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Abstract

Variational quantum eigensolver (VQE) for electronic structure calculations is believed to be one
major potential application of near term quantum computing. Among all proposed VQE
algorithms, the unitary coupled cluster singles and doubles excitations (UCCSD) VQE ansatz has
achieved high accuracy and received a lot of research interest. However, the UCCSD VQE based on
fermionic excitations needs extra terms for the parity when using Jordan—Wigner transformation.
Here we introduce a new VQE ansatz based on the particle preserving exchange gate to achieve
qubit excitations. The proposed VQE ansatz has gate complexity up-bounded to O(n*) for
all-to-all connectivity where 7 is the number of qubits of the Hamiltonian. Numerical results of
simple molecular systems such as BeH,, H,0, N,, Hy and H¢ using the proposed VQE ansatz gives
very accurate results within errors about 10~ Hartree.

1. Introduction

Quantum computing has been developing rapidly in recent years as a promising new paradigm for solving
many problems in science and engineering. One major potential application of quantum computing is
solving quantum chemistry problems [1] such as electronic structure of molecules, which has received a lot
of research interest and achieved a big success in both algorithmic development and experimental
implementation. The early development of electronic structure calculations was based on the quantum
phase estimation algorithm developed by Kitaev [2], Abrams and Lloyd [3] and used to find spectrum of
simple molecular systems [4—9]. More recently, hybrid classical-quantum algorithms have been developed
such as the variational quantum eigenslover (VQE) [10—13] and quantum machine learning techniques
[14] for electronic structure calculations. Moreover, many experiments have been conducted on quantum
computers to show that electronic structure calculations of simple molecules are possible on current Noisy
Intermediate-Scale Quantum (NISQ) devices [15-17].

One of the most promising quantum algorithms to perform electronic structure calculations is based on
unitary coupled cluster [18] singles and doubles (UCCSD), which implements the quantum computer
version of UCCSD as the VQE ansatz [10, 19, 20] to calculate the ground state from a Hartree—Fock
reference state. The results from UCCSD VQE achieve high accuracy [1, 19, 21, 22]. However, the gate
complexity for first order trotterization UCCSD VQE is up-bounded to O(n°) [1, 19] using Jordan—Wigner
transformation where 7 is the number of qubits of the Hamiltonian. This makes it difficult to implement on
current NISQ devices. Some strategies developed may be used to reduced the complexity, for example, the
ordering and parallelization techniques in [23] can reduce the circuit depth by O(n) [19] and low-rank
factorization [24] can reduce the gate complexity to O(n*). Here we introduce a new VQE ansatz based on
the particle preserving exchange gate [20, 25] to achieve qubit excitations, which has gate complexity
up-bounded to O(n*) and has comparable accuracy compared to first order trotterization UCCSD VQE. By
reducing the gate complexity, QCCSD VQE ansatz—qubit coupled cluster singles and doubles (QCCSD)
VQE ansatz, might be more favorable for current NISQ devices.

© 2020 IOP Publishing Ltd


https://doi.org/10.1088/2058-9565/abbc74
https://orcid.org/0000-0003-3536-1140
https://orcid.org/0000-0003-0574-5346
mailto:kais@purdue.edu

10P Publishing

Quantum Sci. Technol. 6 (2021) 015001 R Xia and S Kais

The rest of the paper is organized as follows: the first section gives a brief introduction to the method of
UCCSD VQE ansatz. Then we give a detailed description of QCCSD VQE ansatz. We also show QCCSD
VQE is a simplified version of the first order trotterization UCCSD VQE. Finally, we give the numerical
simulation results of BeH,, H,O, N;, Hy4 and Hg using first order trotterization UCCSD VQE and QCCSD
VQE ansatz.

2. UCCSD VQE

The electronic structure Hamiltonian can be written in second quantization as:

= hy + Zh,]a ai+ Zh,ﬂda a; ady (1)

ijkl

where hy is the nuclear repulsion energy, the one-electron integrals h;; and the two-electron integrals h;jy
can be calculated by orbital integrals. Using Jordan—Wigner transformation we can rewrite the Hamiltonian

in the Pauli matrices form:
H= Zaa +Zb300"+ (2)

i, ijof8

where a’, b] o are general coefficients and o, 0'] are Pauli matrices oy, 0y, 0; and 2 x 2 identity matrix.
In unitary coupled clustered single double excitations, we can calculate the ground state from the
Hartree—Fock reference state by excitation operators of the form:

16) = DT PGy (3)

where T(g) T, (51) + Tz(gz) is the excitation operator, |¢y) is the Hartree—Fock reference state and f'is
the set of adjustable parameters. The single excitation operator can be written as T} (91) =>, 91]11 aj and

the double excitation operator can be written as T2(92) => ik Bijaa; ajakal We can minimize (¢|H|¢) to

get the ground state energy by optimizing g.

Considering an #n qubits Hamiltonian, the number of spin orbitals is # and the total number of
excitation terms in T is O( (N"“) X ( virt )) where N, is the number of occupied spin orbitals, Ny is the
number of virtual spin orbitals. n = NOCC + Nyire is the number of qubits of the Hamiltonian or the total
number of spin orbitals.

The first order trotterization UCCSD operator can be written as:

T(6)—T1(6) ~ He i (a! aJ u]u v He jiki(a k“l u}t ja,-). (4)

i,j,k,!

To map the first order trotterization UCCSD to quantum computer, we use same transformation,
Jordan—Wigner transformation, as we do for the Hamiltonian to transform creation and annihilation
operators into Pauli matrices. Each term in equation (4) can be implemented as unitary quantum gates by
Jordan—Wigner transformation. Since the cost of Jordan—Wigner transformation for each term is O(n) [1],
the gate complexity for the first order trotterization UCCSD VQE is O( (Ng“) X (N‘;”) x 1) < O(n°) using
Jordan—Wigner transformation [1, 19].

UCCSD VQE has shown high accuracy in electronic structure calculations [1, 19, 21, 22]. However, one
problem of the UCCSD VQE is the large complexity. The first order trotterization UCCSD VQE has
up-bounded O(n*) terms and O(n°) gate complexity using Jordan—Wigner transformation. Here, we
propose a new qubit coupled cluster singles and doubles VQE ansatz using the particle preserving exchange
gate [20, 25]. The gate complexity of QCCSD ansatz scales as O( (N"“) X (Ng“ )) < O(n*). In the numerical
simulations, we show that QCCSD ansatz can achieve comparable accuracy to the first order trotterization
UCCSD VQE.

3. QCCSD VQE ansatz

After Jordan—Winger transformation, each qubit represents whether the corresponding spin orbital is
occupied or not. When qubit 7 is in |0), spin orbital i is not occupied and when qubit i is in |1) spin orbital i
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Figure 1. Matrix of U, (0).

is occupied. Thus we can write down a particle preserving exchange gate U [20, 25] between two qubits as:

1 0 0 0
0 cos @ —sinf 0
0 sinf cosf 0
0 0 0 1

Uex(0) =

The particle preserving exchange gate U will not change the total number occupation when applied to
arbitrary states. Suppose we have two qubits in |10), which represents that the first spin orbital is occupied
and the second spin orbital is not occupied. If we apply U,y to this state we have:

Uex(6)]10) = cos 0]10) — sin 0|01) (5)

which corresponds to a single excitation between one spin occupied and one virtual spin orbitals.

We can also write down a particle preserving exchange gate U., between four qubits as in figure 1.
Suppose we have four qubits in |1010), which represents the first and the third spin orbitals are occupied
while the second and the fourth spin orbitals are not occupied. If we apply UL, to this state we have:

U’ (6)[1010) = cos 6]1010) — sin 6]0101) (6)

which corresponds to a double excitation between two occupied and two virtual spin orbitals.
We can write down an operator U by U, and U, to achieve single and double excitations from the
Hartree—Fock reference state:

|®) = U(O)|¢ur) = HUex,i,j(eij)HUéx,i,j,k,l(eljkl)WHF) (7)
ij

Y

Uey,ij Tepresents Ue between qubits i j where qubit i represents the occupied orbital and qubit j represents

the virtual orbital. U, , represents Uy, between qubits i j k | where qubit i, k represent occupied orbitals

and qubit j, I represent the virtual orbitals. © is the set of adjustable parameters. We can minimize (®|H|®)
to get the ground state energy by optimizing © .

Ue(0) and U, () can be decomposed into elementary quantum gates with gate complexity O(1)
because the sizes of matrices of Ue(#) and U, (0) are O(1). A possible decomposition of U (6) is by Gray
code [26]:

— R,(20) —

ra N

D
A possible decomposition of U, (6) following [27] is shown in figure 2. A number of groups have shown
how to reduce the gate complexity of coupled cluster methods [28—30] on quantum computer and may be
able to be applied to QCCSD VQE. Recently, O’Gorman et al [31] show that by using fermionic swap
networks one can reduce the circuit depth to O(n¥~!) when implementing set of k qubits gates on 7 logical
qubits, which may reduce the depth of QCCSD VQE by a factor of n. This is a possible future improvement
but out of the scope of this paper. Recently, Yordanov and Barnes [27] proposed a new decomposition of
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Figure 2. Decomposition of U, (6) follows [27].

UCCSD VQE into two steps: first applying the qubit excitation gates, which are the particle preserving
exchange gates in our QCCSD VQE used for single and double excitations though termed differently, then
applying CNOT gates to include the parity information. In our simulation, U () and U, () are
implemented as single unitary gates in Qiskit [32].

3.1. Excitation list selection

One important part of the proposed VQE is to choose the excitation list, or to decide between which spin
orbitals the excitation will occur. Spin preserving VQE ansatzes, which preserve the net spin magnetization
s, have been widely studied [33, 34]. We use the same strategy and choose the excitation list only allowing
spin preserving excitations. More details can be found in the appendix . The term complexity of our ansatz
scales as O( (Ng“) X (Ng“ ) ). The required elementary quantum gates for U and U, are both O(1). Thus
the gate complexity of our ansatz scales as O( (Ng“) X (szi“ )) < O(n*). One should note that, for linear
connectivity, if no extra strategies are applied, the straightforward compilation will make the complexity of
proposed QCCSD VQE scale up to O(n°). However, this complexity can be reduced by applying strategies
for the compilation as done for example in the generalized swap network [31]. Moreover, a recent study
[33] shows that considering the total spin s preserving may also help to achieve better accuracy, QCCSD
VQE ansatz may also be able to be modified to preserve the total spin s, which will be done in the future
work.

3.2. Relation to UCCSD VQE ansatz
Here, we present that QCCSD VQE ansatz is a simplified version of UCCSD VQE ansatz. Consider a single
excitation term in first order trotterization UCCSD VQE:

il
eﬁ(uj aj— a]a ) (8)
Without loss of generality, we can require i € virt and j € occ where virt represents virtual orbitals and
occ represents occupied orbitals. Furthermore we can set 7 > j and if using Jordan—Wigner transformation

we get:
ol

e? Joiel —,+1"z

oja _J+10'Z (9)

In equation (9), ®;;1] 107 counts for the parity of qubits from j + 1 to i — 1. If we remove the parity
term we get:

20k F N = Uy i(—0). (10)

Thus our particle conservation exchange gate U j; counts for the single excitation term of qubits j 7 in
first order trotterization UCCSD VQE without considering the parity of qubits from j+ 1 to i — 1. Also,
consider a double excitation term in first order trotterization UCCSD VQE:

e()(uia;akulfa;aiuja;) (11)

Without loss of generality, we can require i < j € virt and [ < k € occ. Furthermore we can choose the
order j > k > i > [ and if using Jordan—Wigner transformation we get:

=i I —if
e® "x"kgxojy@a 14192 ®7 k+1"ze §Loko "x"JX®a 1+1‘72®7 k4192

ag)_ 1)

—if e —if ok i—1
e <0 (T}/(T}/(T;,QQ *l+10 3 (7 (7J®

1 1
=k+1% ¢ a=1+172%%=k+17

(12)

—if

— 1
6@” of T’U ”x”x”{cx)a l+10®’ —k1 a4

1
(Txaxa},a{céi) —k+17

a=. l+1(7

—19 I 1 kOJ®

j—1 a —if I i _k J oi—l acj—1 a
e® . z+1 ®J:k+1gze 3 ‘Tygy"yojx@a:1+1”z@';:k+1‘72_
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In equation (12) ®u l+1 Z®J —i410% counts for the parity of qubits from [+ 1 to i — 1 and from
k4 1toj — 1. If we remove the parity term we get:

e—(7 ”x”];”"ye (7 (7 (f,Ce 3 axﬂya/lv‘(f},e /V )}go‘},
(13)
i0 kol kol koj i0 kol
(7 (7 . (7 (7(7 (7(7 g, (T (7 !
ev xyxes yxxxesyxy ev = exllk]( 9)

Thus our particle preserving exchange gate Uy, . counts for the double excitation term of qubits

I, k, 1, j in first order trotterization UCCSD VQE without considering the parity of qubits from [+ 1 toi — 1
and from k + 1toj — 1. One should be aware that if different order of spin orbitals is used, the double
excitation term with parity terms removed may equal to U, (6). QCCSD VQE is the simplified version of
first order trotterization UCCSD VQE. The reduced gate complexity of our VQE comes from removing the
parity term in UCCSD VQE. Recently Smart et al [35] presented an efficient ansatz for two-electron system,
showing that fermionic double excitations can be simplified to qubit double excitations in the two-electron
system, which indicates the QCCSD VQE has the same double excitation terms as the UCCSD VQE for a

two-electron system.

4. Numerical simulation results

In this section, we present numerical results of BeH,, H,O, N;, Hy and Hg by using QCCSD VQE with gates
Ue and U.,. To compare performance of QCCSD VQE, we also present the results by using first order
trotterization UCCSD VQE implemented by Qiskit [32]. For each numerical simulation, the orbital
integrals are calculated using STO-3G minimal basis by PySCF [36] and the Hamiltonian is obtained by
Jordan—Wigner transformation. The optimization is performed by the sequential least squares
programming algorithm [37]. The input state is the Hartree—Fock reference state and all parameters are
initialized as 0 for both ansatzes. The bounds for all parameters for both ansatzes are set to [—m, 7w]. The
energy thresholds for convergence is set to 10~® Hartree with maximum 500 iterations. The noiseless
simulation is done by Qiskit [32] with version 0.14.1. In the figures in this section, QCCSD VQE represent
the proposed qubit coupled cluster singles and doubles VQE ansatz while UCCSD VQE represents the first
order trotterization UCCSD VQE ansatz implemented by Qiskit [32].

Complete active space approach [38], which divides the space to active orbitals and inactive orbitals, has
been applied to reduce the qubits of molecule Hamiltonian in quantum simulation. To investigate the effect
of the size of active space, we compare the performance of QCCSD ansatz for different sizes of active spaces
for the same molecule.

For BeH, we choose three different active spaces: first 2 spin orbitals with lowest energies are always
filled and first 2 spin orbitals with highest energies are always empty, corresponding to 10 active spin
orbitals with 4 electrons or 10 qubits Hamiltonian. First 2 spin orbitals with lowest energies are always
filled, corresponding to 12 active spin orbitals with 4 electrons or 12 qubits Hamiltonian. No spin orbitals
are always filled or always empty, corresponding to 14 active spin orbitals with 6 electrons or 14 qubits
Hamiltonian. We compare the errors between the ground state energies from the VQE results and the
ground state energies from the diagonalization of the corresponding Hamiltonian as in figure 3. We can see
that, although the size of the active space is increased, our QCCSD VQE achieves similar accuracy as the
first order trotterization UCCSD VQE.

For H,0 we choose three different active spaces: first 4 spin orbitals with lowest energies are always
filled, corresponding to 10 active spin orbitals with 6 electrons or 10 qubits Hamiltonian; first 2 spin
orbitals with lowest energies are always filled, corresponding to 12 active spin orbitals with 8 electrons or 12
qubits Hamiltonian and no spin orbitals are always filled or always empty, corresponding to 14 active spin
orbitals with 10 electrons or 14 qubits Hamiltonian. We compare the errors between the ground state
energies from the VQE results and the ground state energies from the diagonalization of the corresponding
Hamiltonian as in figure 4 for different Hamiltonian. For 10 qubits H,O Hamiltonian our QCCSD VQE
achieves almost the same accuracy as the first order trotterization UCCSD VQE except at one point. For 12
and 14 qubits H,O Hamiltonian, with increased size of active space, our QCCSD VQE performs a little
worse compared to the first order trotterization UCCSD VQE the error increased from 107> to 103
Hartree, but the error is still within or around the chemical accuracy.

For N, we choose four different active spaces: first 8 spin orbitals with lowest energies are always filled
and first 2 spin orbitals with highest energies are always empty, corresponding to 10 active spin orbitals with
6 electrons or 10 qubits Hamiltonian; first 8 spin orbitals with lowest energies are always filled,
corresponding to 12 active spin orbitals with 6 electrons or 12 qubits Hamiltonian; first 6 spin orbitals with
lowest energies are always filled, corresponding to 14 active spin orbitals with 8 electrons or 14 qubits
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Figure 3. VQE results of BeH, by QCCSD VQE compared with first order trotterization UCCSD VQE. (a) The errors of ground
state energies of 10 qubits BeH, Hamiltonian calculated by QCCSD VQE compared with first order trotterization UCCSD VQE.
(b) The errors of ground state energies of 12 qubits BeH, Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (c) The errors of ground state energies of 14 qubits BeH, Hamiltonian calculated by QCCSD VQE
compared with first order trotterization UCCSD VQE.

_,| — Chemical accuracy 107'f — Chemical accuracy
107 4 qcesp voE L QCCSD VQE
LI < ucesp vae 10-2] < uccsD VQE 5 4
_10" L = A
« A &
£, < X £107? XL
810 8 <
T < A < =< <
5 . *****_‘** 510 s _<_<_<-<'< < <
510 X i} Lo <X
X =<
— s
07 4 ox K 10
107, 1078
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
0O-H bond length (angstrom) O-H bond length (angstrom)
(a) (b)
107f — Chemical accuracy
A QCCsD VQE
10-2] < UCCSD VQE

A
A
B .***AAAAA_(_(Jz-)C
10 X P

Error (hartree)

£ < =< =<
10 A< <X <<
ERE
10-°
1078
0.50 0.75 1.00 .25 1.50 1.75 2.00 2.25
0-H bond length (angstrom)
(©)

Figure 4. VQE results of H,O by QCCSD VQE compared with first order trotterization UCCSD VQE. (a) The errors of ground
state energies of 10 qubits H, O Hamiltonian calculated by QCCSD VQE compared with first order trotterization UCCSD VQE.
(b) The errors of ground state energies of 12 qubits H,O Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (c) The errors of ground state energies of 14 qubits H, O Hamiltonian calculated by QCCSD VQE
compared with first order trotterization UCCSD VQE.

Hamiltonian. First 4 spin orbitals with lowest energies are always filled, corresponding to 16 active spin
orbitals with 10 electrons or 16 qubits Hamiltonian. We compare the errors between the ground state
energies from the VQE results and the ground state energies from the diagonalization of the corresponding
Hamiltonian as in figure 5 for different Hamiltonian. For 10 qubits N, Hamiltonian our QCCSD VQE
achieves almost same or even better accuracy as the first order trotterization UCCSD VQE except one point.
For 12, 14 and 16 qubits N, Hamiltonian, with increased size of active space, our QCCSD VQE performs
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Figure 5. VQE results of N, by QCCSD VQE compared with first order trotterization UCCSD VQE. (a) The errors of ground
state energies of 10 qubits N, Hamiltonian calculated by QCCSD VQE compared with first order trotterization UCCSD VQE. (b)
The errors of ground state energies of 12 qubits N, Hamiltonian calculated by QCCSD VQE compared with first order
trotterization UCCSD VQE. (c) The errors of ground state energies of 14 qubits N, Hamiltonian calculated by QCCSD VQE
compared with first order trotterization UCCSD VQE. (d) The errors of ground state energies of 16 qubits N, Hamiltonian
calculated by QCCSD VQE compared with first order trotterization UCCSD VQE.
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Figure 6. The errors of ground state energies of Hy calculated by QCCSD VQE compared with UCCSD VQE.

worse compared to the first order trotterization UCCSD VQE. This indicates that the removal of parity
terms in excitation operators may affect accuracy of the the couple cluster method for larger system size.

For Hy chain we do not have any restrictions on the spin orbitals, corresponding to 8 active spin orbitals
and 4 active electrons. We also show the error between the ground state energies from VQE results and the
ground state energies from the diagonalization of the corresponding Hamiltonian as in figure 6. Our
QCCSD VQE achieves the same level accuracy compared to the first order trotterization UCCSD VQE.

For Hg chain we do not have any restrictions on the spin orbitals, corresponding to 12 active spin
orbitals and 6 active electrons. We also show the error between the ground state energies from VQE results
and the ground state energies from the diagonalization of the corresponding Hamiltonian as in figure 7.
Our QCCSD VQE achieves same level accuracy compared to the first order trotterization UCCSD VQE.

5. Discussion and conclusion

In simulations, we have shown that increasing the size of active space will have little effect on the accuracy
of the QCCSD VQE for BeH,. Our QCCSD VQE can still achieve good results for larger active space for
H,0 but performs worse than UCCSD VQE for N,. Here we present the overlap |(@yg|dgrouna)|* Where
|¢rr) is the input Hartree—Fock state and [¢g,unq) is the exact ground state obtained by diagonalization of
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Figure 7. The errors of ground state energies of H calculated by QCCSD VQE compared with UCCSD VQE.
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Figure8. The overlap |(dyp|dyouna)|” Where |¢yyp) is the input Hartree—Fock state and [@y,,nq) is the exact ground state
obtained by diagonalization of the corresponding Hamiltonian for BeH,, H,O and N, of tfifferent active spaces. BeH, 10
represents the BeH, 10 qubits Hamiltonian. BeH, 12 represents the BeH, 12 qubits Hamiltonian. BeH, 14 represents the BeH,
14 qubits Hamiltonian. H,O 10 represents the H,O 10 qubits Hamiltonian. H,O 12 represents the H,O 12 qubits Hamiltonian.
H,0 14 represents the H,O 14 qubits Hamiltonian. N, 10 represents the N, 10 qubits Hamiltonian. N, 12 represents the N, 12
qubits Hamiltonian. N, 14 represents the N, 14 qubits Hamiltonian. N, 16 represents the N, 16 qubits Hamiltonian.

the corresponding Hamiltonian for BeH,, H,O and N, of different active spaces. in figure 8. We can see that
the overlaps for BeH, with different sizes of active space are large, which may indicate very few excitation
operators and small amplitudes of excitation operators (# in equation (4)) are needed to approximate the
exact ground state and removal of parity terms will have little effect on results. However, for N,, the overlap
for N, is small when the size of active space increases and bond length is large, which may indicate that a
large portion of excitation operators and large amplitudes of excitation operators (¢ in equation (4)) are
needed to approximate the exact ground state, thus removal of parity terms may have some effects on
results.

In conclusion, we have introduced a new VQE ansatz based on the particle preserving exchange gate 20,
25]. We have shown QCCSD VQE has reduced gate complexity from up-bounded to O(#°) of UCCSD VQE
to up-bounded to O(n*) if using Jordan—Wigner transformation. In numerical simulations of BeH,, H,0,
N, Hy and Hg, we have shown that QCCSD VQE have achieved comparable accuracy compared to UCCSD
VQE. With reduced complexity and high accuracy, QCCSD VQE ansatz might provide a new promising
direction to implement electronic structure calculations on NISQ devices with chemical accuracy.
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Appendix

As shown in [22], the ordering of excitation operators in the Trotterized UCCSD VQE may have impact on
the final results. To eliminate the effect of the operator ordering, we choose the same ordering as in the
implementation of first order trotterization UCCSD VQE in Qiskit [32]. The ordering is also presented in
the below algorithm 1.
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Algorithm 1. Qubit coupled cluster singles and doubles VQE considering spin preserving.

1: for orbital; in spin-up occupied orbitals do

2:  for orbital; in spin-up virtual orbitals do

3: Construct U between qubit i and j.

4:  end for

5: end for

6: for orbital; in spin-down occupied orbitals do
7:  for orbital; in spin-down virtual orbitals do
8: Construct U between qubit k and 1.

9:  end for

10: end for

11: for orbital; in spin-up occupied orbitals do
12:  for orbital; in spin-up virtual orbitals do

13: for orbitaly in spin-down occupied orbitals do
14: for orbital; in spin-down virtual orbitals do
15: Construct U, between qubitijkand I.
16: end for

17: end for

18: end for

19: end for

20: for orbital; in spin-up occupied orbitals do
21: for orbitaly in spin-up virtual orbitals do
22: for orbital; (j > 7) in spin-up occupied orbitals do

23: for orbital; (I > k) in spin-up virtual orbitals do
24: Construct U., between qubit i kjand I.

25: end for

26: end for

27:  end for

28: end for

29: for orbital; in spin-down occupied orbitals do
30: for orbitaly in spin-down virtual orbitals do

31: for orbital; (j > 7) in spin-down occupied orbitals do
32: for orbital; (I > k) in spin-down virtual orbitals do
33: Construct U, between qubiti kjand I.

34: end for

35: end for

36: end for

37: end for
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