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Abstract—Galaxy is an open-source web-based framework that
is widely used for performing computational analyses in diverse
application domains, such as genome assembly, computational
chemistry, ecology, and epigenetics, to name a few. The current
Galaxy software framework runs on several high-performance
computing platforms such as on-premise clusters, public data
centers, and national lab supercomputers. These infrastructures
also provide support for state-of-the-art accelerators like Graph-
ical Processing Units (GPUs). When coupled with accelerator
support, the tools executing in Galaxy can benefit from mas-
sive performance gains in terms of computation time, thereby
allowing a more robust computational analysis environment for
researchers. Despite tools having GPU capabilities, the current
Galaxy framework does not support GPUs, and thus prevents
tools from taking advantage of the performance benefits offered
by GPUs. We present and experimentally evaluate GYAN, a
GPU-aware computation mapping and orchestration function-
ality implemented in Galaxy that allows the Galaxy tools to be
executed on a GPU-enabled cluster. GYAN has the capability of
identifying GPU-supported tools and scheduling them on single
or multiple GPU nodes based on the availability in the cluster.
GYAN supports both native and containerized tool execution.
We performed extensive evaluations of the implementation using
popular bio-engineering tools to demonstrate the benefits of
using GPU technologies. For example, the Racon consensus tool
executes ~2x faster than the regular baseline CPU-only jobs,
while the Bonito base calling tool shows ~50x speedup.

[. INTRODUCTION

Galaxy is a web-based open-source framework [1] widely
used by thousands of researchers [21] for a variety of compute-
intensive applications, including computational chemistry [13],
genome assembly, epigenetics, metagenomics, machine learn-
ing, and drug discovery [34]. Galaxy can be installed on
various compute platforms, such as local clusters, public
datacenters, and national lab supercomputers [20], and is also
available as a world-wide network of managed free services
(known as usegalaxy.*). As a result of its accessibility, Galaxy
has been cited over 10,000 times in the last decade [22].
Galaxy allows users to access tools, manage workflows, repro-
duce, store and share experimental results with the community
with these deployment options.

As evidenced by prior research [30], many of the tools
that are used in Galaxy, have parallelization opportunities,
potentially enabling substantial performance improvements
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when executed on hardware accelerators. An example is Py-
PaSWAS [39], which is a sequence alignment application that
shows a 33x speedup with GPU compared to CPU. Within
the broad spectrum of hardware-accelerators including GPUs,
Field-Programmable-Gate-Arrays (FPGAs), and Application-
Specific Integrated Circuits (ASICs), GPUs have been dom-
inating the landscape due to their multi-faceted nature of
supporting modern-day applications [30]. GPUs have become
an essential part of modern computing systems with their
use reaching far beyond their initial target domain (com-
puter graphics) to many parallel application domains such as
bioinformatics, nuclear physics, deep learning, and others [4],
[6], [11], [24]. With the rapid increase in programmability as
well as compute and storage capabilities of GPUs, there has
been ongoing development of a growing set of applications
and problems that have been mapped to GPUs. For instance,
Argonne National Laboratory’s researchers have accelerated a
COVID-19 vaccine study that simulates an important part of
a protein spike on coronavirus made up of 1.5 million atoms.
By using the latest V100 GPUs, they were able to achieve 5x
speedup compared to CPU-only execution [10].

With the proliferation of parallel bioinformatics applica-
tions/tools, deployment platforms like HPC supercomputers
and public datacenters have begun to include GPUs as a part
of their mainstream hardware infrastructure. For instance, the
Brookhaven National Lab has expanded its supercomputers
to include a 200-node GPU cluster [17]. Despite GPUs being
available in today’s hardware infrastructure, the current Galaxy
framework does not support GPUs. This apparent deficiency
in Galaxy motivates the central premise of our work: can we
make the Galaxy framework “GPU-aware” such that GPU-
enabled tools can leverage the flexibility offered by executing
in Galaxy for enhancing performance?

However, it is non-trivial to integrate GPUs into the current
Galaxy framework without affecting the user experience (i.e.,
users should be able to retain their original tool deployment
method, while the tools should be able to leverage GPUs when
applicable). Towards addressing this problem, in this paper, we
present GYAN, an enhanced Galaxy framework with support
for executing GPU-enabled tools. We achieve this through
minimal code enhancements and user-agnostic modifications
to the Galaxy framework, and we further test our modifications
on an in-house Galaxy deployment.



In this paper, we make the following key contributions:

1) We make Galaxy GPU-aware such that the tools with
GPU capability can seamlessly execute in Galaxy along-
side CPU-enabled tools. We support both bare-metal
(locally running) and containerized tools to be executed
in Galaxy.

We design an intelligent GPU-aware orchestration policy
such that a given tool can be executed on a CPU
or a GPU based on the availability. Furthermore, we
provide multi-GPU support that facilitates the spreading
of highly compute-intensive tools across multiple GPUs.
The GPU selection is designed based on the availability
and utilization of all GPUs in a cluster.

We evaluate the effectiveness of the proposed GPU
support in Galaxy using two widely used tools: Racon
and Bonito. Racon is a genome consensus [37] tool and
Bonito performs base calling [36].

The results from our experiments indicate that the GPU
versions of these two tools show ~2x (for Racon) and
~50x (for Bonito) speedups over their original CPU-
based counterparts.

2)

3)

4)

The remainder of this paper is structured as follows. Sec-
tion II presents the necessary background information on
Galaxy, bioinformatics tools, GPUs, and containerization. We
then explain, in Section III, the motivation along with the
challenges in the design. The details of the implementation
of the enhancements we made to the Galaxy framework to
allow GPU-aware job mapping and orchestration are given
in Section IV. The experimental results are presented and
discussed in Section V, followed by the conclusions.

II. BACKGROUND AND RELATED WORK

We present a brief background on Galaxy, containerization
support, parallelism, and GPUs.

A. Galaxy Software Framework

Galaxy is an open-source web-based framework, which
is maintained by a large, world-wide community. Galaxy
enables thousands of researchers without informatics expertise
to perform computational analyses [20]. Galaxy framework
consists of two main components. The first is The Galaxy
Software Framework, which is a web-based application for
computational analysis. The framework interacts with the
underlying computational infrastructure, which is hidden from
the user. This infrastructure can be a conventional cluster,
cloud, or a hybrid system that combines the two. The second
component is called usegalaxy.* and it is a set of hosted, free
servers around the works that allow thousands of users to use a
variety of tools. These servers are typically hosted on national
cyberinfrastructure (e.g., Texas Advanced Computing Center
(TACC) as part of the CyVerse project [20] in US, NeCTAR
academic cloud in Australia).

The hosted Galaxy instances offer a set of popular,
commonly-used tools. Tools are the applications that are run
on Galaxy instances. These tools are used by an end-user,
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installed as a “Galaxy Admin”, and developed by a tool-
developer. When a user wants to execute a tool, it is submitted
as a “Galaxy Job”. A single job can be a single tool instance or
a workflow consisting of a sequence of multiple tools. Galaxy
tools have XML files which are called “tool configuration
files” or “wrapper files” and these files are automatically
rendered into the web user interface for the tool. The wrapper
files create a bridge between the tools and Galaxy to inform
Galaxy on how to execute the tool, what options to pass as
parameters, and what output file(s) will be generated [23].

B. Containerization Support in Galaxy

Galaxy can also take advantage of containerized tools by
launching jobs as “containers”. A container is a ‘“‘standard
unit of software that packages up code and its dependencies”
[18]. Containerization allows seamless reliable execution from
one platform to another and makes end users’ jobs easier
by managing all the dependencies. Docker containers [18]
are instantiated, at runtime, from Docker Container Images,
which are lightweight and standalone packages that include the
implementation, tools, libraries, and other settings necessary
for that application to be executed independent of the operating
system [18]. Singularity is a tool that works almost the same
as Docker; however, it has different permission configura-
tions which allow it to be executed on HPC clusters easily
[28]. Galaxy currently supports both Docker and Singularity-
containerized tools. Galaxy also supports “Biocontainers”.
Biocontainers [33] is an open-source project that helps manage
bioinformatics packages for applications and allows to deploy
them as containers. Biocontainers include Docker containers
which are built from Dockerfile recipes and Conda based
containers that first develop a Conda package and then build
a Docker container from the package [33].

C. PFarallelism and GPUs

GPUs are designed to be powerful engines for computation-
ally demanding applications. They deliver a great performance
for many types of parallel computations. A GPU is a highly-
parallel-programmable processor with large arithmetic capa-
bilities and memory bandwidth, therefore it is not only meant
for graphics purposes. So for many parallel applications, it
yields high performance advantages over its CPU counterpart.
Further, with parallelism and throughput being increasingly
more important than latency in many application domains,
GPU architectures have developed substantially over the years.
Especially the recent NVIDIA GPUs can achieve thousands of
GFLOPS (giga-floating point operations per second) [30].

In an NVIDIA GPU architecture, an application code is
parallelized by using CUDA parallel programming model [15],
which maps threads, blocks, grids and warps to the GPU
architecture. In this model, GPUs are referred to as “devices”
and CPU is referred to as “host”. The functions that run in
GPUs are called “device kernels”. In a device kernel, the
threadldx gives the ID of the current thread, blockldx gives
the ID of the current block, blockDim gives the size of each
dimension of the current block, and lastly, gridDim gives the
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Figure 1. Tesla K80 GPU architecture.

size of each dimension of the current grid [15]. GPUs can
run many device kernels in parallel, and each device kernel
accesses a grid to access threads and blocks. The number of
grids, blocks per grid, and threads per block depends on the
GPU’s compute capability. Threads are organized in 1, 2, or
3-dimensional blocks, and similarly, blocks are organized in
1, 2, or 3-dimensional grids [15]. Within a block of threads,
the threads are executed in groups of 32, which are named as
“warps” and all threads in a warp execute the same thing [7].
Each thread in a warp accesses a shared memory.

NVIDIA GPUs contain Streaming Multiprocessors (SMs)
and each SM contains Streaming Processors (SPs) or CUDA
cores. SMs execute the device kernels in block(s) (therefore
several warps) one after another. In the current GPU architec-
tures, each SM has several warp schedulers [25]. This shows
the dynamic scheduling nature of these GPUs, which allows
scalability. So higher number of blocks used in a device kernel
allows better scaling across any GPU architecture.

To evaluate GYAN, we used a machine with two Tesla
K80 GPUs. The Tesla K80 GPU has two Tesla GK210 GPUs
as seen in Fig. 1. Both GPUs have 2,496 processor cores
with a core clock of 560 MHz to 875 MHz; the memory
bandwidth is 480 GB/sec, and the total board memory is 24
GB [26]. In this GPU, the number of threads per warp is 32;
the maximum number of threads per block is 2048; and the
maximum number of warps per SM is 64. There are 15 SMs,
each containing 4 warp schedulers, allowing 4 warps to be
executed simultaneously. The SMs in this GPU have improved
performance for double-precision workloads [25].

D. Related Work

We briefly describe the infrastructure and software enhance-
ments to Galaxy and bioinformatics tools over the years. On
the infrastructure front, cloud computing can offer on-demand
access to elastic computational infrastructure, however, it is not
available for “as is” usage for biologists. “Galaxy CloudMan”
was developed [2] to allow researchers to manage an arbitrarily
sized compute cluster on Amazon EC2. This system does not
require informatics knowledge as it allows the creation of
configured compute cluster within five minutes and it makes
the entire biological tools suite available for immediate usage.

Besides the cloud computing support, there have been
several other application-level enhancements for the Galaxy
Framework. One of which is related to expanding Galaxy’s
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reference data [38]. For many bioinformatics analyses, the
proper management of reference datasets is an important task.
Refgenie [38] is a reference management system that enables
this task and it is integrated into the Galaxy platform with
a graphical user interface. Similarly, Galaxy was recently en-
hanced with another platform related to long-read sequencing,
which has become popular, allows sequencing long contigs
at low cost and minimal preparation. “NanoGalaxy” [5] was
developed and it is a freely available Galaxy-based toolkit
for analyzing long-read sequencing data. PyPasWAS is a
Python-based multi-core GPU and CPU sequence alignment
tool. While PyPasWAS achieves 33x speedup in execution
time using GPUs for alignment, it is not a platform for
running different sequence alignment tools and it does not
provide infrastructure nor an interface with Galaxy. Another
recent work [16] designed infrastructure for NGS analyses
using Galaxy with GPU support. While providing limited
implementation details, this work is an in-house framework
that uses Galaxy as a middleware to run jobs along with the
Slurm scheduler. It is not integrated into the main Galaxy
repository.

III. MOTIVATION

While the current implementation of Galaxy does not allow
GPU-enabled tools to run, prior research demonstrates that
the GPU versions of many tools currently running in Galaxy
can potentially achieve significant speedups (compared to
their CPU versions). The speedups for a few life sciences
applications are as follows: Direct Coulomb Summation ~45 x
[30]; Cutoff Pair Potentials application ~17x [35]; Fluores-
cence Microphotolysis ~11x [3]; and Multi-Level Summation
Method Short-Range application ~25x [9].

As seen in these examples, using GPUs can improve
performance in the important research areas for human life,
which shaped the accelerator development in recent years. At
Argonne National Laboratory, researchers study a COVID-19
vaccine, where a 24 DGX A100 system cluster empowers them
to accelerate the simulations, enabling a faster understanding
of how this virus infects humans [10]. Furthermore, The
National Energy Research Scientific Computing Center uses
A100 for Al-based simulations [10]. They had speedups up to
5x (V100 GPU vs. CPU) in different areas, and they expect
more gains with A100 [10]. These results show that these
use cases and tools are highly parallelizable and can yield
significant performance improvements when coupled with
GPUs. Further, these tools are often embarrassingly parallel,
allowing them to scale across multiple GPUs.

Scientific Impact: Galaxy is used by thousands of researchers

who significantly contribute to various important domains,
where they execute hundreds of thousands of both compute
and data-intensive experiments. With GPU infrastructure sup-
port, these experiments will benefit from massive speedups
due to the inherent parallelism they offer. This advantage
unilaterally motivates the need for enabling GPU-aware tool
execution in the Galaxy framework.
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Figure 2. The system flow diagram for Galaxy tool execution.

A. Challenges in Bringing GPU-Support

To design and develop the GPU support, we first investigate
the four main steps involved with Galaxy’s tool execution flow.
As seen in Fig. 2, first, users trigger a job submission through
the Galaxy web-interface. Galaxy parses the tool requirements
from the wrapper file (which includes references to the re-
quired libraries and hardware). Second, Galaxy executes the
submitted job via a runner, which maps the job to a destination
using a job configuration file. Third, Galaxy submits the job to
a job scheduler, or executes it locally as a dedicated process.
Finally, Galaxy collects the results from the job execution
and presents them to the user via the web-interface. While
inspecting this tool execution workflow, we identified four
critical challenges about the first two steps in the workflow.

The first challenge, Challenge-I, is to include a new compute
requirement for GPU (in the form of XML tags) in the tool
configuration file. The current Galaxy implementation does
not provide explicit hardware requirement specification tags.
Hence, it is non-trivial to include a new hardware specification
while retaining the original Galaxy execution flow. The second
challenge, Challenge-II, lies in exposing the GPU availability
to the Galaxy runner. The runner makes use of dynamic desti-
nation mapping to map jobs into physical hosts (destinations).
The runner needs to extract information from the new GPU
requirement, such as GPU availability, GPU model, etc., to
dynamically map GPU jobs alongside CPU jobs. Additionally,
if GPUs are unavailable, the runner needs to switch jobs to
CPU nodes in a user-agnostic fashion.

Since we need to support both bare-metal and container-
ized tools, Challenge-III, is to enable GPU-support for con-
tainerized tools. Although Galaxy supports launching tools as
Docker containers, it does not support NVIDIA Docker-based
GPU containers. To enable this support, the primary challenges
lie in defining a new compute requirement (in Challenge-I) as
a part of the existing container launch script.

The final challenge Challenge-1V, concerns the design of
multi-GPU-aware computation mapping support. To efficiently
enable multi-GPU support, we need the following: (i) allow
the end-user to specify the IDs of GPUs as a requirement;
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(ii) obtain the real-time GPU information such as GPU IDs,
the number of executing processes, and memory usage and
(iii) design a GPU device allocation strategy without (or
minimally) affecting the currently running processes. These
four challenges highlight the design complexities involved in
enabling GPU support in Galaxy.

IV. DESIGN AND IMPLEMENTATION OF GYAN

To address the challenges discussed in Section III-A, we
design and implement GYAN — a GPU-aware computation
mapping support for Galaxy. While retaining the original
execution flow of Galaxy, the essential features of GYAN
are (i) minimal to no user involvement, (ii) easily extensible
code enhancements to Galaxy’s core framework, (iii) minimal
overheads for cluster administrators, and (iv) under-the-hood
automated decision-making process. We further explain in
detail below, the individual design components of GYAN.

A. GPU-Aware Computation Mapping

| <macros>

2 <xml name="requirements">

3 <requirements>

4 <requirement type="package" version="@VERSION@
">racon</requirement>

5 <requirement type="compute">gpu</requirement>

6 </requirements>

7 </xml>

8 .« e

9 </macros>

Code 1. The macros.xml file. It specifies the requirements of the tool and is

imported into the racon.xml file. The requirement of type “gpu” is at line 5,

allowing Galaxy to recognize that the tool requires GPU to be executed.

As mentioned in the previous section, Challenge-I is the
design of a new compute requirement of type GPU in the
form of XML tags. To overcome this challenge, we designed
and implemented a new parser which interprets the new
requirement type. The new requirement type is to be used in
the tool wrapper file as shown in Code 1. The new requirement
type is utilized when deciding if GPU is required in the
upcoming steps of the Galaxy execution flow. The values of
the compute requirement type can be “gpu” or “cpu” (default).

1 <job_conf>
2 <plugins>
4 <plugin id="dynamic" type="runner">
5 <param id="rules_module">galaxy.jobs.rules</
param>
6 </plugin>
</plugins>
8 <destinations default="gpu_cpu_decision">
9 <destination id="gpu_cpu-decision" runner="
dynamic">
10 <param id="type">python</param>
11 <param id="function">dynamic_map</param>
12 </destination>
13 </destinations>
14 </job_conf>

Code 2. The “job_conf.xml” configuration file which specifies the dynamic
job destination decision making dynamic_destination.py script as the runner.
Recall that Challenge-II is about exposing the GPU availabil-
ity to the Galaxy runner. We added a new job rule to address
this challenge, which allows us to dynamically map between
CPU or GPU destinations according to different conditions.
The job rule obtains the system GPU availability and the
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number of GPUs using the “pynvml” Python library. If the
tool’s wrapper file has the compute requirement of type “gpu”
and if there is at least one GPU available, then the destination
is configured to be “local GPU”. At the same time, a boolean
environment variable called “GALAXY_GPU_ENABLED” is
introduced to Galaxy; it is set to “true” if the “local GPU”
destination is configured, and “false” otherwise. The Galaxy
administrators configure the job execution destinations by
using the “job_conf.xml” file. The new job rule is used in
the “job_conf.xml” file as a “destination” (shown in Code 2).
In the Galaxy framework, the backend Python variables
are exposed to the tool developer with the dictionary data
structure, which is the output of the “build_param_dict”
function. This function resides in the ‘“evaluation.py” script
and serves as a bridge between the Galaxy backend and
the tool developer. Using this information, we exposed the
“GALAXY_GPU_ENABLED” environment variable to the
tool wrapper file with the insertion of a dictionary entry.
Hence, we assign the “GALAXY_GPU_ENABLED” value to
“__galaxy_gpu_enabled__" in the tool-config file.

<tool id="racon" name="Racon" version="Q@VERSION@">
<command detect_errors="exit_code"><![CDATA[

#if $__galaxy_gpu_enabled__=="true":
racon_gpu

#else:
racon_cpu

#end 1if#

]];;}command>
</tool>
Code 3. The “racon.xml” wrapper file for the Racon tool. The wrapper files
allow users to specify the executable and include the parameters that the
end-user can set. This file is necessary for Galaxy to recognize the tool.
The “GALAXY_GPU_ENABLED” environment variable is accessed via the
parameter dictionary entry “galaxy_gpu_enabled”, as shown in line 5.

Code 3 shows how the tool wrapper file utilizes
the “_ galaxy_gpu_enabled_” key from the parame-
ter dictionary. The tool wrapper checks the value of
“__galaxy_gpu_enabled__” and decides on which executable
to use. By default, in CUDA programming, if the tool does
not specify any GPU device preference, all the GPUs are made
available. However, if the tool has a specific GPU preference
within the requirements XML, then that GPU is used. In case
that the GPU is busy, the tool will be offloaded to another
GPU device based on availability.
B. GPU-Awareness for Containerized Tools

Challenge-III is about enabling GPU support for con-
tainerized tools. Although Galaxy supports launching tools as
containers and a tool’s container has support for GPU, Galaxy
does not launch the containers with GPU support. To overcome
this challenge, we need to modify the container launch script
to utilize the GPU compute requirement that the tool developer
specifies using the wrapper file.

In the original Galaxy framework implementation, when the
job_conf.xml file has the “docker_enabled” parameter set to
“true” [19], the Docker runner takes effect. Next, the Galaxy
container launching script reads the required container ID
from the tool wrapper file and pulls the container from the
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docker-hub or bioconda. Subsequently, the script executes the
container by assembling a bash command. While assembling
this command, GPU support for both Docker and Singularity-
containerized tools can be added using an additional flag. The
machine or cluster that hosts Galaxy should have NVIDIA-
Docker installed so that the user driver components and the
GPU devices into the container are mounted to the container
at launch.

To add the GPU support, we must first obtain information
about GPU availability and the tool’s GPU requirement. To
this end, we use a similar approach to the one described in
Section IV-A. The destination to execute the tool on is changed
to “docker” destination in the job_conf.xml configuration file.
If there is no GPU available, the NVIDIA-Docker library will
not work. Therefore, when we are adding the new GPU flag
with the command_part.append("--gpus all") line to the
Docker run command, we first check the environment variable
that is set according to the GPU availability and requirement
using the statement if os.environ[’GALAXY_ GPU_ENABLED’ ]

== "true".

We added GPU support to Singularity-containerized
tool execution similar to the GPU support design
for  Docker-containerized  tool  execution. If  the

“GALAXY_GPU_ENABLED” environment variable value is
“true”, the GPU support is added to the Singularity container
launch command using the command part.append("--nv")
statement. Theoretically, this addition should suffice for GPU
support for Singularity containers to work. However, in the
current Galaxy framework implementation, when volumes are
mounted to the Singularity image, the “rw” and “ro” flags are
given for the read-write or read-only permissions. These two
flags are removed with the GYAN enhancements, because
Singularity’s new version (Version 3.1) does not support these
flags when adding the GPU flag.

C. Multi-GPU-Aware Computation Mapping

In addition to the single GPU support, we also provide a
multi-GPU computation mapping support, which executes a
given tool using multiple GPUs, provided that there is more
than one GPU available on the host. To this end, the first
part of Challenge-1V is to enable the end-users to specify
the IDs of GPUs for tools as requirements in the wrapper
files. The non-trivial challenge here is with allowing the end-
user to specify the GPU ID along with the already-defined
GPU compute requirement. To solve this problem, we used
the existing “version” XML tag of the tool wrapper file’s
requirement object. Therefore, the “version” tag corresponds
to the GPU minor ID(s) in our design. The second part of this
challenge involves obtaining the real-time GPU information
such as GPU IDs, executing processes, and memory usage for
each GPU. To solve this part of the challenge, we propose
an algorithmic design that determines the processes executing
on each GPU. This information is obtained by executing a
GPU query command from the Python local runner script
(“local.py”). This command uses the “nvidia-smi” query and
then returns the output as XML. The “BeautifulSoup” library



is used to process the XML output to extract the GPU IDs and
PIDs of the processes executing on each GPU. As shown in
Pseudocode 1, a dictionary with the key-value pairs is created
by processing the output, where keys are GPU minor IDs and
values are process IDs.

Pseudocode 1: The “get_gpu_usage” function which
resides in the “local.py” script. This functions captures
the executing processes for each device and returns a
list of available GPUs and all GPUs in the system.

Input: None

Output: avail_gpus, all_gpus

proc_gpu_dict = {};

avail_gpus = [];

all_gpus = [];

bash_cmd = “/bin/bash -c¢ 'nvidia-smi —query -x”;

out, err = subprocess.Popen(...);

soup = bs(out, “Ixml”);

gpu_find = soup.find(“nvidia_smi_log”).find_all(“gpu”);

process_find = p.find(“processes”).find_all(“process_info”);

for (p in gpu_find ) {

minor_id = p.find(“minor_number”);

for ( proc in process_find ) {
pid_proc = proc.find(“pid”);
proc_gpu_dict[minor_id].append(pid_proc);

}
for (x,y in proc_gpu_dict ) {
all_gpus.append(x);
if y is empry then
‘ avail_gpus.append(x);
}

The next part of Challenge-1V is to design a GPU device
allocation strategy without affecting the currently executing
processes. To solve this challenge, we introduce two method-
ologies explained below.

1) Process ID Approach: The ©“__command_line” function,
located in the “local.py” script, assembles a command to
execute the tool submitted by the end-user and launches the
command as a sub-process. The “get_gpu_usage” function is
called in the “__command_line” function. It returns the lists
of available GPUs along with all of the GPU IDs on the host
machine. If the list of available GPUs contains the required
tool GPU IDs, the value of the “CUDA_VISIBLE_DEVICES”
environment variable is set to those GPU IDs. Next, it is
exported to the local runner as shown in Pseudocode 2.

Like the earlier approach, the GPU support for containerized
tools with multi-GPU support is developed by exposing GPU
information to containers. Note that, we have not used the “—
gpus x” command which is meant to expose the desired GPUs
because it did not work as intended. Instead, we have exported
the “CUDA_VISIBLE_DEVICES” environment variable ac-
cording to the GPU availability. Then, we have used the “—
gpus all” flag to obtain all of the GPU IDs that the environment
variable exposed. These GPU IDs are determined with the
algorithm shown in Pseudocode 2. This flag is necessary for
the Docker runtime to support the GPU-enabled containerized
tools.

2) Process Allocated Memory Approach: The “Process 1D
Approach” is not efficient for some scenarios. For example, if
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Pseudocode 2: The “__command_line” function which
resides in the “local.py” script.

input : self, job_wrapper
output: CUDA_VISIBLE_DEVICES
if job_wrapper.tool exists then

for ( req in regmnts ) {
if req.type = “compute” and req.name = ‘“gpu” then
if req.version and req.version != “” then
| gpu_id_to_query = req.version;
flag = 1;

if gpu_flag and gpu_count > 0 and flag then
| GALAXY_GPU_ENABLED = “true”;
avail_gps, all_gps = get_gpu_usage();
for (dev in all_gps) {
| all_gps_str += dev;

if gpu_id_to_query in avail_gps then
‘ gpu_dev_to_exec = gpu_id_to_query;
else
gpu_dev_to_exec = “7;
for ( dev in avail_gps ) {
‘ gpu_dev_to_exec += dev;

CUDA_VISIBLE_DEVICES = gpu_dev_to_exec;

all GPUs are executing at least one process and if an incoming
task is distributed to all GPUs, some GPUs can have very high
memory utilization. This situation may cause stalling due to
context switching between tasks. Instead, with the “Process
Allocated Memory Approach,” we place the upcoming job on
a GPU which has the least device memory allocated for the
executing process(es). This approach uses the “nvidia-smi” call
as mentioned in Section IV-C1. Instead of obtaining the pro-
cess IDs from this query, we get the “fb_memory_usage.used”
of each GPU. We then expose the GPU ID which has the
minimum memory usage, to the upcoming job.

3) GPU Hardware Usage Script: To evaluate the design
choices and enhancements mentioned in the previous sections,
we implemented a GPU hardware usage script, which allowed
us to monitor GPU utilization and GPU memory utilization
chronologically throughout the tool executions. This script is
embedded inside the Galaxy Framework implementation and
is executed when a tool execution starts. It is essential for
understanding the tool characteristics.

V. EVALUATION FRAMEWORK

In this section, we discuss the evaluation of GYAN using
the experiments conducted in Galaxy hosting on a Chameleon
Cloud test-bed, which has GPU nodes. We compared runtimes
of CPU-only executions and GPU-supported executions along
with the multi-GPU enhanced Galaxy executions for two tools.
With the use of GYAN, running GPU-supported tools on
Galaxy does not introduce any extra overhead, because GYAN
executes and schedules jobs to GPUs without adding another
layer of software stack. Therefore, to evaluate GYAN, we
showed how GPU-supported tools have speedup over CPU-
only versions to motivate the need for GPU computation
mapping for Galaxy. These speedups can increase the the



number of compute and data-intensive experiments, leading
to increased research bandwidth.

A. Workloads

We focus on two major workloads for testing GYAN: Racon
and Bonito. These are popular tools for processing next-
generation sequencing data [12] from the two most popular
long-read technologies — PacBio [27] and Oxford Nanopore
Technologies [31]. We chose them because they capture a
broad range of sequencing data analysis, covering multiple
platforms and multiple stages of the data processing pipeline
and they are highly amenable to GPU-based parallelization.

Sequencing data typically goes through a processing
pipeline before it can lead to biological insight. One of the
earliest steps in the pipeline is “basecalling” [14]. A basecaller
is an algorithm that converts sequencing data from its raw
form, which captures the complex combination of optical
sensors, hardware, and chemistry underlying the technology,
into a sequence of individual nucleotides. Oxford Nanopore
Technologies provides a PyTorch-based basecaller for its data,
called Bonito [36]. Bonito is inspired by the usage of convo-
lutional neural networks (CNNs) in speech recognition. It has
several functionalities, like training a bonito model (bonito
train), converting an hdf5 training file into a bonito format
(bonito convert), evaluating a model performance (bonito eval-
uate), downloading pre-trained models and training datasets
(bonito download), and basecaller which obtains a fasta format
output from .fast5 files (bonito basecaller). Bonito has both
GPU and CPU execution support. It also has automatic mixed-
precision support for accelerating the training tool [36].

Basecalled reads are often used to perform a de novo
assembly. An assembler outputs long reference sequences for
shorter read segments as it predicts sources of these reads.
The assembler first constructs a draft backbone sequence of the
reference. It then aligns the reads to that backbone and corrects
each position in the backbone according to the consensus of
the nucleotides that align to it. Racon performs this step for
PacBio sequencing data. While this is a compute-intensive
process, it leads to significantly better quality assemblies [37].
Racon uses the mapping data to construct a partial-order align-
ment with single-instruction, multiple-data (SIMD) support to
accelerate the consensus generation an order of magnitude
faster than state-of-the-art methods [37].

B. Experimental Setup

We used a machine with an Intel Xeon E5-2670 processor
with 48 CPUs and two NVIDIA Tesla K80 GPUs to conduct
our experiments. The GPU driver version is 455.45.01, and the
CUDA version is 10.2. The Python version we used to execute
Galaxy is Python 3.6.9. We created different experiments to
analyze all of the contributions. The first set of experiments
execute the Racon tool with the local runner and compare the
performance with different parameters and the GPU vs. CPU
execution. Next, we created a Docker image for the Racon-
GPU tool and used that to compare the execution times of runs
with different parameters and GPU vs. CPU. Lastly, to evaluate
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Figure 3. Performance across different thread numbers for the Racon tool
comparing the GPU and CPU-only versions.

the multi-GPU functionality, we created different cases to test
the multi-GPU process scheduling.

C. GPU Hardware Usage Script

We implemented a script that allows us to collect statistics
about the jobs. This script obtains the GPU utilization, GPU
memory utilization, and PCle link generation information for
every second, including minima, maxima, and average. It is
executed when a job is submitted and stopped when a job
is either killed or stops. Whenever it stops, a post-processing
function is executed, and it generates .csv files and other log
and statistic files that are aggregated from the chronological
data for each job. The GPU query used for this script is shown
in Code 4. This script captures the increasing/decreasing trends
of the GPU memory usage and SM utilization of the executing
tool. It demonstrates how beneficial GPU usage is and yields
the design of multi-GPU computation mapping support, which
is explained in Section I'V-C.

I bash_command = "/bin/bash -c ’'nvidia-smi 00query-gpu
=utilization.gpu, utilization.memory, memory.
total, memory.free, memory.used, pcie.link.gen.
max, pcie.link.gen.current --format=csv -1 1’"

2 sp = subprocess.Popen (bash_command, shell=True,
stdout=File_object, stderr=subprocess.PIPE) .pid

Code 4. GPU metric query for obtaining hardware usage metrics. This code
snippet is added to the “queue_job” function of the “local.py” runner script.

VI. RESULTS AND ANALYSIS
A. GPU-Aware Computation Mapping

To test the impact of GYAN, we ran the Racon-GPU tool
on Galaxy. We used a 17 GB Alzheimers NFL Dataset, which
contains the polished sequencing results for the Alzheimer
human brain transcriptome [32]. After experimenting with
different batch sizes and CPU thread numbers with the Racon
tool, the best performance configuration was 4 threads and
1 batch without banding approximation with 1.72s. Among
the experiments that use banding approximation, 4 threads
and 16 batches performed the best with 1.67s. The CPU-only
execution using 4 threads took 3.22 seconds, nearly 2x slower
when compared to GPU execution, as seen in Fig. 3.

To understand the speedup reasons and the nature of the
Racon-GPU tool, we used the GPU hardware usage script
shown in Section V-C. We found that the Racon-GPU tool does
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Figure 5. Bonito CPU vs. GPU execution times for two datasets.

the “polishing” portion of the consensus generation in GPU.
While the CPU-only polishing execution takes 117 seconds,
using GPU, this execution time is reduced to 15 seconds (2s
for GPU memory allocation + 13s of GPU polishing + 0.0001s
of additional CPU polishing for the remaining portion of the
reads that could not be polished in GPU). Thus, the CPU end-
to-end execution takes ~410s for the Isoseq NFL Alzheimers
dataset, and the GPU end-to-end execution takes ~200s. So,
even though polishing time is reduced from 117 to 13 s, there
is an overhead of ~40s due to CUDA API calls to transfer
input data and results from and to GPU for kernel computation
of polishing and CUDA kernel synchronization.

To see the hotspots and understand how much the API calls
affect the performance, we performed NVProf analysis on the
running job. As plotted in Fig. 4, the majority of the calls
are kernel synchronization calls, memory transfer API calls
(which send the 17 GB dataset in chunks that fit in GPU
memory to device and back to host), and lastly, ClaraGenomics
library kernel calls, which are ‘“generatePOAKernel” and
“generateConsensusKernel”. To understand the bottlenecks,
we did an NVProf stall analysis on Racon and found that
there is ~70% memory dependency stall and ~20% execution
dependency stall, which are also reasons why we cannot get
further performance improvements.

We also experimented with the Bonito Basecalling tool (pip
package version 0.3.2) using Acinetobacter_pittii (1.5 GB)
and Klebsiella_pneumoniae_KSB?2 (5.2 GB) datasets [29]. The
GPU support reduced the execution time significantly, as can
be seen in Fig. 5. In Fig. 5, the execution times for CPU
are shown as approximate results, because the CPU execution
time for the smaller dataset (Acinetobacter_pittii) lasted more
than 210 hours, and the larger dataset is approximated to last
4x longer than the smaller dataset (more than 850 hours).
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Figure 7. Performance across different thread numbers and batch sizes for
Racon-GPU with banding approximation executed on Docker containers.

Therefore, the speedup for GPU vs. CPU execution time is
more than 50x for the Bonito Basecaller tool. We did NVProf
analysis for the Bonito Basecaller tool. The main hotspot
functions were found to be CUDA kernel launcher, kernel
synchronizer functions, and GEneral Matrix to Matrix Multi-
plication (GEMM) functions, which are a critical part of neural
networks (Bonito Basecaller uses a pre-trained network).

B. GPU-Awareness for Containerized Tools

We used the Racon-GPU tool and the Alzheimers NFL
Dataset for testing the GPU support for containerized tools.
We experimented with the same parameters and settings to
compare the bare-metal and containerized version of Racon
to infer the container launching overhead and the speedup
between the CPU and GPU-aware containerized execution of
Racon. We created a Racon-GPU Docker container that can

( Multi-GPU Support )

Case 1: Case 2:
2 Different 2 Instance
Tools Same tool
GPU PID  P.Name P.Mem. AU [l
o |27755|Racon |60 miB 0 [26901 |Bonito |2281MiB
1 27039 |Bonito  |2731MiB | |1  [26427 |Bonito |3295 MiB

Figure 8. Multi-GPU support Cases 1 and 2.
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Case 4:
4 Instance Same
tool (P. Mem

Case 3:
4 Instance
ame tool (PID.

P.Name P.Mem.
0 39953 | Racon |60 MiB 0 43244 | Racon | 60 MiB
0 41105 |Racon |60 MiB
0 21872 | Racon | 60 MiB 0 46137 | Bonito |2494 MiB
i1 40534 |Racon |60 MiB 1 45751 | Bonito | 2821 MiB
i, 41105 |Racon |60 MiB
i1 41872 |Racon |60 MiB

Figure 9. Multi-GPU support Cases 3 and 4.

Figure 10. Multi-GPU support Case 1 console output.

be accessed online [8], or can be pulled using the “docker
pull gulsumgudukbay/racon_dockerfile” command. We used
this container as a requirement in the tool wrapper. For the
Racon experiments that did not use banding approximation, the
best performance configuration was with 2 CPU threads and
4 batches for accelerated GPU polishing. For the experiments
that used banding approximation, the best configuration was
using 2 CPU threads and 8 batches for accelerated GPU
polishing, as seen in Fig. 7. We compared the two best-
performing configuration performance numbers and calculated
that approximately 0.6s (36%) of the time was spent on
container launching and cold start overhead.

C. Multi-GPU-Aware Computation Mapping

To evaluate the multi-GPU-aware computation mapping,
we used both Racon-GPU and Bonito Basecaller tools and
executed different experiments with them on Galaxy.

Figure 11. Multi-GPU support Case 3 console output.
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1) Case 1: Two Different Tools: This experiment involved
testing the most basic functionality of multi-GPU-aware com-
putation mapping, which is checking whether two jobs will
be scheduled to their own required devices. If a user specified
Device 0 as a compute requirement of the Racon tool and
Device 1 as a compute requirement of Bonito tool, the
experiment checked if the jobs were scheduled to their correct
GPUs. Fig. 8 shows this case under Case 1 along with the
“nvidia-smi” query output of the experiment, which shows the
processes and the GPUs allocated to them. Fig. 10 shows the
console output for this case. Racon process runs on GPU 0, and
the Bonito process runs on GPU 1, which indicated that the
basic functionality is working as intended. Therefore, we can
conclude that two different tools can be executed in parallel
in separate GPUs without performance degradation, running
in their original execution times.

2) Case 2: Two Instance of the Same Tool: This experiment
involved scheduling a second instance of the same tool to
another GPU if the first required GPU is busy with an instance
of the tool. If Bonito’s required GPU ID is 1, the instance
should be scheduled in Device 1. If another instance of Bonito
is started, with the same GPU ID 1, it will be scheduled to a
GPU that is not busy (GPU 0) as seen in Fig. 8 Case 2.

3) Case 3: Four instance of the Same Tool GPU Allocation
Using PID: This experiment involved executing more than
2 instances of the containerized Racon-GPU tool (showing
that both “PID GPU allocation” and “multi-GPU support for
containerized tools” are working). As can be observed from
Fig. 9 and the console output in Fig. 11, the scheduling works
as intended: the first Racon instance (PID 39953) is scheduled
to GPU 0, the second (PID 40534) to GPU 1, and then, since
both GPUs are busy, the upcoming processes with PIDs 41105
and 41872 are scattered to both GPUs.

4) Case 4: Four instance of the Same Tool GPU Allocation
Using Process Memory: This experiment involved executing
instances of both Racon and Bonito tools and then another in-
stance of Bonito. Fig. 9 Case 4 shows that Racon (PID 43244)
is scheduled to GPU 0, Bonito (PID 45751) is scheduled to
GPU 1, and the second instance of Bonito (PID 46137) is
scheduled to GPU 0. This is because, at the time that the
user executes a the second instance of Bonito, the GPU with
minimum memory usage was GPU 0 (with 60 MiB usage).
This case is a better approach than the previous one because
it allows more efficient device allocation than distributing the
3rd process to all GPUs and introducing multi-GPU overhead
for tools that do not have multi-GPU support.

VII. CONCLUSION

The explosion of parallel bioinformatics applications has
driven deployment platforms like HPC supercomputers and
public data centers to embrace GPUs as a part of their hard-
ware ecosystem. Nevertheless, the most popular bioinformatics
application framework, Galaxy, does not support GPU-based
applications. To fill this void, we design and test GYAN, an
enhanced version of Galaxy with GPU-support, which allows
the GPU-capable tools to execute in Galaxy. More specifically,



we added an intelligent GPU-aware computation mapping and
orchestration support to Galaxy, for researchers to execute the
tools in both CPU (or) GPU based on the tool requirements.
Furthermore, the GPU-aware computation mapping was ex-
tended to multi-GPU application mapping and orchestration.
Furthermore, we also enabled GPU containerization support
for both Docker and Singularity containers. We performed
experiments using two tools. Our experiments revealed that the
GPU support through GYAN leads to ~2x improvement in
performance using the Racon-GPU tool with a 17 GB dataset,
and ~50x improvement for the Bonito base calling tool.
Also, the intelligent multi-GPU-aware computation mapping
allowed us to efficiently allocate GPUs to jobs according to
the states/occupancy of each GPU and execute many instances
of different tools at the same time without degradation in
performance. GYAN'’s source code will be open-sourced and
it will soon be merged to the public Galaxy’s repository.
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