frequency comb (BFC) 
with 25 GHz frequency spacing between the bins and about 9 GHz linewidth. The pulse shaper is 
also able to manipulate individual frequency bins’ phase. One advantage to the method of state 
preparation described above is that since the degree of multi-level entanglement is limited by the 
biphoton bandwidth (~5 THz) and the resolution of the pulse shaper (~10 GHz). In other words, 
with an FSR of 25 GHz, one could prepare a 100-dimensional space.  
The duration of the walk is determined by the strength (voltage) of the RF waveform, which in our 
experiments corresponded to a value of up to 6.1 radians. This determines the extent to which 
distant modes are coupled to one another with a crude metric being the index of the most populated 
mode in a single-mode and single-particle quantum walk. For the equipment used in our 



 

 

experiments this index was ~5, which is comparable other platforms (3, 17, 20, 24). However, with 
even small upgrades to our equipment (cabling and amplifiers rated to 25 GHz) one can achieve 
modulation depths ~10. Furthermore, one can achieve even higher modulation depths by simply 
connecting more phase modulators in series as is frequently done in the case of electro-optic comb 
generation (40). 
After making the high-dimensional entangled state, it is sent to the quantum walk circuit which is 
a phase modulator driven with a 25 GHz RF sinusoidal waveform. After the quantum walk, another 
pulse shaper picks two frequency bins at a time and sends them to superconducting single photon 
detectors (SNSPDs) (Quantum Opus). The relative arrival time of photons on the SNSPD pair is 
then monitored using an event timer (PicoQuant HydraHarp 400). 
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Fig. 1. Frequency domain mode splitting and biphoton frequency comb. a, Experimental data 
showing the effect of phase modulation on a single frequency mode for various modulation depths. 
These spectra were acquired with classical light but also serve as an illustration of how each single 
mode, even in the quantum regime, is scattered by a phase modulator. The modulation speed was 
chosen to match the mode separation in our quantum source and, therefore, frequency shifts are 
presented in terms of the BFC mode index. b, Illustration of a biphoton frequency comb (BFC) in 
frequency space. Each photon of the entangled pair is in a superposition of eight distinct frequency 
modes with pairwise correlations about center of the biphoton spectrum. This two-photon state has 
the form |𝜓⟩ = 1/√8	∑ |𝑚,−𝑚⟩+,-

(./  and orange lines in the figure highlight correlations 
between each frequency pair |𝑚,−𝑚⟩+,. A pulse shaper is used to manipulate the phase on each 
frequency mode prior to the quantum walk. 



 

 

 
Fig. 2. Correlated and anticorrelated two-photon quantum walks a, A measurement of the 
joint spectral intensity (JSI) for an eight-dimensional biphoton frequency comb (BFC) of the form 
|𝜓⟩ = 1/√8	∑ |𝑚,−𝑚⟩+,-

(./  prior to the quantum walk. Coincidences are observed for mode 
pairs 𝑚, −𝑚, which are anticorrelated in frequency. The JSI is symmetric about the diagonal as 
any two-photon event |𝑖, 𝑗⟩12 is equivalent to its mirror |𝑗, 𝑖⟩12. Diagonal terms |𝑖, 𝑖⟩12 were 
measured by splitting frequency mode 𝑖 between detector channels A and B, and are measured 
after all the off-diagonal elements. The acquisition time for diagonal elements was twice as long 
since there is a 50% probability that both photons end up at the same detector and, consequently, 
fail to register coincidences. b, JSI for a BFC after a quantum walk for the case when no additional 
phase is applied prior to the walk (|𝜓⟩ = 1/√8	∑ |𝑚,−𝑚⟩+,-

(./ ). This results in two-photon 
events where mode indices move in the same direction, i.e., we have bunching of photons in energy 
space. c, Antibunching (mode indices of two-photon events move in opposite directions) is 
observed when adjacent modes start out with a 𝜋 phase difference relative to one another (|𝜓⟩ =
1/√8	∑ 𝑒!(0|𝑚,−𝑚⟩+,-

(./ ). d, e, Energy transferred from the phase modulator to the total 
biphoton state. The correlated quantum walk exhibits ballistic energy transport and we see strong 
energy confinement for the anticorrelated walk. The JSI for each step, or each increment to the 
modulation depth, is shown in supplementary material. Energy transfer in these plots is presented 
in units of ℎ𝜈 where 𝜈 = 25 GHz (ℎ𝜈 = 	1.656 × 10345	J). The variation in the coincidence rates 
shown in e is due to fluctuations of the photon flux in our entangled pair source. All the JSI 
elements are coincidences measured in 1 second. 

 



 

 

 
Fig. 3. Two-photon quantum walks with quadratic and incoherent input phase a, The 
application of quadratic spectral phase (equivalent to 1800 m of single mode fiber) to a 16-
dimensional BFC results in energy subspaces with either correlated or anticorrelated walking 
character. The lower applied modulation depth compared to previous JSIs results in smaller 
diagonal spreading in the correlated subspaces. The low coincidence rate along the diagonal, 
relative to neighboring pixels, is an artifact of drift in the pump-to-PPLN coupling efficiency. As 
all diagonal elements are acquired in consecutive measurement windows, the onset of drift in 
photon flux during this measurement interval makes such drift noticeable along this axis. b, Results 
for a walk similar to that in a, but with higher modulation depth and smaller quadratic phase 
(equivalent to 900 m of single mode fiber). An additional linear phase was applied to ensure energy 
confinement at the center of the JSI, with the transition from anticorrelated to correlated character 
occurring further away along the antidiagonal. c, Simulation of a quantum walk for a mixed state 
that has the same initial JSI as the state in a. There is no indication of either ballistic energy 
transport or energy confinement, pointing to a clear distinction between correlated and entangled 
quantum walks. All the JSI elements are coincidences measured in 1 second. 
  



 

 

 
Fig. 4. Time-domain illustration of phase modulation for four different conditions 
(correlated/anticorrelated quantum walk, 8-dimensional/64-dimensional entanglement). The 
strength of the modulating RF waveform is shown with the black sinusoid. A signal photon (blue 
arrow) arrives at the modulator at random times owing to the nature of the photon pair generation 
process. However, the arrival time of the idler photon is highly correlated with that of the signal 
photon and is characterized by a distribution of joint arrival times that repeats at multiples of the 
BFC free spectral range. Since the spacing between the comb lines in the BFC is set to match the 
modulation frequency, the period of pulse-like features in the BFC time correlation function 
matches the period of the driving RF waveform. As the number of frequency modes across which 
the photons are entangled increases, the tighter the distribution of arrival times becomes. In the 
correlated walk where no phase is applied to the initial state, relative timing between signal and 
idler photons reduces to an integer multiple of the modulation period. Consequently, both photons 
in a pair experience the same frequency shift, which results in enhanced ballistic energy transport. 
Conversely, in the anticorrelated walk, when there is a relative 𝜋 phase difference between adjacent 
modes, the relative timing between signal and idler photons is instead centered at an odd half-
integer multiple of the modulation period. The net effect is that photons in a pair experience equal, 
but opposite, frequency shifts, forming a biphoton energy bound state. The change in the color of 
output photons reflect their frequency shifts. The cloud around the idler photon in the 8-
dimensional entangled case illustrate the wider range of possible frequency shifts due to wider 
time-correlation function pulse features.   



 

 

 

 
Fig. 5. Effects of entanglement dimensionality on quantum walks. a, Standard deviation of 
single- and two-photon energy transport. In particular, the two-photon case considers an eight-
dimensional, maximally entangled photon pair. Experimental data (purple and green markers) is 
plotted alongside results expected from theory (solid lines). Plot points are extracted from results 
Figs. 1a, 2d. The standard deviation grows linearly with modulation index in both cases. However, 
the slope is roughly twice as steep for the two-photon case. b, Standard deviation of the energy 
transfer (output mode) distribution as a function of entanglement dimensionality for the case of 
enhanced ballistic transport and energy confinement when 𝛿 = 6.1. Theoretical predictions are 
represented by solid lines and the markers correspond to experimental data extracted from c, d. In 
a, b, the standard deviation is computed after background subtraction (coincidence-to-accidental 
ratio ~ 50) and the error bars are calculated assuming Poissonian statistics. The error bars for 
single-photon energy transport in a are not shown since the experiment was carried out using 
classical light. c, d, Energy transferred to the biphoton as a function of entanglement 
dimensionality for enhanced ballistic transport and the bound state, respectively (see 
supplementary material for JSIs corresponding to each dimensionality). In c, the “rabbit ears” grow 
as the entanglement dimensionality increases, resulting in a slight increase in standard deviation, 
as shown in b. In d, increasing entanglement dimensionality reduces occurrence of any net energy 
transport between the modulator and the BFC. Consequently, frequency correlations remain 
confined to the constant energy axis, i.e., the antidiagonal of the JSI shown in Fig. 2c, for example. 
  



 

 

 
Fig. 6. The experimental setup. Broadband time-frequency entangled photon pairs are generated 
from a continuous-wave laser shining on a PPLN crystal. A BFC is then carved from this 
continuous spectrum with pulse shaper 1. Pulse shaper 1 can also manipulate the phase of each 
frequency mode. The high-dimensionally entangled photon pairs then enter the quantum walk 
circuit, namely a phase modulator driven with a sinusoidal RF waveform whose frequency is 
identical to the frequency spacing between the adjacent modes of the BFC. After the quantum 
circuit, two pulse shaper 2 selects two frequency modes at a time and send them to two SNSPDs, 
where correlations between the two modes are measured.  
  



 

 

Supplementary Material: 
 
Quantum walk Hamiltonian  

A phase modulator multiplies the wavefunction of an input by 𝑒!" %67&"', which can be rewritten 
as ∑ 𝐽*(𝛿)𝑒!*&"'8

*.38 . Therefore, in the Fourier domain, the Hamiltonian of the phase modulation 
process in terms of creation and annihilation operators can be written as: 

𝐻 = L 𝐽*(𝛿)
8

*.38

𝑎(9*	
; 𝑎(				(1) 

Which transfers frequency mode 𝑚 to mode 𝑚 + 𝑛 with probability amplitude 𝐽*(𝛿), Bessel 
function of n-th order with modulation depth 𝛿. Given the symmetry equation between positive- 
and negative-order Bessel functions 𝐽3*(𝛿) = (−1)*𝐽*(𝛿), Eq. (1) can be rewritten as: 

𝐻 = 𝐽<(𝛿)𝑎(	
; 𝑎( +L𝐽*(𝛿)

8

*./

O𝑎(9*	
; + (−1)*	𝑎(3*	

; P𝑎(				(2) 

In our experiments, this Hamiltonian operates on a maximally entangled 𝑑-dimensional bipartite 
state of the form: 

|𝜓⟩!* =
1
√𝑑

L 𝑒!="
>

(./

	𝑎(	
; 𝑎3(	

; 						(3) 

Where 𝜃( is the phase associated with state of the photon pair in modes 𝑚 and −𝑚. The state at 
the output of the quantum circuit is then the Hamiltonian acting on both signal and idler photons 
of the input state, resulting in: 

|𝜓⟩?@' = 𝐻|𝜓⟩!* =	
1
√𝑑

L 𝑒!="
>

(./

L 𝐽*(𝛿)	𝐽*#(𝛿)	
8

*,*#.38

𝑎(9*	
; 𝑎3(9*#

; 				(4) 

The probability amplitude of getting a coincidence at the output modes 𝑖	and 𝑗, whose absolute 
value is measured in our joint spectral intensity measurement, can be interpreted with renaming 
the indices of annihilation operators: 
 

S𝜓B,CT?@' =	
1
√𝑑

L 𝑒!="
>

(./

U𝐽B3((𝛿)	𝐽C9((𝛿) + 𝐽C3((𝛿)	𝐽B9((𝛿)V	𝑎B	
;𝑎C

;					(5) 

The coincidences measured between modes 𝑖 and 𝑗 are: 

𝐶B,C = X𝜓B,CS𝜓B,CT?@' =
1
𝑑 YL 𝑒!="

>

(./

U𝐽B3((𝛿)	𝐽C9((𝛿) + 𝐽C3((𝛿)	𝐽B9((𝛿)VY

4

			(6) 

Now we consider a couple of special cases. On the antidiagonal terms, where 𝑘 = −𝑗, the 
coincidences are: 



 

 

𝐶B,3B =	
1
𝑑 YL 𝑒!="

>

(./

U𝐽B3((𝛿)	𝐽3B9((𝛿) + 𝐽3B3((𝛿)	𝐽B9((𝛿)VY

4

		(7) 

And using the symmetry of Bessel functions: 

𝐶B,3B =	
1
𝑑 YL 𝑒!=" 	U𝑒!0(B3()𝐽B3(4 (𝛿) + 𝑒!0(B9()𝐽B9(4 (𝛿)V

>

(./

Y

4
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In the case of the anticorrelated quantum walk, 𝜃( = 𝑚𝜋, which results in: 

𝐶(B,3B)$%&'()""*&+', =	
1
𝑑 Y𝑒

!0B LU𝐽B3(4 (𝛿) + 𝐽B9(4 (𝛿)V
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Y

4

=	
1
𝑑 YLU𝐽B3(4 (𝛿) + 𝐽B9(4 (𝛿)V

>

(./

Y

4

			(9) 

In Eq. (9), the relative phases between different states drop out, resulting in constructively 
interfering probability amplitudes in the anticorrelated quantum walk for the antidiagonal terms, 
confirming the antibunching process observed in Fig. 2c. 
Energy transfer 
In Figs. 2d,e, we plot raw coincidences for each energy transfer index as a function of modulation 
depth. This method of presentation captures all the fluctuations in our experiment, which are more 
visible in Fig. 2e. Another approach to present the data is to normalize each JSI by the number of 
total coincidences for every modulation depth [Fig. S1]. The fluctuations in the energy bound state 
case are noticeably reduced compared to Fig. 2e. 
Incoherent quantum walk 
Here, we show the simulated and experimental data for the incoherent quantum walk. To retrieve 
the JSI of an incoherent correlated state, we pick two correlated bin pairs |𝑚,−𝑚⟩+, for 𝑚 =
1,… ,8 at a time and measure the output JSI. We then add these JSIs incoherently, which in 
equivalent to adding the probabilities of each output state incoherently not adding probability 
amplitudes (Fig. S2). Note that sharp structure evident in quantum walks of photons corresponding 
to coherent superpositions of frequency bins is no longer observed. 
 

 



 

 

Fig. S1. Normalized transferred energy. The energy transfer for correlated (a), and 
anticorrelated (b) quantum walks normalized by the number of total coincidences for each 
biphoton correlation map. 

 
 

 
Fig. S2. Adding the output JSIs of states |𝒎,−𝒎⟩𝐒𝐈 for 𝒎 = 𝟏,… , 𝟖. The addition of the 
results is equivalent to the output of an incoherent mixture of correlated frequency pairs. The 
experimental results (a), match with theoretical simulations (b). 
 
 
Quantum walk in the limit of high modulation depth 
The distinction between the quantum walk distribution of the correlated, anticorrelated, and the 
incoherent case becomes more evident when looking at the JSI (Fig. S3) in the limit of high 
modulation depth (d=200). The correlated walk spreads diagonally while anticorrelated walk 
spreads antidiagonally, resembling quasi-bosonic bunching and quasi-fermionic antibunching 
behavior, respectively. Furthermore, by setting the linear spectral phase of the input biphoton state 
to a slope of 𝜋/2, we observe quasi-anyonic behavior (Fig. S3c).  



 

 

 
Fig. S3. Output JSI in the limit of high modulation depth (d=200). a, correlated, b, 
anticorrelated, c, uncorrelated energy transfer and d, incoherent case, all simulated. a, and b, in 
the limit of high modulation clearly show bunching and antibunching effects, respectively, 
whereas in c, the biphotons relative delay is quarter-integer multiple of the modulation period 
resulting in a quasi-circular pattern. In d, the photons are less correlated with each other. 
Movies 
In the attached movies, we show theoretical and experimental JSIs for various cases. Each 
experimental JSI shows coincidences for one second acquisition time at each pixel of the JSI 
plot. The movies consist of: 

1. JSI of correlated quantum walk for an eight-dimensional entangled state as a function of 
modulation depth. 

2. JSI of anticorrelated quantum walk for an eight-dimensional entangled state as a function 
of modulation depth. 

3. JSI of each state |𝑚,−𝑚⟩+, as a function of 𝑚 = 1,… ,8. The addition of these JSIs 
result in the incoherent quantum walk result shown in Fig. S2. 

4. JSI of correlated quantum walk for a fixed modulation depth (𝛿 = 6.1) as a function of 
entanglement dimensionality. 

5. JSI of anticorrelated quantum walk for a fixed modulation depth (𝛿 = 6.1) as a function 
of entanglement dimensionality. 

 
 


