Fifer: Tackling Resource Underutilization in the
Serverless Era

Jashwant Raj Gunasekaran
The Pennsylvania State University
jashwant@psu.edu

Mahmut Taylan Kandemir
The Pennsylvania State University
mtk2@psu.edu

Abstract

Datacenters are witnessing a rapid surge in the adoption of
serverless functions for microservices-based applications. A
vast majority of these microservices typically span less than
a second, have strict SLO requirements, and are chained
together as per the requirements of an application. The
aforementioned characteristics introduce a new set of chal-
lenges, especially in terms of container provisioning and
management, as the state-of-the-art resource management
frameworks, employed in serverless platforms, tend to look
at microservice-based applications similar to conventional
monolithic applications. Hence, these frameworks suffer
from microservice agnostic scheduling and colossal con-
tainer over-provisioning, especially during workload fluctu-
ations, thereby resulting in poor resource utilization.

In this work, we quantify the above shortcomings using a
variety of workloads on a multi-node cluster managed by the
Kubernetes and Brigade serverless framework. To address
them, we propose Fifer — an adaptive resource management
framework to efficiently manage function-chains on server-
less platforms. The key idea is to make Fifer (i) utilization
conscious by efficiently bin packing jobs to fewer containers
using function-aware container scaling and intelligent re-
quest batching, and (ii) at the same time, SLO-compliant by
proactively spawning containers to avoid cold-starts, thus
minimizing the overall response latency. Combining these
benefits, Fifer improves container utilization and cluster-
wide energy consumption by 4x and 31%, respectively, with-
out compromising on SLO’s, when compared to the state-of-
the-art schedulers employed by serverless platforms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Middleware °20, December 7-11, 2020, Delft, Netherlands

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8153-6/20/12...$15.00
https://doi.org/10.1145/3423211.3425683

Prashanth Thinakaran
The Pennsylvania State University
prashanth@psu.edu

Nachiappan C. Nachiappan
The Pennsylvania State University
nachi@alumni.psu.edu

Chita R. Das
The Pennsylvania State University
cxd12@psu.edu

CCS Concepts: - Computer systems organization — Cloud
Computing; Resource-Management; Scheduling.

Keywords: serverless, resource-management, scheduling,
queuing

ACM Reference Format:

Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C.
Nachiappan, Mahmut Taylan Kandemir, and Chita R. Das. 2020.
Fifer: Tackling Resource Underutilization in the Serverless Era. In
21st International Middleware Conference (Middleware °20), December
7-11, 2020, Delft, Netherlands. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3423211.3425683

1 Introduction

The advent of public clouds in the last decade has led to the
explosion in the use of microservice-based applications [40].
Large cloud-based companies like Amazon [30], Facebook [83],
Twitter [60], and Netflix [64] have capitalized on the ease of
scalability and development offered by microservices, em-
bracing it as a first-class application model [88]. For instance,
a wide range of Machine Learning (ML) applications such
as facial recognition [18], virtual systems [47, 75, 98, 100],
content recommendation [48], etc., are realized as a series
of inter-linked microservices', also known as microservice-
chains [68, 101]. These applications are user-facing [94] and
hence, demand a strict service-level objective (SLO), which is
usually under 1000 ms [42, 52, 61]. It is, therefore, imperative
to mitigate the end-to-end latency of a microservice-chain
to provide a satisfactory user experience. The SLOs for such
microservices are bounded by two factors - (i) resource pro-
visioning latency, and (ii) application execution time. As a
majority of these microservices usually execute within a
few milliseconds [46, 47], serverless functions [3, 8, 10] have
proven to be an ideal alternative over virtual machines (VM),
as they not only have very short resource-provisioning laten-
cies, but also abstract away the need for the users to explicitly
manage the resources.

However, adopting serverless functions introduce a new
set of challenges in terms of resource management (RM)
for the cloud providers [56, 80], especially when deploying

! A microservice is the smallest granularity of an application performing an
independent function, a.k.a functions in serverless domain.

Middleware ’20, December 7-11, 2020, Delft, Netherlands

large number of millisecond-scale function chains?. There
has been considerable prior work [2, 16, 39, 70, 82, 84] in RM
frameworks to leverage the asynchronicity, event-drivenness
and scalability of serverless applications. Despite having
these sophisticated frameworks, the resource management
for thousands of short-lived function-chains still has signifi-
cant inefficiencies for resource utilization and SLO-compliance.
Viewing functions in a function-chain as truly independent
entities, further accentuates these inefficiencies. Studying the
state-of-the-art RM frameworks, we identify three critical
reasons for these inefficiencies.

® Most frameworks are built just to meet each individual
function’s SLOs. Being imperceptive to the total end-to-end
SLO of the function-chain leads to sub-optimal uniform scal-
ing of containers at every function stage. This inherently
leads to over-provisioning containers, which in turn results
in large number of machines to host idle containers thereby
increasing the provider’s operating costs.

e Many frameworks employ one-to-one mapping of requests
to containers [92]. This inherently leads to excessive number
of containers being provisioned when handling a sudden
burst of requests than that are actually needed to meet the
application-level SLOs.

o Lastly, in the quest to reduce the number of provisioned
containers, certain frameworks [10, 12] make use of naive
queuing of requests on to a static pool of containers. Fixing
the number of containers in an application agnostic manner
results in SLO violations, especially for functions with strict
SLO requirements.

These inefficiencies collectively open the door towards
stage-aware resource management by exploiting the “left-
over slack” in these function chains. Leveraging slack allows
individual functions to be queued in batches at existing con-
tainers without violating the application-level SLOs. In this
paper, we present, Fifer, which to the best of our knowl-
edge, is the first work that employs stage-aware container
provisioning and management of function chains for server-
less platforms. Fifer > makes use of novel slack estimation
techniques for individual functions and leverages it to sig-
nificantly reduce the number of containers used, thereby
leading to increased resource utilization and cluster energy
efficiency. While slack-based request queuing can signifi-
cantly minimize the number of containers spawned, it still
leads to SLO violations because of cold-starts, especially dur-
ing dynamic load fluctuations. Fifer makes use of proactive
container provisioning using load prediction models to min-
imize the SLO violations incurred due to cold starts. To this
end, the key contributions of the paper are the following:

?We refer to microservice-chains and function chains interchangeably
throughout the paper.

3A Fifer plays a small flute to help soldiers in a brigade (or battalion) to
keep their marching pace in coordination with the drummers. In spirit, our
framework helps the Brigade system in Kubernetes to adapt to functions-
chains by being proactive and stage-aware.

J.R. Gunasekaran, et al.

e We characterize the effect of cold-starts for various ML
inference applications on AWS serverless platforms and show
that they have a large disparity in container provisioning
times compared to application execution times. Further, we
show that for an incoming series of requests, queuing them
for batched execution at warm containers can greatly reduce
the number of containers being spawned.

e We introduce the notion of slack, which is defined as
the difference between execution time and overall response
latency. We propose Fifer, which takes advantage of this
slack towards calculating the batch-size (queue length) to
determine the optimal number of requests that could be
queued at every stage. Fifer is inherently stage aware, such
that it allocates slack to every function stage of an application
proportional to its execution time, and independently decides
the scale-out threshold for every stage.

e We quantitatively characterize the benefits of using dif-
ferent load prediction models (ML and non-ML) to enable
proactive container provisioning. Based on our findings, we
implement Fifer with a novel LSTM-based [51] prediction
model, which provides fairly accurate request arrival estima-
tions even when there are large dynamic variations in the
arrival rate.

e We implement Fifer as a part of the Brigade serverless
workflow framework [6] in a Kubernetes cluster and exten-
sively evaluate it with different request arrival patterns using
both synthetic traces and comprehensive real-world traces
to show its advantage over other frameworks. Our results
from the experimental analysis on an 80 core cluster and
extensive large-scale simulations show that Fifer spawns up
to 80% fewer containers on an average, thereby improving
container utilization and cluster-wide energy savings by up
to 4x and 31%, respectively, when compared to state-of-the
art non-queuing reactive schedulers employed in serverless
platforms.

2 Background and Motivation

We start with providing a brief overview of serverless function-
chains followed by a detailed analysis of their performance
to motivate the need for Fifer.

2.1 Serverless Functions Chains

The overall framework for deploying microservice-chains
in serverless platforms is shown in Figure 1. Multiple func-
tions (with one function per microservice) are stitched to-
gether using synchronization services such as AWS Step
Functions [4, 5, 7, 21] to form a “function-chain”. Step func-
tions are billed for individual function invocations and mem-
ory usage and also for the number of transition across dif-
ferent functions for every invocation. Though the whole
function-chain can also be deployed as one monolithic func-
tion, splitting them has several known advantages, in terms
of ease of deployment and scalability per microservice. The
actual transition between each function pair is in the form

Fifer: Tackling Resource Underutilization in the Serverless Era

— " " @a® \
7
1
| gy -
1
£ Users !
3 2N\, SLA | °.LEET]
£ RN e |
5 Varying execution times per Microservicé™™***=«..,
s: Request 42% 2% [46% : ;
2 Stages image H H Question & i)
K] .Classification.......: AR]
Q Application : o i
2 Microservice: ™ 0 Ly |
; v v [
g
£ Resources
1 for Each ‘

____________________________________ — i

1

1

1

1

|

\

Serverless :
platform . 1
(containers) Function I
Transition :

1

]

]

1

1

1

]

1

!

Fosr ol) .y] . 1

Event Bus

Disaggregated
Data Store
/

Serverless Step Functions

Figure 1. The blue and green box show the architectures of a typical
microservice-chain and a serverless function respectively.

of communication events over a centralized event bus. Due
to the stateless natures of serverless functions, input data
such as pre-trained models, etc., need to be retrieved from
ephemeral data storage like AWS S3 [73]. For further de-
tails on serverless functions, we refer the reader to prior
works [23, 38, 49, 50, 55, 65, 66, 76, 80, 92]. In the context of
this paper, we specifically focus on scenarios where tenants
choose serverless platforms to host their applications. In the
case of multi-tenancy, our proposed ideas can be individually
applied to each tenant. Note that, we limit the scope of this
paper to container provisioning and management.

2.2 Shortcomings of Current Serverless Platforms

We start by describing the two major implications observed
in current serverless platforms, with respect to hosting indi-
vidual functions and function-chains.

2.2.1 Cold-Start Latency for Single Functions When a
function is invoked as a part of deploying the tenant applica-
tion in serverless computing, it is launched within a newly-
created container which incurs a start-up latency known as
cold-start. Though modern virtualization technologies like
microVMs [20] reduce container start-up time, the cold-start
time is dominated by application and runtime initialization.
To avoid cold-starts, public cloud providers like Amazon
try to launch every function in warm containers (existing
containers) [92] whenever available. However, if all warm
containers are occupied, a new container has to be spawned,
which usually takes a few seconds. For applications which
execute within a few milliseconds, this penalty would be
significantly higher, especially when the applications are
user-facing where it is crucial to ensure the SLO.

To characterize the cold-start and warm-start latencies,
we execute an ML image inference application using the
Mxnet [26] framework on AWS lambda [3]. We use 7 dif-
ferent pre-trained ML models with varying execution times

Middleware 20, December 7-11, 2020, Delft, Netherlands

—%— exec_time RTT —%— exec_time RIT
10000 3000
g £
;7500 +.2000
o
2 5000 £
& 2500 g 1000 . /
— - '~
x/"\"/ x/ X
0% 5 T e = o = =
g8 2SS Sz g 5 5~ o S 5 2
- § 5322 868
¥y & & 8 v & ¢ § 2 8 g5 &€
e § 855 8¢ $ & &5 55 ¢
& ~ < [} ~
&= =& &7 § 58 &8
Model Model

(a) Cold Start Latency. (b) Warm Start Latency.

Figure 2. Implications of cold-starts for inference application.

proportionate to the model sizes. Figure 2 plots the break-
down of total execution time for both cold and warm start
as follows: (i) the time reported by AWS lambda for execut-
ing the inference (exec_time), and (ii) the round-trip time
(RTT) starting from the query submission at a client to re-
ceiving the response from AWS lambda. Cold start latency is
measured for the first invocation of a request because there
would be no existing containers to serve the request. Warm
start is measured as an average latency of 100 subsequent
requests, over a 5 minute interval. From Figure 2a, it is ev-
ident that the cold start overheads on many occasions are
higher than the actual query execution time, especially for
larger models like Resnet-200. For warm starts, as shown in
Figure 2b, the total time taken is within 1500 ms, except for
larger models. We can infer that the cold starts contribute
~2000 to 7500 ms on top of execution time of the function.
Note that, the variability in exec_time across each model is
due to the pretrained model fetching time from AWS S3 [73].
To avoid cold-starts, certain frameworks [7, 14] employ a
pre-warmed pool of idle containers which results in wasted
memory consumption, in turn leading to energy inefficiency.
This inefficiency can be potentially avoided for millisecond-
scale applications (e.g., Squeezenet [54] in Figure 2) by al-
lowing the requests to queue up on existing containers rather
than launching them on separate ones. This can be done
when the delay incurred from cold-starts is higher than the
delay incurred from queuing the requests. Hence, the deci-
sion to queue versus starting up a new container depends on
the SLO, execution times of the application and the cold-start
latencies of the containers. In contrast, RM frameworks used
in Azure are known to queue the incoming requests [92] on a
fixed number of containers. Fixing the number of containers
in an application agnostic manner will result in SLO viola-
tions, especially for functions with strict response latencies.
Also the schedulers used in existing open-source platforms
like Fission [14], Knative [59] use horizontal pod autoscaler
which are not aware of application execution times to em-
ploy queuing.
Key takeaway: Based on SLOs, cold-start latencies and exe-
cution times of applications, queuing functions can minimize
the number of containers spawned without violating SLOs.

Middleware ’20, December 7-11, 2020, Delft, Netherlands

£200f = £150

2 . 2100

£ 100 g

2] 5 %0

5]

— ~ 0
0 SetectIMG IPA Face ES22REDS
Fatigue Security - 2z

Application Microservices

(a) Per-stage breakdown of overall (b) Variation of execution time for
application execution times. each microservice.

Figure 3. Characterization of Microservices for a fixed input size
from Djinn&Tonic Benchmark Suite.

2.2.2 Whatis different with function-chains? Inthe
case of function-chains consisting of a series of serverless
functions (as described in Section 2.1), containers would be
spawned individually for every stage. In existing serverless
platforms, the RM framework would uniformly spawn con-
tainers at every stage depending on the request arrival load.
However, the execution times of the functions at each stage
are not uniform. Figure 3a shows the breakdown of execu-
tion times per stage for 4 different microservice-chains. A
detailed description of all the microservices used within the
applications are given in Table 3. Consider the Detect Fatigue
application shown in Figure 3a, It can be seen that 81% of
the total execution time is dominated by stage-1, whereas
the other staged together take less than 20% of the total time.
A similar trend of non-uniform execution times is observed
for the other three applications as well. Hence, it would be
ideal to employ per-stage intelligent queuing rather than
uniformly queuing requests across all stages, because the
latter would lead to poor container utilization.

To effectively exploit this per-stage variability described
above, there are two assumptions: (i) the execution times
for each stage of an application has to be known apriori,
and (ii) the execution times should be predictable and not
have large variations. The first assumption can be held true
for serverless platforms because the applications are hosted
as functions prior to the execution. A simple offline profil-
ing can estimate the execution times of the functions. The
second assumption also holds especially for ML-based ap-
plications because the ML-models use fixed-sized feature
vectors, and exhibit input-independent control flow [42].
Therefore, the major sources for execution time variability
come from application-independent delays that are induced
by (i) scheduling policies or (ii) interference due to request
co-location on the same servers. To support this claim, we
conduct a characterization of 8 ML-based microservices from
Djinn&Tonic suite [46]. As shown in Figure 3b, the standard
deviation in execution time measured across 100 consecutive
runs of each microservice is within 20ms. In this experi-
ment, the input size (image pixels or speech query) for all
the microservices are fixed. Note that execution will vary
depending on the input size to each microservice (for eg,

J.R. Gunasekaran, et al.

256x256 vs 64x64 image for IMC application). In our experi-
ments we find a linear relationship between the execution
time and the input size for these applications.

Why does slack arise? Though user-facing applications
can have varied runtimes, the SLO requirement is determinis-
tic because it is based on human perceivable latency. Because
these applications are typically short-running, considerable
amount of slack will exist. If we know the end-to-end run-
time, we can estimate slack as the difference between runtime
and response latency. For example, consider the execution
times of the four ML based applications shown in Figure 3a:
(i) Detect Fatigue, (ii) Intelligent Personal Assistant (IPA), (iii)
Image Recognition (IMG), and (iv) Face Security. It can be
seen that the maximum execution time among them is well
within 220ms. If the end-to-end response latency is fixed at
1000ms, it is evident that all applications have ample amount
of slack to queue requests together.

Key takeaway: RM frameworks should capitalize on both —
variability of execution time across stages, as well as overall
application slack, by determining the optimal queue length to
queue requests at every stage. This, in turn, can lead to better
bin-packing of requests into fewer containers improving overall
container utilization.

3 Preamble to Fifer

The above set of challenges motivate us to rethink the de-
sign of scheduling and resource management framework
that can efficiently handle function-chains in serverless plat-
forms. This section introduces high level overview how queu-
ing and batching can be leveraged by RMs. Our baseline
is representative of a RM used in existing serverless plat-
forms like AWS lambda [92], which spawns new contain-
ers for every request if there are no idle containers (as ex-
plained in Section 2.2). On top of these RM frameworks,
one can additionally batch the requests by queuing them
at every stage of an application, which we name as Re-
quest Batching RM (RBRM). The number of requests which
can be queued in a container is defined as the batch size
(B_size) of the container. Essentially, B_Size is the length
of the processing queue each container. Contrary to ex-
isting RMs [10, 14], in RBRM, instead of statically assum-
ing the B_size, we calculate it as a function of execution
time (Stage_Exec_Time) and available slack for each stage
(Stage_Slack)as B_size < Stage_Slack/Stage_Exec_Time.
Henceforth by batching we mean, every container sequen-
tially processes B_size request from the queue. Based on
B_size, we can queue different number of requests at each
stage. Figure 4 shows an example of how the baseline RM
compares against RBRM for incoming requests. It can be
seen that while the baseline (Figure 4a) spawns a total of 24
containers (with 8 containers per stage), the RBRM exploits
slack by consolidating requests and spawns only 10 contain-
ers in total. Note that RBRM does not violate SLOs despite
batching the requests. In Figure 4b, all requests are queued

Fifer: Tackling Resource Underutilization in the Serverless Era

8 Containers 4 Containers|
Cold

starts|

24 Containers
10 Containers

(0]

Total
iy g
(2]

o

2

D,

5

°

1

1
SLA

Total

Stage 1 Stage 2 Stage 3

1000
1100
1200134

Time (ms)

(a) Baseline RM

Figure 4. An example representation showing the working of Base-
line vs Stage-Aware queuing enabled RM frameworks.

Containers Stage 1 |
o 1 ¥ '>?§¥%%‘Wm

/ Stage 2 |
\J
Load Balancer \—L—:»@ @ @ Request Loe}d
_'__D[mpueue | Monitor
‘ e
I

>
k=]
°
=S
>
k=]
°
)
>
k=]
°
@

gg + | :
28 1 Stage N
e | ¥
Rl N=====l
Predictor H —|—-[>EED:EED:D |
i e 4
1

Stage Wise Delay

Figure 5. An overview of Fifer.

into 10 containers and the number of requests queued per
container at every stage depends on the execution time and
available slack at each stageAdditional containers would be
spawned if the arrival rate increases.

It is important to note that queuing and batching still
cannot help in hiding the cold-start latencies encountered
(shown in Figure 4) when spawning new containers. The
cold-start delays are accentuated especially when there is
dynamism in request rate. While cold-start latencies can
be reduced by OS-level optimizations [66], the only way to
hide them entirely is by proactively spawning containers.
Balancing the aggressiveness of proactively spawning new
containers and queuing requests at existing ones is crucial
for achieving high container utilization and low SLOs, hence
this act hinges solely on the prediction model adopted.
Key takeaway: Request queuing and batching can minimize
containers spawned while avoiding SLO violations, but cannot
hide cold-starts. SLO violations caused by cold starts can be
avoided by provisioning containers in advance by predicting
the future load, but reaping the benefits is contingent upon the
accuracy of the prediction model used.

4 Overall Design of Fifer

Motivated by our observations, we design a novel RM frame-
work Fifer to manage function-chains on serverless platforms
efficiently. Figure 5 depicts the high-level design of Fifer. User
applications send requests (function triggers) to the system
which are handled by the cluster scheduler. The scheduler

Middleware 20, December 7-11, 2020, Delft, Netherlands

dispatches the requests to queues of different stages. From
there, requests make it to the containers depending on the
available free slots. Every stage has a load monitor to keep
track of the request load and periodically sends updates to
the load balancer. The load balancer decides the scale out
factor (#containers) of every stage based on the predicted
load and existing queuing delays for each stage. The key com-
ponents of the design are explained in detail in the below
subsections using circled annotations.

4.1 Estimating execution time and slack

As briefly mentioned in Section 3, by knowing the available
slack and execution time at each stage, we can accurately
determine the number of requests that can be executed in a
batch in one container. We conduct offline profiling to cal-
culate the runtimes of all microservices used in six commonly
used ML-based applications from the Djinn& Tonic [46] bench-
mark suite (briefly explained in Section 2.2.2). Using the
offline values, we build an estimation model using linear
regression, which accurately generates a Mean Execution
Time (MET) of each service for a given input size (shown in
Table 3). We do not use larger inputs which violate our SLO
requirements. This model is added as an offline component
to Fifer.

Slack Distribution: To accurately estimate the slack for ev-
ery application, we fix the SLO (response latency) as 1000ms,
which is the maximum of 5x execution_time [42] of all the
applications used in our workloads. By knowing the overall
application execution time and response latency, the differ-
ence is calculated as slack for the application. To determine
the slack for every stage of the application, we distribute the
total slack to individual stages. This can be done in two ways,
(i) the overall slack can be equally divided (ED) and allocated
to each stage or (ii) the overall slack can be proportionally
allocated with respect to the ratio of the execution time of
each stage. In Fifer, we use proportional slack allocation for
each stage, as it is known to give better per-stage utilization
compared to ED [57].

4.2 Load Balancing

Fifer utilizes a request queue, which holds all the incoming
tasks for each stage (). We design a load balancer (LB) @
along with a load monitor that are integrated to each stage
(LM) @ for efficiently scaling containers for the application.
Since we know the execution time and available slack, the
LB can calculate the batch size (B_size) for each stage.

Dynamic Reactive Scaling Policy: To accurately deter-
mine the number of containers needed at every stage which
is a function of B_size and queue length, we need to pe-
riodically measure the queuing delay due to batching of
requests. As shown in Algorithm 1@, for a given monitor-
ing interval at every stage, the LM monitors the scheduled
requests in the last 10s to determine if there are any SLO
violations due to queuing delays. This is because there are

Middleware ’20, December 7-11, 2020, Delft, Netherlands

not enough containers to handle all the queued requests. In
that case, we estimate the additional containers needed using
the Estimate_Containers function. By knowing the B_size
and number of pending requests in the Queue (PQy.,), the
function can estimate the number of containers N, = PQy,,, /
B_size.

In case the time taken to service the requests by queuing
on existing containers is lower than the cold-start delays,
spawning a new container would be deemed unnecessary.
Therefore, the function takes into account, the delay incurred
in terms of queuing the request for a longer time vs cold
start (Cg). The queuing delay threshold D¢ for Stage S is cal-
culated using total number of requests that can be executed
without violating SLOs (L), and total time required to satisfy
all pending requests (T4) as shown below:

N
T,
L= ZBsizei, Tq = PQjen X Sy, Dy = =
i=1

L
where S, is the per stage response latency, N is the number
of containers in S. S, for a stage is defined as the sum of
its allocated slack and execution time. If D > Cq, then LB
spawns additional containers (N.) for each stage. We refer
to this as dynamic reactive scaling (RScale) policy.
Stage-aware Container Scaleout: Since each stage of an
application has asymmetrical running times (as shown in
Figure 3a), the number of containers needed at every stage
would be different. The baseline RM is not aware of this
disparity. However, Fifer is inherently stage-aware because
it employs a proportional slack allocation policy. This, in
turn, results in having similar batch sizes for the containers
at every stage though they have disproportional execution
times. Furthermore, the LM in Fifer estimates the queuing
delay for every individual stage by continuously monitoring
the load. This, in turn, aids in better stage-wise container
scaling as opposed to uniformly scaling containers.

4.3 Function Scheduling

Apart from dynamically scaling the number of containers
needed to host the requests per stage, we also need to design
a scheduling policy to select the appropriate request from
the queue of each stage. One important concern here is that
a single application developer can host multiple types of ap-
plications from which some might share common functions
(stages) *. In such cases, the request queue for shared stages
will have queries from different applications where the avail-
able slack for each application will be different depending
on the overall execution time of the application. Therefore,
executing the requests in FIFO order will lead to SLO viola-
tions. To ensure SLOs of shared functions, we employ a Least
Slack First (LSF) scheduling policy (shown in Algorithm 1@)).
Fifer makes use of LSF such that it executes the application

4Tt is be noted that serverless platforms do not share microservices across
tenants. Doing so would violate the security and isolation guarantees.

J.R. Gunasekaran, et al.

query with the least available slack from the queue at every
stage. LSF helps to prioritize requests which have less slack
and, at the same time, avoids starvation of requests in the
queue. Since sharing microservices is not our primary focus
in this work, we do not discuss the trade-offs involved in
using other sharing specific scheduling policies.

4.4 Bin-Packing to increase Utilization

4.4.1 Greedy Container Scheduling In order to increase
utilization, we need to ensure a minimal number of idle con-
tainers at any given point, which depends on the scheduling
policy (@. In Fifer, we design a scheduling policy such that,
each stage will submit the request to the container with the
least remaining free-slots where the number of free-slots is
calculated using the container’s batch-size. In addition, we
use a timeout period of 10 minutes to remove idle-containers
which have not serviced any requests for that period. Hence,
employing a greedy approach of choosing containers with
the least-remaining free-slots (shown in Algorithm 1@) as a
scheduling candidate will in turn result in early scale-down
of lightly loaded containers.

4.4.2 Greedy Node Selection The containers used to host
functions are themselves hosted on servers, which could be
VMs or bare-metal servers. In Fifer, similar to the function
scheduling policy, we greedily schedule containers on the
least-resource-available server. The servers are numbered
from 1 to n where n is the number of available servers. We
tune the cluster scheduler to assign containers to the low-
est numbered server with the least available cores that can
satisfy the CPU and memory requirement of the container.
As a result, the unused cores will only be consuming idle
power, and also the servers with all cores being idle can be
turned after some duration of inactivity. Consequently, this
can translate to potential savings in cluster energy consump-
tion as a result of bin-packing all active containers on to
fewer servers.

4.5 Proactive Scaling Policy

It is to be noted that, the queuing delay estimations and
scaling based on runtime delay calculations would still lead
to sub-optimal container spawning, especially if the future
arrival rate is not known. Hence, in Fifer, we use a load
prediction model (), which can accurately forecast the an-
ticipated load for a given time interval. Using the predicted
load, Fifer proactively spawns new containers at every stage.

As shown in Algorithm 1@, for every monitoring inter-
val, we forecast the estimated number of requests based on
past arrival rates. For each stage, if the current number of
containers available is not sufficient to handle the forecast
request load, Fifer proactively spawns additional containers.
This proactive scaling policy is complementary to the dy-
namic reactive policy at each stage. If the prediction model
can accurately predict the future load, then it would not

Fifer: Tackling Resource Underutilization in the Serverless Era

Algorithm 1 Stage_Aware + Slack_Aware + Prediction

1: procedure DYNAMIC_REACTIVE_SCALING(STAGES) @
2 for stage in YStages do

3 delay < Calculate_Delay(last_10s_jobs)

4 if delay > stage.slack then

5: est_containers «— Estimate_Container()
6 stage.containers.append(est_containers)

7 end if

8 end for

9: end procedure

10: procedure ESTIMATE_CONTAINERS(STAGE,PQ_LEN) Q)
11: total_delay < PQ_len * stage.resp_latency

12: current_req < len(stage.containers) * batchSize
13: delay_factor « total_delay/current_req

14: if delay_factor > cold_start then

15: est_containers «<— (PQ_LEN - current_req)
16: returnest _containers
17: end if

18: end procedure
19: procedure SCHEDULE_TASK(STAGE)

20: Q « Stage.Queue

21: task — find_min(Q.tasks.slack) @

22: container < greedy_find_worker(Stage.containers) @
23: execute_task(task,container)

24: end procedure
25: procedure PREDICTIVE_STAGE_AWARE(STAGES) @
26: load «— Measure_Load(last_100_jobs)

27: for stage in VStages do

28: batchSize « stage.batchSize

29: current_req < len(stage.containers) = batchSize
30: Feast < LSTM_Predict(load)

31: if Forecast > current_requests then

32: est_containers < (Fcast - current_req)

33: est_containers «— est_containers / batchSize)
34: stage.containers.append(containers_needed)
35: end if

36: end for

37: end procedure

result in SLO violations as the necessary number of contain-
ers would be spawned in advance. However, in the case of
mispredictions, the reactive policy would detect delays at
the respective stages and spawn additional containers with
cold-starts. We next explain in detail the prediction model
used in Fifer.

To effectively capture the temporal nature of request
arrival scenario in date-centers, we make use of a Long Short
Term Memory Recurrent Neural Network (LSTM) model [51].
LSTMs are known to provide a state-of-the-art performance
for many popular application domains, including Stock Mar-
kets forecast and language processing. For a periodic mon-
itoring interval (T) of 10s, Fifer samples the arrival rate in
adjacent windows of size W (5s) over the past 100 seconds. It
keeps track of the maximum arrival rate at each window and

Middleware 20, December 7-11, 2020, Delft, Netherlands

20001 |

Requests(s)
3
8

f=) f=} o
& & Q2
Time(s)

(b) Prediction accuracy of LSTM
model.

(a) RMSE and Latency(ms).

Figure 6. Comparing different prediction models.

calculates the global maximum arrival rate. Using this global
arrival rate, the model predicts the number of containers as
a maximum in the future window of size W,,. The interval
(T) is set to 10 seconds since average container start-up la-
tency ranges between 1s and 10s. The prediction window
(W5) is set to 10 minutes since 10 minutes of future trend is
sufficient to expose the long term trade-offs. Short-term load
fluctuations would still be captured within the 10s interval.

4.5.1 Prediction Model Design. We also quantitatively
justify the choice of using LSTM by a doing a brick-by-brick
comparison of the trade-offs of using different non-ML based
and ML-based models on a given input arrival trace. We
use four non-ML models, namely Moving Window Average
(MWA), Exponential Weight Moving Average(EWMA), Lin-
ear Regression (Linear R.), and Logistic Regression (Logisitic
R.). These models are continuously fitted over requests in last
t-100 seconds for every T. In addition, we use four ML models
(Simple Feed Forward Network, WeaveNet, DeepAREstima-
tor and LSTM) that are pre-trained with 60% of the WITS [1]
arrival trace input as the training set. We employ a time-step
based prediction on the ML models as described in the above
sub-section. Figure 6a plots the Root Mean Squared Error
(RMSE) and latency incurred by 8 different prediction mod-
els. It can be seen that LSTM has the least RMSE values. To
verify the same, we plot the accuracy of the LSTM model for
WITS trace (Figure 6b). It is evident that the model predicts
requests accurately (85% from our experiments) for the given
test set duration of 800s.

5 Implementation and Evaluation

We have implemented a prototype of the proposed Fifer
framework using open-source tools for evaluating the de-
sign with synthetic and real-world traces. The details of the
implementation are described below.

5.1 Fifer Prototype Implementation

Fifer is implemented on top of Brigade [6] using 5KLOC of
JavaScript. Brigade is an open-sourced serverless workflow
management framework developed by Microsoft Azure [13].
Brigade can be deployed on top of a Kubernetes [9] cluster
that handles the underlying mechanisms of pod(container)
creation, orchestration, and scheduling. Brigade, by default,
creates a worker pod for each job, which in turn handles

Middleware ’20, December 7-11, 2020, Delft, Netherlands

container creation and scheduling of tasks within the job and
destroys the containers after job completion. Henceforth, we
refer to a function chain as a “job” and stages within the job as
“tasks”. To cater to Fifer’s design, we modify Brigade workers
to persist the containers for every task after job completion
such that they can be reused for scheduling tasks of other
jobs. We implement a global request queue for every stage
within the job which holds all the incoming tasks before
being scheduled to a container in that stage. Each container
has a local queue of length equal to the number of free-slots
in the container.

We integrate a mongodb [27] database to maintain job-
specific statistics (creationTime, completionTime, schedule-
Time, etc) and container-specific metrics(lastUsedTime, batch
size, etc), which can be periodically queried by the worker
pod and load-balancer. As an offline step, for every func-
tion chain the following are added to the database, (a) the
response latency, (b) the sequence of stages, (c) estimated
execution time, and (d) the slack per stage (calculated as
described in Section 4.1). Using these values, each container
of a stage can then determine its free-slots.

Pod Selection: At runtime, the worker pod queries the data-
base to pick a pod with the least number of free slots to
schedule the task. Once a pod is selected, the task is added
to its local-queue, and the free-slots of the pod are updated
in the database. The same process is applied to every subse-
quent task of the job.

Load Balancer: We designed a Python daemon (1K LOC),
which consists of a load monitor (LM) and a load predictor
(LP). The LM periodically measures the queuing delay at the
global queue of each stage and spawns additional containers
if necessary (described in Section 4.2). The LP predicts the
request-load using the LSTM model. The model was trained
using Keras [28] and Tensorflow [15], over 100 epochs with 2
layers, 32 neurons, and batch size 1. The daemon queries the
job_arrival information from the database, which is given as
input to the prediction model. Recall that the details of the
prediction were described in Section 4.5.

Node/Server Selection: In order to efficiently bin-pack con-
tainers into fewer nodes, we make modifications to the MostRe-
questedPriority scheduling policy in Kubernetes such that it
always chooses the node with the least-available-resources
to satisfy the Pod requirements. For our experiments, each
container requires 0.5 CPU-core and memory within 1GB.
Hence, we set the CPU limit for all containers to be 0.5. We
determine idle cores in a node by calculating the difference
between number of cores in a node and the sum of cpu-shares
for all allocated pods in that node.

5.2 Large Scale Simulation

To evaluate the benefits of Fifer for large scale systems, we
built a high-fidelity event-driven simulator using container
cold-start latencies, loading times of container images and
function transition times from our real-system counterpart.

J.R. Gunasekaran, et al.

Hardware Configuration Software Version
CcrU Xeon R Gold- Ubuntu 16.04
6242 Kubernetes 1.18.3
Sockets 2 Docker 19.04
Cores(X)threads| 16 X 2 MongoDB 2.6.10
Clock 2.8 Ghz Python 3.6
DRAM 192 GB Tensorflow 2.0

Table 1. Hardware config. Table 2. Software config.

° 1200
H 1600 Average rate = Average Rate
& 1200 verag 8 % 900
2 ot
5 800 § £ 600 \/
% Ll L 1 &g 300
g 400 N bl | & S
0 0
&
0 400 800 0 2000 4000 6000
Time (minutes) Time (minutes)
(a) WITS Trace. (b) Wiki Trace.
Figure 7. Job Request Arrival Traces.
. C Avg. Exec
Domain ML application ML Model Time (ms)

Alexnet 43.5
DeepPose | 30.3
VGG16 151.2

Image Classification (IMC)
Human Activity Pose (AP)
Images Services | Human Segmentation (HS)

Facial Recognition (FACER) VGGNET | 5.5
Face Detection (FACED) Xception | 6.1
Speech Services | Auto Speech Recognition (ASR) | NNet3 46.1

Natural Parts of Speech Tagging (POS) | SENNA 0.100
Language Name Entity Recognition (NER) | SENNA 0.09
Processing Question Answering (QA) seq2seq 56.1

Table 3. Description of Microservices (Functions) used in Fifer.

Using synthetic traces in both the simulator and the real-
system, we verified the correctness of the simulator by com-
paring and correlating various metrics of interest.

5.3 Evaluation Methodology

We evaluate our prototype implementation on an 80 compute
core Kubernetes cluster. We use one dedicated node as the
head node. Each node is a Dell PowerEdge R740 server with
Intel CascadeLake Xeon CPU host. The details of the single
node hardware and software configuration are listed in Ta-
ble 1 and 2. We use Kubernetes as the resource orchestrator.
The mongodb database [27] and Python daemon reside on
the head node. For energy measurements, we use an open-
source version of Intel Power Gadget [11] measuring the
energy consumed by all sockets in a node.

Load Generator: We use different traces which are given as
input to the load generator. Firstly, we use synthetic Poisson-
based request arrival rate with average arrival A = 50. Sec-
ondly, we use real-world request arrival traces from Wiki [86]
and WITS [1] (shown in Figure 7). As shown in Figure 7a, the
WITS trace has a large variation in peaks (average=300req/s,
peak=1200 req/s) when compared to the Wiki trace. The
wiki trace (average= 1500 req/s) exhibits the typical charac-
teristics of ML inference workloads, containing recurring
patterns (e.g., hour of the day, day of the week), whereas the

Fifer: Tackling Resource Underutilization in the Serverless Era

Application Type Microservice-chain Avg Slack(ms)
Face Security FACED = FACER 788
IMG IMC = NLP = QA 700
IPA ASR = NLP = QA 697
Detect-Fatigue HS = AP = FACED = FACER 572

Table 4. Microservice-Chains and their slack.

WITS trace contains unpredictable load spikes (e.g., black-
Friday shopping). Based on the peak request arrival rate, the
simulation expands to match up to the capacity of a 2500 core
cluster (30X our prototype cluster).

Each request is modelled after a query, which could be
one among the four applications (microservice-chains), as
shown in Table 4. Each application is compiled as a workflow
program in Brigade, which invokes each microservice con-
tainer in a sequence. The applications consist of well-known
microservices derived from the Djinn&Tonic [46] benchmark
suite (see Table 3). These include microservices from a di-
verse range of domains like image recognition, speech recog-
nition, and language processing. All our microservices utilize
Kaldi [74], Keras [28] and Tensorflow [15] libraries.

Workload: We model three different workload mixes by
using a combination of two applications as shown in Table 5.
Based on the in-

creasing order of Workload Query Mix
total available slack Heavy | IPA, DETECT-Fatigue
for each Work- Medium IPA, IMG

load (avg. of both Light IMG, FACE-Security

application’s slack), Table 5. Workload Mix.

we categorize them

into Heavy, Medium, and Light. Using the three workload-
mix, we comprehensively analyze the scope of the benefits
of Fifer for different proportions of available slack. The indi-
vidual slacks for every application are shown in Table 4.
Container Configuration: All the microservices shown in
Table 3 are containerized as “pods” in Kubernetes. We set the
imagePullPolicy for each pod such that the container im-
age will be pulled from dockerhub by default when starting
a new container. This captures the behaviour of serverless
functions where function instances are loaded from external
storage for every new container.

Metrics and Resource Management Policies: We evalu-
ate our results by using the following metrics: (i) percentage
of SLO violations, (ii) average number of containers spawned,
(iii) median and tail latency of requests, (iv) container utiliza-
tion, and (v) cluster-wide energy savings. The tail latency
is measured as the 99'" percentile request completion times
in the entire workload. We compare these metrics for Fifer
against Bline, Sbatch and BPred resource-managers (RMs).
Bline is the representative scheduler used in platforms like
AWS, previously defined in Section 3. In Sbatch, we set the
batch size by equal-slack-division policy and fix the number

Middleware 20, December 7-11, 2020, Delft, Netherlands
SBatch RScale ™8 BPred MM Fifer

0.5 I
0.0 L

Heavy Medium Light : Heavy Medium Light
Workload Workload

SBatch RScale ™= BPred s Fifer

SLO Violations
)
3
#Containers
by

4
o

(a) SLO violations norm. to Bline. (b) Containers norm. to Bline.

Figure 8. Fifer Prototype: Comparing SLO violations with number
of containers spawned.

of containers based on the average arrival rates of the work-
load traces. BPred is built on top Bline along with the LSF
scheduling policy and the EWMA prediction policy. Note
that this is a faithful implementation of scheduling and pre-
diction policy as used in Archipelago [81], which does not
support request batching. Further, to effectively compare the
combined benefits of the individual components of Fifer, we
do a brick-by-brick comparison of Fifer (a) only with dynamic
scaling policy (RScale), and (b) combined with RScale and
proactive provisioning. Both these variants employ the LSF
job scheduling policy, as well as the greedy container/node
selection policy. It is also to be noted that Fifer with RScale
policy is akin to the dynamic batching policy employed in
GrandSLAm [57].

6 Results and Analysis
6.1 Real-System Prototype

We explain the results of our real-system prototype using
the poisson request arrival trace, in this subsection.

6.1.1 Minimizing Containers: Figure 8a and Figure 8b
show the percentage of SLO violations and average number
of containers spawned for different RMs across all workloads.
It is evident that Fifer spawns the least number of containers
on average compared to all other schemes except SBatch.
This is because SBatch does not scale containers based on
changes in request load. However, this results in 15% more
SLO violations for SBatch when compared to Fifer. The Bline
and BPred RMs inherently over-provision containers due to
their non-batching nature, thus minimizing SLO violations.
But the BPred RM uses 20% lesser containers on average
when compared to Bline due to proactive provisioning. In
contrast, both Fifer and RScale batch jobs to reduce the num-
ber of containers being spawned. While RScale policy incurs
10% more SLO violations than Bline due to reactive-scaling
when trying to minimize number of containers, Fifer does ac-
curate proactive provisioning thus avoiding SLO violations.
In short, Fifer achieves the best of both worlds by combining
benefits of both batching and proactive scaling.

6.1.2 Reduction in Latency: Figure 10a plots the CDF
of total response latency up to P95 for heavy workload-
mix. The breakdown of P99 tail latency is plotted separately
in Figure 9. We separate the response latency into execu-
tion time, cold-start induced delay, and batching induced

Middleware ’20, December 7-11, 2020, Delft, Netherlands

1500

B
08 2 1000 | |
£ \ |
w06 =) \ / \ J
8 2 / \ \ 4 /
o £ 500 / \ \
04 3 & (|
g 1§ A)
02 vy Vv ¥V Y
+—e— Sbatch 4 2 2 Ko s
0.0 ~ N g &5 & 2
0 500 1000 § ¢ ° g
Median Latency (ms) Policy

(a) Latency Distribution up to P95. (b) Queuing time distribution.

Figure 10. Queuing time and response latency distribution for
heavy workload-mix.

delay. The batching induced delay is only for RScale and
Fifer policies. It can be seen that, the P99 is up to 3x higher
for RScale and SBatch when compared to Bline and Bpred.

This is because aggres-

Queuing N exec time sive batching and re-

cold_start active scaling do not
g - B handle load variations,
;4000 = which leads to con-
) gestion in the request
© 2000 The Bored pol-

= . queues. The Bpred po
= icy has lesser P99 com-
§ £ & 758 pared to RScale but

~ T O . .

& A~ g 5)30 in-turn it spawns 60%
Policy more containers than

RScale. On the other
hand, aggressive batch-
ing, along with proac-
tive provisioning in Fifer only lead to 2x higher P99 latency
than both Bline and Bpred. Figure 9. It can be seen that the
delay due to cold-starts is much lower for Fifer when com-
pared to RScale. This is because the number of reactively
scaled containers are much lesser owing to the accurate load
estimation by Fifer’s prediction model.

Since both the RScale and Fifer RM enables batching of

requests at each stage, the median latency of the requests
is high compared to the Bline (shown in Figure 10a). How-
ever, Fifer utilizes the slack for requests at each stage, hence
99% requests complete within the given SLO, despite having
increased median latency.
6.1.3 Breakdown of Improvements: The major sources
of improvements in Fifer are (i) reduction of queuing delays
and (ii) increased container utilization and better energy
efficiency. We discuss the reasons for these improvements
in detail below. The stage-wise results are plotted for IPA
application from heavy workload mix. The results are similar
for other applications as well.

Figure 9. P99 Tail Latency.

Effects of Queuing: Figure 10b plots the queuing time dis-
tribution for heavy workload mix. It can be seen that the
median queuing latency is high for Fifer (50-400ms), which
indicates more requests are getting queued due to exploiting
the slack of each stage. For the RScale scheme, the median

J.R. Gunasekaran, et al.

0 stage] W stage2 W stage3 —»— Bline—®— RScale BPred Fifer
5
—
3
Ba0 » N,
2 §100
830 g 7
5 3 J
g 20 g 50 /.4.7.7,7.1
Z S f .,
10 * J.‘ R
0
0~"Bline RScale _ BPred Fifer 0 1000 2000 3000
Policy Time interval (10s)

(a) Average number of jobs exe-(b) Cumulative number of Containers

cuted per container (JPC) spawned over time.

Figure 12. Sources of Improvement.

queuing latency is higher than Fifer (500ms) because it leads
to increased waiting times due to reactive spawning of con-
tainers with cold-starts. However, for both Bline and BPred
RM, the latency distribution is irregular because the queuing
latency will be higher or lower depending on the number of
over-provisioned containers.

Stage-aware Batching and Scaleout: Figure 11 plots the
stage-wise container distribution for all three stages. The
execution time distribution for the stages was previously
shown in Figure 3a. It can be seen that both Bline and BPred
have more containers allocated for Stage-1 (ASR), which is
the longest running stage (bottleneck) in the IPA application.
However, the RScale scheme spawns slightly higher contain-
ers for Stage-1 (44%) and Stage-3 (35%) when compared to
Baseline. This is because the proportionate slack allocation
policy will evenly distribute the load across stages. Ideally,
the distribution should be very close to Sbatch, but reactive
scaling of containers leads to many idle containers in each
stage.

Fifer, on the other hand,

stagel mmm stage3 spawns almost equal percent-

mm stage2 age of containers for Stage-
2]
£100 B I I I 2 (38%) and Stage-3 (36%).
£ L . .
g= ; I i This is because, in addition to
-
g 0 stage-aware batching, Fifer’s
i\o) 0 proactive container scaling
S 5755 & policy reduces the aggressive
g g é§ & reactive scaling of containers.
Policy The number of containers is

less for Stage-2 (21%) because
its a very short running stage
(less than 2% of total execu-
tion time) and thereby results
in early scale-in of idle con-
tainers. Though aggressive batching can result in SLO vio-
lations (15% and 12% more than Bline for SBatch and RScale
respectively), Fifer ensures similar SLO violation as in Bline,
because the LSTM model can well adapt to variations in ar-
rival rate.

Figure 11. Distribution of
Containers across stages of
IPA application.

Container Utilization: Figure 12a plots the average num-
ber of tasks (requests) executed by a container in all stages.

Fifer: Tackling Resource Underutilization in the Serverless Era

We define container utilization as Requests executed per
Container (RPC). It is evident that Fifer has the maximum
RPC across all stages. Intuitively, for a given total number of
requests, higher RPC indicates that a lesser number of con-
tainers are being spawned. It can be seen that both Bline and
BPred scheme always spawn a large number of containers
due to non-batching nature, which is exacerbated, especially
for short running stage-2 (RPC of 8.03% and 11.67%). Though
both RScale and Fifer employ request-batching. Fifer still has
12.6% better RPC on average across all stages than RScale.
This is because Fifer inherently minimizes over-provisioned
containers as a result of proactive container spawning.

To better understand the benefits of proactive provision-
ing, Figure 12b plots the overall the number of containers
spawned measured over intervals of 10s for all four RMs.
It can be seen that both RScale and Fifer adapt well to the
request rate distribution, and due to batching they spawn up
to 60% and 82% fewer containers on average when compared
to Bline RM. Fifer is still 22% better than RScale because Fifer
can accurately estimate the number of containers required
in each stage by using the LSTM prediction.

6.1.4 Cluster Energy Savings: Since in Fifer we effec-
tively bin-pack containers to least-resources-available servers,
it results in server consolidation thereby increasing the clus-
ter efficiency. Figure 15 plots the cluster-wide
energy as an average

of energy consumed g S—

across all nodes in the éo.g

cluster measured over Zi 0.6

intervals of 10 seconds S04

for the entire work- Bo.2

load duration. It can £0.0 __
SBatch RScale BPred Fifer

be seen that Fifer is
30.75% more energy ef-
ficient than the Bline
(for heavy workload-
mix). This is because
Fifer can accurately estimate the number of containers at
each stage, thereby resulting in all active containers to get
consolidated in fewer nodes. The energy savings are a result
of non-active nodes only consuming idle power. Fifer is also
17% more energy efficient than RScale, because proactive
provisioning reduces the number of reactively spawned con-
tainers. This, in turn, results in increases the number of idle
CPU-cores in the cluster. Fifer is almost as energy efficient
as Sbatch (difference of 4%), but at the same time, it can scale
up/down according to request demand, thus minimizing SLO
violations when compared to Sbatch.

Policy

Figure 15. Cluster-wide energy
savings normalized to Bline.

6.1.5 System Overheads: As meeting the response la-
tency is one of the primary goals of Fifer, we characterize the
system-level overheads incurred due to the design choices
in Fifer. The mongodb database is a centralized server which

Middleware 20, December 7-11, 2020, Delft, Netherlands

resides on the head-node. We measure the overall average la-
tency incurred due to all reads/writes in the database, which
is well within 1.25ms. The LSF scheduling policy takes about
0.35ms on average per scheduling decision. The latency of
LSTM request prediction which is not in the critical schedul-
ing path and runs as a background process model is 2.5 ms on
average. The time taken to spawn new container, including
fetching the image remotely takes about 2s to 9s depending
on the size of the container image.

6.2 Trace driven Simulation

This is because the Wiki trace follows a diurnal pattern with
a highly dynamic load, thus leading to many unprecedented
request scale-out and consequently requires more containers
to be spawned. Since the Bline, Bpred and RScale RMs employ
reactive scaling, they experience higher average number of
containers spawned (shown in Figure 13b). Especially, the
RScale and Bpred RM spawns up to 3.5X more containers
on average compared to Fifer, still leading to 5% more SLO
violations than Fifer (shown in Figure 13a). This is because
it cannot predict the variations in the input load. Fifer, on
the other hand, is resilient to load fluctuations as it utilizes
an LSTM-based load prediction model that can accurately
capture the variations and proactively spawn containers.
The tail latencies are also high for the RScale RM, due to
the congestion of request queues resulting from cold-starts
(shown in Figure 14a and 14a). However, the median latencies
follow increasing trends, as observed in the real-system.

Figure 14 plots the percentage of SLO violations and av-
erage containers spawned normalized to Bline, for WITS
trace for all three workloads. The WITS trace exhibits sud-
den peaks due to a higher peak-to-median ratio in arrival
rates (the peak (1200 reg/s) is 5x higher than the median
(240 req/s)). This sudden surge leads to very high tail laten-
cies ((shown in Figure 14c and 14c)). Fifer can still reduce
tail-latencies by up to 66% when compared to Sbatch and
RScale policies. The amount of SLO violations (shown in
Figure 13c) are considerably lower for all policies in com-
parison to Wiki trace, due to less dynamism in the arrival
load. However, Fifer still spawns 7.7X, 2.7X fewer containers
on average (Figure 13d), when compared to the Bpred and
RScale RMs, respectively. The savings of Fifer with respect to
RScale are lower when compared to WIKI trace, because the
need to spawn additional containers by reactive scaling is
considerably reduced when there less frequent variations in
arrival rates. Similar to the real-system, Fifer ensures SLO’s
to the same degree (up to 98%) as Bline and Bpred RMs.

6.2.1 Effect of Coldstarts Figure 16 plots the number of
cold-starts incurred by three different RMs for a 2 hour snap-
shot of both traces. It can be seen that, Fifer reduces the
number of cold-starts by up to 7x and 3.5%, when com-
pared to Bpred for the Wiki and Wits trace, respectively.
Though RScale also significantly reduces cold-start when

Middleware ’20, December 7-11, 2020, Delft, Netherlands J.R. Gunasekaran, et al.

SBatch RScale BPred mmm Fifer SBatch RScale BPred = Fifer SBatch RScale BPred === Fifer SBatch RScale BPred ™= Fifer
2 010 2 1.0
g10 3 S4 3
o g ks g
< 3 S Z0.
25 g 05 R : 0.5
Q o O b | e | s &
7] o - - - *00 | do . || . ‘*00 || ||

Heavy Medium Light : Heavy Medium Light Heavy Medium Light . Heavy Medium Light
Workload Workload Workload Workload
(a) WIKI: SLO violations. (b) WIKI: Average #Containers. (c) WITS: SLO violations. (d) WITS: Average #Containers.

Figure 13. SLO violations and average number of containers for Wikipedia and WITS request arrival trace. Results normalized to Bline.

. [EEnSEr—- s [EEname— e, = B ™

§4oo §~10000 \:;400 %15000

g _ g g £10000

gzoo | | § 5000 gzoo I I § 5000

g o _ 3 B ‘s “mm s, _ R | | B

= T Workdoad T Workdoaa = T Workload T Workdoaa O

(a) WIKI: Median Latency. (b) WIKI: Tail Latency. (c) WITS: Median Latency. (d) WITS: Tail Latency.
Figure 14. Median and Tail Latency for Wikipedia and WITS request arrival trace.

compared to Bline and BPred, Fifer is still 3X better than management policies used in existing cloud platforms for

RScale. This is because Fifer avoids a large number of reactive both private and public cloud.

cold-starts by accu- e Private Cloud: A large body of work [33-35, 58, 71] have

rately spawning con- 20000 Trace looked at ensuring QoS guarantees for latency critical ap-

tainers in advance. % 15000 wiki plications by developing sub-millisecond scheduling strate-

Itshouldalsobe pointed 2 o« o wits gies using both distributed and hybrid schedulers. Some

out that the num- 8 ¥ works [24, 45, 85] employ prediction-based scheduling in

ber of cold-starts are * 5000 \“/* RMs for executing latency-critical tasks that are co-located

more for WIKI trace BPred Bline Fifer Rscale with batch tasks. However, these techniques are specifi-

because the average Policy cally geared for conventional monolithic applications. Prior

request rate is 5X works [90, 93] propose stage-aware resource management

higher than WITS Figure 16. Number of Coldstarts. techniques but they cannot be applied to current trends

trace. where there are thousands of millisecond scale functions.
However, some of the policies proposed w.r.t queuing and

7 Related Work reactive scaling can co-exist with Fifer’s policies.

ePublic Cloud: There are several research works that opti-
mize for the resource provisioning cost in the public cloud.
These works broadly fall into two categories: (i) tuning the
auto-scaling policy based on changing needs (e.g., Spot, On-
Demand) [17, 29, 42, 44, 45, 78, 91], (ii) predicting peak loads
and offering proactive provisioning based auto-scaling pol-
on container provisioning combined with container scalabil- icy [42-44, 63,79, 97]. Fifer uses similar load prediction mod-
ity, in the context of RMs used in serverless computing frame- els and auto-scales containers but with respect to serverless
works. As demonstrated by our results, Grandslam (RScale function chains. Swayam [42] is relatively similar to our
policy) suffers from SLO violations, while scaling containers work such that, it handles container provisioning along with
due to dynamic load variations. (i) Archipelago [81] aims load-balancing. Unlike Fifer which looks at micro-service
to provide low latency scheduling for both monolithic and chains, Swayam is specifically catered for single-function
chained microservices. In contrast, Fifer specifically focuses machine learning inference services.
on optimizing microservice-chains by exploiting batching, Exploiting Slack: Exploiting slack between tasks is a well-
with the primary objective of increasing resource utilization, known technique, which has been applied in various domains
without compromising on SLOs. Table 6 provides a compre- of scheduling, including SSD controllers [31, 37], memory
hensive analysis of all the features of Fifer, comparing it with controllers [41, 67, 77, 89, 96], and network-on-chip [32, 62,
other relevant works. 72]. In contrast to exploiting slack, we believe the novelty as-

Resource Management in cloud: We discuss the resource pect lies in identifying the slack in relevance to the problem

Managing Microservice Chains: The most relevant and
recent prior works to ours that have looked into resource
management for microservice chains can be summarized as
follows: (i) Grandslam [57] proposes a dynamic slack-aware
scheduling policy for guaranteeing SLOs in shared microser-
vice execution frameworks. Unlike Grandslam, Fifer focuses

Fifer: Tackling Resource Underutilization in the Serverless Era

Autoscaling Containers

> | x| N[%] N[3%| || Time-Trader [87]

NN 3% 3| N[8| x| Archipelago [81]

|| %[\|N[N|N\|\|Grandslam [57]

>| N[N X%| N[N 3| N|Power-chief [95]

RS g
— (=)}

D
Features c:E %: uB) :??
Server consolidation X | v v |/
SLO Guarantees IV |V
Function Chains X | X X | v
Slack based scheduling v | X X | v
Slack aware batching X | X X | v
Energy Efficient X | X v |V
X | v |V
X | X |V

Request Arrival prediction

Table 6. Comparing the features of Fifer with other state-of-the-art
resource management frameworks.

domain and designing policies to utilize the slack effectively.
Mitigating Cold-starts: Many recent works [16, 19, 69]
propose optimizations to reduce container setup overheads.
For example, SOCK [69] and SAND [16] explore optimiza-
tions to reduce language framework-level overheads and the
step function transition overheads, respectively. Some works
propose to entirely replace containers with new virtualiza-
tion techniques like Firecracker [20] and uni-kernels [99].
Complementary to these approaches, Fifer tries to decouple
container cold-starts from execution time.

8 Discussion and Future Work

Design Limitations: We set SLO to be within 1000ms, which
is the typical user-perceived latency. Note that changing the
SLO would result in different slacks for application stages.
While providing execution time and SLO information is an
offline step in Fifer, for longer running applications where ex-
ecution time is greater than 50% of SLO, the benefits of batch-
ing would be significantly reduced. Our execution time esti-
mates are limited to ML-based applications, but our schemes
can be applied to all other applications which have pre-
dictable execution times. In addition, based on the type of
applications hosted on serverless platforms, the provider can
use a combination of tailor-made policies specific to each
class of applications. Also, the applications we consider are
linearly chained without any dynamic branches. We plan
the explore dynamic microservice chains in future work.

Our design policies are implemented on Brigade which is
deployed on top of Kubernetes resource orchestrator. The
proposed policies can be readily ported to other open-sourced
resource management frameworks because of the inherent
design choices are that are readily pluggable with minimal
modifications of API calls.

All decisions related to container scaling, scheduling and
load-prediction are reliant on the centralized database which
can become a potential bottleneck in terms of scalability and
consistency for a large scale system. This can be mitigated by
using fast distributed solutions like Redis [22] and Zookeper
respectively [53]. The LSTM model in Fifer is pre-trained
using 60% of the arrival trace. In case different load patterns,

Middleware 20, December 7-11, 2020, Delft, Netherlands

the LSTM model parameters can be constantly updated by
retraining in the background with new arrival rates.
Cloud Provider Support: The cold-start measurements
and characterizations in Fifer are mainly based on AWS.
However, our main design can be extended in theory to
other major cloud platform as well. We also rely on the plat-
form provider to expose API’s for the tenants to specify their
application SLO requirements which are crucial for slack
estimation. Such an API would better enable the provider
to auto-configure tenants’ execution environments, which
would be invaluable in improving resource efficiency [36].

9 Concluding Remarks

There is wide-spread prominence in the adoption of server-
less functions for executing microservice-based applications
in the cloud. This introduces critical inefficiencies in terms of
scheduling and resource management for the cloud provider,
especially when deploying a large number millisecond-scale
latency-critical functions. In this paper, we propose and eval-
uate Fifer, a stage-aware adaptive resource management
framework for efficiently running function-chains on server-
less platforms by ensuring high container utilization and clus-
ter efficiency without compromising on SLOs. Fifer makes
use of a novel combination of stage-wise slack awareness
along with proactive container allocations using an LSTM-
based load prediction model. The proposed technique can in-
telligently scale-out and balance containers for every individ-
ual stage. Our experimental analysis on an 80 compute-core
cluster and large scale simulations show that Fifer spawns
up to 80% fewer containers on average, thereby improving
container utilization by 4x and cluster efficiency by 31%.

Acknowledgments

We are indebted to the anonymous reviewers, Anup Sarma,
Cyan Mishra, Sandeepa Bhuyan, and Ram Srivatsa for their
insightful comments. We thank our shepherd Dejan Milo-
jicic for his guidance in revising the paper. This research
was partially supported by NSF grants #1931531, #1955815,
#1629129, #1763681, #1629915, #1908793, #1526750 and we
thank NSF Chameleon Cloud project CH-819640 for their
generous compute grant. All product names used in this
publication are for identification purposes only and may be
trademarks of their respective companies.

References

[1] 2013. WITS: Waikato Internet Traffic Storage. https://wand.net.nz/
wits/index.php.

[2] 2016. Apache Openwhisk. https://openwhisk.apache.org/.

[3] 2020. AWS Lambda. Serverless Functions. https://aws.amazon.com/
lambda/.

[4] 2020. Azure Durable Functions.
us/azure/azure-functions/durable.

[5] 2020. Azure Durable Functions.
us/azure/azure-functions/durable.

[6] 2020. Brigade-workflows. https://brigade.sh/.

https://docs.microsoft.com/en-

https://docs.microsoft.com/en-

-

—

—

Middleware ’20, December 7-11, 2020, Delft, Netherlands

[7] 2020. IBM-Composer. https://cloud.ibm.com/docs/openwhisk?topic=

cloud-functions-pkg_composer.

2020. IBM Serverless Functions. https://www.ibm.com/cloud/
functions.

2020. Kubernetes. https://kubernetes.io/.

2020. Microsoft Azure Serverless Functions. https://azure.microsoft.
com/en-us/services/functions/.

Feb 24, 2020. Intel Power Gadget. https://github.com/sosy-lab/cpu-
energy-meter.

February 2018. Google Cloud Functions. https://cloud.google.com/
functions/docs/.

March 28,2019. Brigade-azure. https://cloudblogs.microsoft.com/
opensource/2019/03/28/announcing-brigade-1-0-new-kind-of-
distributed-application/.

May 11,2020. Fission-workflows. https://docs.fission.io/docs/
workflows/.

Martin Abadi. 2016. TensorFlow: learning functions at scale. In Acm
Sigplan Notices. ACM.

Istemi Ekin Akkus et al. 2018. SAND: Towards High-Performance
Serverless Computing. In ATC.

Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. 2019.
BurScale: Using Burstable Instances for Cost-Effective Autoscaling
in the Public Cloud. In Proceedings of the ACM Symposium on Cloud
Computing. Association for Computing Machinery, New York, NY,
USA.

Marian Stewart Bartlett, Gwen Littlewort, Mark Frank, Claudia Lain-
scsek, Ian Fasel, and Javier Movellan. 2005. Recognizing facial ex-
pression: machine learning and application to spontaneous behavior.
In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), Vol. 2. IEEE, 568-573.

Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
2018. Putting the "Micro" Back in Microservice. In 2018 USENLX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 645-650.

Marc Brooker, Andreea Florescu, Diana-Maria Popa, Rolf Neugebauer,
Alexandru Agache, Alexandra Iordache, Anthony Liguori, and Phil
Piwonka. 2020. Firecracker: Lightweight Virtualization for Serverless
Applications. In NSDL

[21] Jyothi Prasad Buddha and Reshma Beesetty. 2019. Step Functions. In

The Definitive Guide to AWS Application Integration. Springer.

[22] Josiah L Carlson. 2013. Redis in action. Manning Publications Co.

P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski. 2017. Server-
less Programming (Function as a Service). In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS). 2658—
2659.

Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Bay-
max: QoS Awareness and Increased Utilization for Non-Preemptive
Accelerators in Warehouse Scale Computers. SIGARCH Computer
Architecture News (2016).

Shuang Chen, Christina Delimitrou, and Jose F. Martinez. 2019. PAR-
TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In ASPLOS.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015.
MXNet: A Flexible and Efficient Machine Learning Library for Het-
erogeneous Distributed Systems. CoRR (2015).

Kristina Chodorow. 2013. MongoDB: the definitive guide: powerful
and scalable data storage. " O’Reilly Media, Inc.".

Francois Chollet. 2018. Deep Learning mit Python und Keras: Das
Praxis-Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags
GmbH & Co. KG.

Andrew Chung, Jun Woo Park, and Gregory R. Ganger. 2018. Stratus:
Cost-aware Container Scheduling in the Public Cloud. In SoCC.

=

flan

=

=

—

=

[

—

—

—_

flan?

=

J.R. Gunasekaran, et al.

[30] Amazon Elastic Compute Cloud. 2011. Amazon web services. Re-

trieved November (2011).

J. Cui, Y. Zhang, W. Wu, J. Yang, Y. Wang, and J. Huang. 2018. DLV:
Exploiting Device Level Latency Variations for Performance Im-
provement on Flash Memory Storage Systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37, 8 (2018),
1546-1559.

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita Das.
2010. Aergia: A network-on-chip exploiting packet latency slack.
IEEE micro 31, 1 (2010), 29-41.

Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel.
2016. Job-aware Scheduling in Eagle: Divide and Stick to Your Probes.
In Proceedings of the Seventh ACM Symposium on Cloud Computing.
Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid datacenter scheduling. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). 499-510.
Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: Reconciling Scheduling Speed and Quality in Large Shared
Clusters. In Proceedings of the Sixth ACM Symposium on Cloud Com-
puting (Kohala Coast, Hawaii) (SoCC ’15). ACM, New York, NY, USA.
Vojislav Dukic and Ankit Singla. 2019. Happiness index: Right-sizing
the cloud’s tenant-provider interface. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 19). USENIX Association,
Renton, WA.

Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mah-
mut T. Kandemir, Chita R. Das, and Myoungsoo Jung. 2017. Exploiting
Intra-Request Slack to Improve SSD Performance. In Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017,
Xi’an, China, April 8-12, 2017, Yunji Chen, Olivier Temam, and John
Carter (Eds.). ACM, 375-388.

Lang Feng, Prabhakar Kudva, Dilma Da Silva, and Jiang Hu. 2018.
Exploring Serverless Computing for Neural Network Training. In 2018
IEEE 11th International Conference on Cloud Computing (CLOUD).
Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chat-
terjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019.
From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands
of Transient Functional Containers. In ATC.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud & edge
systems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 3—-18.

Mrinmoy Ghosh and Hsien-Hsin S Lee. 2007. Smart refresh: An
enhanced memory controller design for reducing energy in con-
ventional and 3D die-stacked DRAMs. In 40th Annual IEEE/ACM
international symposium on microarchitecture (MICRO 2007). IEEE,
134-145.

Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley,
and Bj6rn B. Brandenburg. 2017. Swayam: Distributed Autoscaling
to Meet SLAs of Machine Learning Inference Services with Resource
Efficiency. In USENIX Middleware Conference.

Rui Han, Moustafa M. Ghanem, Li Guo, Yike Guo, and Michelle
Osmond. 2014. Enabling Cost-Aware and Adaptive Elasticity of Multi-
Tier Cloud Applications. Future Gener. Comput. Syst. 32, C (March
2014), 82-98.

Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger,
and Phillip B. Gibbons. 2018. Tributary: spot-dancing for elastic
services with latency SLOs. In ATC.

Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger,
and Phillip B. Gibbons. 2017. Proteus: Agile ML Elasticity Through
Tiered Reliability in Dynamic Resource Markets. In Eurosys.

—

—

—_

[l

-

—

[}

—

—_

Fifer: Tackling Resource Underutilization in the Serverless Era

[46] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen,

Cheng Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia
Tang. 2015. DjiNN and Tonic: DNN as a service and its implications
for future warehouse scale computers. In ISCA.

Johann Hauswald, Michael A. Laurenzano, Yungi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. 2015. Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its Implications
for Future Warehouse Scale Computers. In ASPLOS.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, et al. 2018. Applied machine learning at facebook:
A datacenter infrastructure perspective. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
620-629.

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.
Serverless Computing: One Step Forward, Two Steps Back. arXiv
preprint arXiv:1812.03651 (2018).

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkatesh-
waran Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2016. Serverless Computation with OpenLambda.
In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
16). USENIX Association.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term
memory. Neural computation (1997).

John A. Hoxmeier and Chris Dicesare. 2000. System Response Time
and User Satisfaction: An Experimental Study of Browser-based Ap-
plications. In AMCIS.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale
Systems.. In USENIX annual technical conference, Vol. 8.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv
preprint arXiv:1602.07360 (2016).

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for the
99%. In SoCC.

Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.
Centralized Core-granular Scheduling for Serverless Functions. In
SoCC.

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju,
Jeongseob Ahn, Jason Mars, and Lingjia Tang. 2019. GrandSLAm:
Guaranteeing SLAs for Jobs in Microservices Execution Frameworks.
In EuroSys.

Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hy-
brid centralized and distributed scheduling in large shared clusters. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). 485-497.
Nima Kaviani, Dmitriy Kalinin, and Michael Maximilien. 2019. To-
wards Serverless as Commodity: a case of Knative. In Proceedings of
the 5th International Workshop on Serverless Computing. 13-18.
Abeer Abdel Khaleq and Ilkyeun Ra. 2018. Cloud-Based Disaster
Management as a Service: A Microservice Approach for Hurricane
Twitter Data Analysis. In GHTC.

Ron Kohavi and Roger Longbotham. 2007. Online Experiments:
Lessons Learned. IEEE Computer (2007).

A. Kostrzewa, S. Saidi, and R. Ernst. 2016. Slack-based resource arbi-
tration for real-time Networks-on-Chip. In 2016 Design, Automation
Test in Europe Conference Exhibition (DATE). 1012-1017.

Adithya Kumar, Iyswarya Narayanan, Timothy Zhu, and Anand Siva-
subramaniam. 2020. The Fast and The Frugal: Tail Latency Aware

=

—

=

—

=

—

—

[lan R s

[l

[t

-

Middleware 20, December 7-11, 2020, Delft, Netherlands

Provisioning for Coping with Load Variations. In Proceedings of The
Web Conference 2020 (WWW °20). Association for Computing Ma-
chinery, New York, NY, USA.

Tony Mauro. 2015. Adopting microservices at netflix: Lessons
for architectural design. Recuperado de https://www. nginx.
com/blog/microservices-at-netflix-architectural-best-practices (2015).
G. McGrath and P. R. Brenner. 2017. Serverless Computing: Design,
Implementation, and Performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
405-410.

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In HotCloud 19. USENIX.

Nachiappan Chidambaram Nachiappan, Haibo Zhang, Jihyun Ryoo,
Niranjan Soundararajan, Anand Sivasubramaniam, Mahmut T Kan-
demir, Ravi Iyer, and Chita R Das. 2015. VIP: virtualizing IP chains on
handheld platforms. In ACM SIGARCH Computer Architecture News,
Vol. 43. ACM, 655-667.

Y. Niu, F. Liu, and Z. Li. 2018. Load Balancing Across Microservices. In
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.
198-206.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
USENIX ATC.

Matthew Obetz, Stacy Patterson, and Ana Milanova. 2019. Static Call
Graph Construction in AWS Lambda Serverless Applications. In 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).
USENIX Association, Renton, WA.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica.
2013. Sparrow: distributed, low latency scheduling. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 69-84.

Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit
Mishra, Mahmut T Kandemir, Anand Sivasubramaniam, and Chita R
Das. 2019. Opportunistic computing in gpu architectures. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 210-223.

V. Persico, A. Montieri, and A. Pescape. 2016. On the Network Per-
formance of Amazon S3 Cloud-Storage Service. In Cloudnet.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin
Qian, Petr Schwarz, et al. 2011. The Kaldi Speech Recognition Toolkit.
In ASRU.

P. V. Rengasamy, H. Zhang, S. Zhao, N. C. Nachiappan, A. Sivasub-
ramaniam, M. T. Kandemir, and C. R. Das. 2018. CritICs Critiquing
Criticality in Mobile Apps. In 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 867-880.

Research and Markets. 2017. Function-as-a-Service Market by User
Type (Developer-Centric and Operator-Centric), Application (Web
and Mobile Based, Research and Academic), Service Type, Deploy-
ment Model, Organization Size, Industry Vertical, and Region - Global
Forecast to 2021. In Research and Markets.

Anup Sarma, Huaipan Jiang, Ashutosh Pattnaik, Jagadish Kotra, Mah-
mut Taylan Kandemir, and Chita R Das. 2019. CASH: compiler assisted
hardware design for improving DRAM energy efficiency in CNN in-
ference. In Proceedings of the International Symposium on Memory
Systems. 396—-407.

Prateek Sharma, David Irwin, and Prashant Shenoy. 2017. Portfolio-
Driven Resource Management for Transient Cloud Servers. Proc.
ACM Meas. Anal. Comput. Syst. 1, 1, Article 5 (June 2017), 23 pages.
Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant
Shenoy. 2015. Spotcheck: Designing a derivative iaas cloud on the spot
market. In Proceedings of the Tenth European Conference on Computer

Middleware ’20, December 7-11, 2020, Delft, Netherlands

(80

(81

(82

(83

(84

(85

(86

(87

(88

[89

[90

[91

[92

[93

[94

[95

[96

]

]

]

=

]

]

]

]

]

]

]

]

]

[t}

]

—

—

Systems. 1-15.

Eismann Simon and Scheuner Joel. May 29, 2020.
of Serverless Use Cases and their Characteristics. ~ SPEC-RG-
2020-5 (May 29, 2020). https://research.spec.org/news/single-
view/article/technical-report-on-a-review-of-serverless-use-cases-
and-their-characteristics-published.html.

Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya Akella.
2019. Archipelago: A Scalable Low-Latency Serverless Platform.
arXiv preprint arXiv:1911.09849 (2019).

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Jose M. Faleiro, Joseph E. Gonzalez, Joseph M. Heller-
stein, and Alexey Tumanov. 2020. Cloudburst: Stateful Functions-as-
a-Service. arXiv:2001.04592 [cs.DC]

Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019.
Softsku: Optimizing server architectures for microservice diversity@
scale. In ISCA.

Amoghvarsha Suresh and Anshul Gandhi. 2019. FnSched: An Effi-
cient Scheduler for Serverless Functions. In Workshop on Serverless
Computing.

P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das. 2019. Kube-Knots: Resource Harvesting through Dynamic
Container Orchestration in GPU-based Datacenters. In CLUSTER.
Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2009.
Wikipedia workload analysis for decentralized hosting. Computer
Networks (2009).

Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and T. N. Vi-
jaykumar. [n.d.]. TimeTrader: exploiting latency tail to save datacen-
ter energy for online search. In MICRO 2015.

M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M. Verano,
R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang. 2016.
Infrastructure Cost Comparison of Running Web Applications in
the Cloud Using AWS Lambda and Monolithic and Microservice
Architectures. In CCGrid.

Vivek Pandey, W. Jiang, Y. Zhou, and R. Bianchini. 2006. DMA-aware
memory energy management. In The Twelfth International Symposium
on High-Performance Computer Architecture, 2006. 133-144.

Rob Von Behren, Jeremy Condit, Feng Zhou, George C Necula, and
Eric Brewer. 2003. Capriccio: scalable threads for internet services.
ACM SIGOPS Operating Systems Review 37, 5 (2003), 268-281.
Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis.
2017. Using Burstable Instances in the Public Cloud: Why, When and
How? SIGMETRICS (June 2017).

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In ATC.

Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architec-
ture for Well-Conditioned, Scalable Internet Services. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles (Banff,
Alberta, Canada) (SOSP ’01). Association for Computing Machinery,
New York, NY, USA, 230-243. https://doi.org/10.1145/502034.502057
C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K.
Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B.
Reagen,]. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B.
Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. 2019. Machine Learning
at Facebook: Understanding Inference at the Edge. In 2019 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA). 331-344.

Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang,
and Jason Mars. 2017. PowerChief: Intelligent power allocation for
multi-stage applications to improve responsiveness on power con-
strained CMP. In Computer Architecture News.

P. Yedlapalli, N. C. Nachiappan, N. Soundararajan, A. Sivasubrama-
niam, M. T. Kandemir, and C. R. Das. 2014. Short-Circuiting Memory

A Review

[97

—

[98

=

[99

-

[100]

[101]

J.R. Gunasekaran, et al.

Traffic in Handheld Platforms. In 2014 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 166—177.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019.
MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Ma-
chine Learning Inference Serving. In ATC.

Haibo Zhang, Prasanna Venkatesh Rengasamy, Shulin Zhao, Nachi-
appan Chidambaram Nachiappan, Anand Sivasubramaniam, Mah-
mut T. Kandemir, Ravi Iyer, and Chita R. Das. 2017. Race-to-sleep +
Content Caching + Display Caching: A Recipe for Energy-efficient
Video Streaming on Handhelds. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (Cambridge,
Massachusetts). ACM, New York, NY, USA, 15.

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen.
2018. KylinX: a dynamic library operating system for simplified
and efficient cloud virtualization. In 2018 USENIX Annual Technical
Conference. 173-186.

S. Zhao, H. Zhang, S. Bhuyan, C. S. Mishra, Z. Ying, M. T. Kandemir, A.
Sivasubramaniam, and C. R. Das. 2020. Déja View: Spatio-Temporal
Compute Reuse for Energy-Efficient 360° VR Video Streaming. In
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 241-253.

Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for
Scaling WeChat Microservices. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for
Computing Machinery, New York, NY, USA, 149-161.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Functions Chains
	2.2 Shortcomings of Current Serverless Platforms

	3 Preamble to Fifer
	4 Overall Design of Fifer
	4.1 Estimating execution time and slack
	4.2 Load Balancing
	4.3 Function Scheduling
	4.4 Bin-Packing to increase Utilization
	4.5 Proactive Scaling Policy

	5 Implementation and Evaluation
	5.1 Fifer Prototype Implementation
	5.2 Large Scale Simulation
	5.3 Evaluation Methodology

	6 Results and Analysis
	6.1 Real-System Prototype
	6.2 Trace driven Simulation

	7 Related Work
	8 Discussion and Future Work
	9 Concluding Remarks
	References

