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The evolution of flapping flight is linked to the prolific success of insects.
Across Insecta, wing morphology diversified, strongly impacting aerody-
namic performance. In the presence of ecological opportunity, discrete
adaptive shifts and early bursts are two processes hypothesized to give rise
to exceptional morphological diversification. Here, we use the sister-families
Sphingidae and Saturniidae to answer how the evolution of aerodynamically
important traits is linked to clade divergence and through what process(es)
these traits evolve. Many agile Sphingidae evolved hover feeding behaviours,
while adult Saturniidae lack functional mouth parts and rely on a fixed energy
budget as adults. We find that Sphingidae underwent an adaptive shift in
wing morphology coincident with life history and behaviour divergence,
evolving small high aspect ratio wings advantageous for power reduction
that can be moved at high frequencies, beneficial for flight control. By contrast,
Saturniidae, which do not feed as adults, evolved large wings and mor-
phology which surprisingly does not reduce aerodynamic power, but could
contribute to their erratic flight behaviour, aiding in predator avoidance. We
suggest that after the evolution of flapping flight, diversification of wing mor-
phology can be potentiated by adaptative shifts, shaping the diversity of wing
morphology across insects.

1. Introduction

The evolution of flight is thought to be a key innovation [1] foundational to the
success of insects, one of the most speciose clades of animals on Earth. In flying
insects, flight is critical for most aspects of life history including dispersal,
migration, predator avoidance, feeding and courtship behaviours. The flight
morphology of flying insects, therefore, likely faces strong selective forces to
meet the functional demands of a species [2,3]. Selection can act on flight
morphology to significantly impact flight performance [4]. Indeed, flying insects
show an extraordinary diversity of wing and body sizes and shapes [2,5,6].
Revealing the phylogenetic patterns of insect flight morphology and the processes
driving its evolution is a prime opportunity to examine how the evolution of
aerodynamically important traits is linked to the divergence of diverse clades.
Clade divergence and the subsequent diversification of lineages and
morphology can occur through different evolutionary processes. In the presence
of an ecological opportunity, the tempo of trait evolution can accelerate and its
mode can deviate from a random Brownian motion (BM) process, the null

© 2021 The Author(s) Published by the Royal Society. Al rights reserved.
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model of trait evolution. Early bursts [7-9] and discrete
adaptative shifts [10-12] are two alternative processes hypoth-
esized to give rise to exceptional morphological diversity. An
early burst is associated with the adaptative radiation of a
clade where morphological disparity is established early and
followed by a subsequent slowdown in diversification rate
[8,9]. Adaptive shifts are when discrete shifts occur along
a single branch and are not followed by a slowdown in
diversification rate [10-12]. Traits with known functional con-
sequences (e.g. wing morphology) are more likely to reflect the
ecology of a species [13], and therefore are more likely to be
associated with non-BM processes when ecologically distinct
clades evolve. Therefore, testing if insect wing and body
morphology evolution deviates from BM and shifts in
tandem with life history and behaviour will demonstrate the
evolutionary processes driving morphological diversification
as clades diverge to occupy different biological niches.

Wing size and shape, as well as body size have known
aerodynamic consequences for manoeuvrability, force pro-
duction and power requirements. Nearly any aspect of
shape can affect aerodynamics, but several metrics of wing
morphology are common predictors of flight performance,
notably wing loading (W;), aspect ratio (AR) and radius of
the second moment of area (7). A lower W, the ratio between
body mass (m;) and wing area (S), typically enhances man-
oeuvrability, increasing the wing force production to body
mass ratio, as seen in birds [14-16], bats [17-19] and moths
and butterflies [20,21]. Larger AR wings (long, slender) can
reduce the power requirements of flight [6,19,22], but can
also reduce manoeuvrability [3,21,23]. High 7> wings will
have more area concentrated distally, which increases force
production because more of the wing is moving more quickly.
But high 7, can increase power requirements and reduce man-
oeuvrability [24]. Finally, interspecific variation in wing and
body morphology will have direct consequences for wing
beat frequency (1) [6,25]. An increase in n increases active
force generation [26], but at the cost of increasing inertial
power (P,), the power required to oscillate the wing
mass [27].

The moth superfamily Bombycoidea provides an opportu-
nity to test hypotheses related to the evolution of flight
morphology within closely related, but divergent clades.
Bombycoidea is a globally distributed, diverse clade of
more than 5000 species [28]. The most diverse families in the
Bombycoidea are hawkmoths and wild silk moths (Sphingi-
dae and Saturniidae, respectively); sister-families [29-31]
of strikingly different life histories and flight behaviours.
Hawkmoths are active, fast flyers [32] known for their man-
oeuvrability and hover feeding behaviour [33,34], where
species can successfully track flower oscillations up to 14 Hz
[33,34]. However, hovering requires a high power output
[35]. Wild silk moths (here forth ‘silkmoths’) display a flight
behaviour that is often described as bobbing or erratic, but
fast and agile when escaping from predators [32,36-38]. Silk-
moths lack functional mouth parts and must rely on the
strictly finite energy stores, gathered during the larval
period, throughout their entire, albeit short, reproductive
adult life stage [38]. The divergence in life history and flight
behaviour between hawkmoths and silkmoths represent
different niches, and would be expected to have correlated
changes in flight morphology.

Here, we focus on the hawkmoths and silkmoths to test
if each clade has evolved distinct flight morphology and
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determine what evolutionary processes led to extant morpho- [ 2 |

logical disparity. We hypothesize that hawkmoths evolved
morphology favourable for manoeuvrability in order to
rapidly track flower movements during hover feeding,
while silkmoths evolved morphology favourable for power
reduction in order to conserve limited energy as adult stage
silkmoths do not feed. We next examine the morphological
disparity through time (DTT) and compare different models
of trait evolution to determine the processes that led to the
diversity of extant flight morphology. We hypothesize that
the distinct transitions in life history and flight behaviour
between hawkmoths and silkmoths were accompanied by
distinct adaptive shifts in flight morphology.

2. Material and methods

We created a time-calibrated Bombycoidea phylogeny, sampling
representatives of all families, following published methods [31].
In total, the phylogenetic dataset of 606 loci included 57 species
and one outgroup. The tree was inferred using a maximum like-
lihood approach and time calibrated based on the dates of
corresponding nodes in a recently published Lepidoptera phylo-
geny that relied on 16 fossil calibrations with uniform priors and
uncorrelated rates [30].

(@) Morphometrics

Body and wing morphology was digitized from museum images
using StereoMorph (v. 1.6.2) [39]. Male specimens were analysed
when available (53 of 57 species); males are known to exhibit
higher flight activity in comparison to females [5,40]. Eight land-
marks characterized the body; Bézier curves outlined the right
forewing and hindwing (electronic supplementary material,
figure S1).

Wing measurements for all species began by re-orienting
each wing to a comparable orientation consistent with known
flight position. The forewing was rotated so its long axis was per-
pendicular to the long axis of the body. In Sphingidae, the
hindwing long axis was also rotated perpendicular to the long
axis of the body; the approximate orientation during flight. The
hindwing of Saturniidae and the ‘other bombycoid families’
were kept in the same orientation of dried museum specimens,
which is the approximate orientation during flight and provides
a consistent and comparable orientation across species. A com-
bined wing outline was created from the non-overlapping
portions of the rotated forewing and hindwing, resampled to
generate 75 evenly spaced points.

Analysis of wing shape traits was conducted in Matlab
(R2018b-9.5.0.944444). Wing parameters (R, ¢, S, AR, 7> and
W) were calculated following Ellington [24]. n was estimated
from morphology [25].

(b) Phylogenetic comparisons

A phylogenetic principal components analysis (pPCA) [41] was
conducted on forewing, hindwing and combined shapes. The
dominant pPC axes for wing shape were determined using the
broken stick method implemented in the bsDimension function
of the PCDimension R package v. 1.1.11 [42].

For each trait, we performed a DTT analysis [8] (1000 simula-
tions); a maximum likelihood estimation of the presence of shifts
and their positions using PhylogeneticEM [43]; and compared
the fit of 10 different models of trait evolution using mvMORPH
[44]. These analyses were conducted in RStudio (v. 1.1.383) using
R (v. 4.0.2). Unabridged methods are supplementary material.
See electronic supplementary material, table S1 for list of all
variables and derivation. Data is available on Dryad [45].
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3. Results
(a) Phylogeny

Phylogenetic relationships of the 57 species in this study
show a monophyletic, well-supported clade of the Sphingi-
dae and Saturniidae as sister-lineages, with the Bombycidae
as the sister to those two (figure 1a and electronic supplemen-
tary material, figure S2). Relationships are congruent with
previous studies [29,31,46,47].

(b) Hawkmoths and silkmoths each have diverse, but
clustered wing shapes in morphospace

We first used a pPCA to assess the variation in extant wing
shape in a data-driven, evolutionary framework. For all three
wing shapes (forewing, hindwing and combined), most of the
variation is explained by the first two pPC axes (figure 1b—¢;
electronic supplementary material table S2); pPC three or four
explained no more than 14% of the variation (electronic sup-
plementary material, figure S3a—d and table S2). Hindwing
and combined wing morphospaces capture the evolution of
hindwing tails in some silkmoth species, but hawkmoths and
silkmoths remain clustered (figure 1c,d). When tailed species
(nos. 1, 2, 3, 4, 20, 28) are removed (figure 1b), families remain
clustered in combined wing shape space; variation along
pPC1 generally corresponds to AR.

The wing shapes of hawkmoths and silkmoths are well sep-
arated in morphospace. We conducted a MANOVA on each
wing shape; pPC1—4 scores were the response variables and
clade (hawkmoth; silkmoth; Other Bombycoid Families, abbre-
viated O.B.) was the factor. Each wing shape is significantly
separated between clades (forewing: F=14.91, p<107";
hindwing: F=10.84, p <10™"°; combined wing: F=14.96, p <
107"%). Separation persists when considering only hawkmoths
and silkmoths (forewing: F=44.42, p< 10714 hindwing: F =
10.84, p<107'% combined wing: F=101.17, p<10~"), and
for the combined wing when tailed silkmoths are removed
from the analysis (all families: F=16.19, p< 10713,
hawkmoths-versus-silkmoths: F = 144.06, p < 10~ ").

(c) Wing area is greater in silkmoths than hawkmoths
In addition to shape, we determined if wing size is larger for
a given body size between the two clades. We conducted a
linear regression between S and m; (figure 1f), constraining
the y-intercept for each family to zero (hawkmoths: 1*=
0.90, F=234.4, p<10~"%; silkmoths: r*=0.75, F=66.8, p<
1077). An ANCOVA with family as a factor reveals significant
differences in regression slope (F =8.732, p =0.0005), indicat-
ing wing area is larger for a given body size in silkmoths
than hawkmoths. Next, before accounting for phylogeny,
the relative wing area of each species (S/m;) is significantly
different between hawkmoths and silkmoths (two-tailed
t-test, p<10~°). A comparison of absolute wing area between
the clades reinforces these differences (figure 1f,g; electronic
supplementary material, figure S4a,b).

(d) Aerodynamic features of the wing and body also
separate between clades

To complement the data-driven pPCA and relate variation in
wing and body shape and size to aerodynamic metrics, we
next quantified several specific morphological variables:
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nondimensional radius of second moment of area (72),
aspect ratio (AR), wing loading (W;) and the fraction of
body length occupied by the abdomen (Ipq) and thorax
(Iiho ). Before accounting for phylogeny, combined wing AR,
W; and 7, are all significantly greater in hawkmoths than in
silkmoths (figure 1g; electronic supplementary material,
table S3). Finally, while variation in total body length (I,)
spans a similar range within each family, clade average Ipq
is significantly longer in hawkmoths than silkmoths and [
is generally greater in silkmoths than in hawkmoths (elec-
tronic supplementary material, table S3). To further ensure
these multiple comparisons did not bias our statistics, we
conduct a separate MANOVA of the wing (7, AR, W;) and
body (iabd, itho) traits between hawkmoths and silkmoths
and, in both cases, find significant separation between the
clades (wing: F=107.15, p<10~"% body: F=11.432, p<107).

(e) Wing beat frequency diverges between hawkmoths

and silkmoths

Wing beat frequency (1) is also an important feature of flight
that depends on wing and body size. #, estimated from scal-
ing relationships (electronic supplementary material, table S1;
[25]), is distinct from wing shape, but not independent of
wing and body size (total body mass, m;, and the mass of
the wing pair, 1, were estimated from museum specimens;
see selectronic supplementary material, figure S6 and table
S5). Based on morphological differences, n is significan-
tly greater in hawkmoths (n: mean+s.d.: 29.37 +9.89 Hz)
compared to silkmoths (n: meanz+s.d.. 14.34+5.21 Hz,
p <0.0001; electronic supplementary material, table S3).

(f) Relative subclade disparity through time shows
both an early and recent accumulation of

morphological diversity

A DTT analysis determines how morphological disparity
accumulated over time. The relative subclade disparity of
each shape is similar through time. Early in evolutionary his-
tory, relative subclade disparity is less than expected by BM for
all three wings; the lowest values fall just inside the 95% con-
fidence interval of BM trait simulation at the point when
hawkmoths and silkmoths split (approx. 66 Ma; figure 2a—c).
From that time, subclade disparity remained relatively static
until sharply and significantly rising above BM expectations
approximately 38 Ma (figure 2a—c), indicating younger sub-
clades evolved a greater proportion of modern disparity
than expected under BM. Removing tailed species from the
analysis produces a similar result, but the rise in relative
subclade disparity above the BM expectation now occurs
more recently (electronic supplementary material, figure
S4c). The DTT of combined wing metrics (W, n, S/my)
follow similar patterns (figure 2d—h), with the exception of 7,
(figure 2¢). Notably, relative subclade disparity of AR signifi-
cantly deviates below the BM expectation coincident with
the divergence of the two sister-clades (figure 2d). Again, at
approximately 38 Ma, the disparity of these wing traits
begins to rise above the BM expectation, but only S/m; and
W; significantly rise above the expectation under a BM process
(figure 2f,g). A multivariate DTT of normalized functional
wing metrics reveals a similar overall trend (electronic
supplementary material, figure S5).
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Figure 1. The evolution and trajectory of wing shape diversity. (a) The phylogenetic relationships of bombycoids and outgroups (node labels in electronic sup-
plementary material, figure S2b). 0.B. refers to Other Bombycoid families (the name we give to all long-branched species that do not belong to either the
Saturniidae or Sphingidae clades). Clade colour is consistent across figures. Projections of shapes from (b) combined wing without tails, (c) forewing, (d) hindwing
and (e) combined wing onto the first two pPCs demonstrates the separation between extant hawkmoths and silkmoths (pPC 3 and 4 and species number key in
electronic supplementary material, figure S3). (f) Wing size and (g) combined wing functional shape metrics also diverge between hawkmoths and silkmoths.
(Online version in colour.)
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Figure 2. Disparity through time reveals that wing morphology diverged early between the clades and additional variation accumulated within each clade in more
recent time. In each panel, the dashed line represents the median simulated subclade disparity under a single-rate BM process and includes the 95% confidence
interval in grey. The observed relative subclade disparity is presented as a solid black line. Al traits other than 7, show a similar trend in relative subclade disparity
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more recent time. The brown vertical dashed line represents the time at which hawkmoths and silkmoths split. (Online version in colour.) Q1
As relative subclade disparity shifts from consistently morphological disparity index (MDI) values for each trait

low values below the BM expectation to high values are near zero and not statistically significant (other than

above the BM expectation in recent evolutionary history, AR: —-0.221+0.202; p=0.022; electronic supplementary

RSPB20210677—20/7/21—18:25-Copy Edited by: Not Mentioned



316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

material, table S6). While MDI values of approximately zero
typically indicate a BM process, here, wing morphology devi-
ates from the BM simulation in both deep and recent time.
Instead, our findings suggest that morphological disparity
was established between subclades early in the evolutionary
history of the group (indicated by values below the BM
expectation) and the additional disparity was established
within each subclade in recent time (indicated by values
above the BM expectation). While this pattern deviates from
the BM expectation, the two deviations are in opposite
directions, which is why we find an MDI near zero.

(g) Adaptive shifts account for differences in the

evolution of several traits of wing morphology

Next, we tested whether an adaptive shift is responsible
for the divergence in wing shape and its associated
traits between hawkmoths and silkmoths without a priori
hypotheses of shift location(s). We found support for an
adaptive shift at the ancestral node of the hawkmoth clade
for combined wing shape, AR, and W; (figure 3a—c). More
recent adaptive shifts also occurred for combined wing
shape, W, 7, S/m; and n (figure 3a—f). The recent adaptive
shifts in silkmoth combined wing shape are associated
with the independent tail evolutions (figure 3a). The recent
adaptive shift for n occurs in the hawkmoth subfamily,
Macroglossinae, known for its particularly high n (figure 3f).
Adaptive shifts did not occur at the ancestral node for either
sister family for combined wing #,, S/m; or n. In the absence
of an adaptive shift, a trait can still have diverged between
the sister-clades through other evolutionary processes.
However, a single adaptive shift is inferred at the ancestral
hawkmoth node when all functional (normalized) wing
metrics are analysed together, supporting the findings that
hawkmoth wing morphology undergoes an adaptive shift
(electronic supplementary material, figure S5).

(h) Wing morphology does not evolve under a single-
rate Brownian motion process

Next, we determined which model best fit the evolution of
combined wing shape and its associated morphological
features. For all traits, the model representing the adaptive
shifts detected in the PhylogeneticEM analysis always fit
best (electronic supplementary material, table S7). However,
an adaptive shift was not detected in the previous analysis
at the node for either sister family for 7, S/m; or n, and
this study is focused on the sister-clade divergence; the
absence of an adaptive shift is likely due to the complex selec-
tive pressures on these traits that depend on both body and
wing morphology.

4. Discussion

Flight morphology can have a strong influence on the aero-
dynamic performance of flying animals. We find that early
in the evolutionary history of the moth superfamily Bomby-
coidea, wing shape and size were generally conserved until
the ancestors of the hawkmoth and silkmoth sister-clades
rapidly diverged (figure 3a—c), which is consistent with the
early establishment of morphological disparity between
clades (figure 2).
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The evolutionary split between these two families has
been dated to have occurred approximately 66 (confidence
interval: 56.9-75.4) Ma [30], suggesting that these wing mor-
phology trajectories may have been evolving since then. The
initial divergence in wing morphology between hawkmoths
and silkmoths was followed by subsequent diversification
within each group, indicated by the rise in relative subclade
disparity above a BM expectation coinciding with the more
recent speciation events occurring within each family
(figure 2). However, despite recent diversification, wing mor-
phology did not converge between the two sister-families,
indicated by the strong separation between the families in
phylogenetic morphospace (figure 1).

Even specific species that converged in life history did not
fully converge to employ overlapping wing shapes. For
example, while the majority of hawkmoths are known for
their hovering nectaring behaviour as adults, members of
the hawkmoth subfamily, Smerinthinae (Node 67; figure 1a
and electronic supplementary material, figure 52b), have lost
the ability to feed as adults [38], convergent with silkmoths.
However, the combined wing morphology (shape, size and
most associated traits) of Smerinthinae species (Node 67 in
electronic supplementary material, figure S2b) remains diver-
gent from silkmoths, implying that Smerinthinae wing
morphology is constrained by its evolutionary history. Finally,
while we chose species to broadly cover the groups within
bombycoids, sampling is far from complete. Therefore, we
remain conservative in our interpretation, focusing on the
split between hawkmoths and silkmoths for which we were
able to accumulate broad sampling for our analysis. In sum,
these data provide phylogenetic evidence supporting our
hypothesis that distinct flight morphology evolved in each
sister-clade.

(a) The evolutionary divergence of wing morphology

has implications for flight performance

Given that the hawkmoth and silkmoth clades diverged
in wing morphology, we can explore the consequences
of these two morphologies for flight performance. While
flight performance depends on many other factors, most
notably wing movement, shape and size do have impli-
cations for aerodynamics. Contrary to our expectations, we
did not observe morphological changes that were consistent
with extreme manoeuvrability in hawkmoths and extreme
power reduction in silkmoths. Hawkmoths, known to be
manoeuvrable hover feeders, have evolved small wings of
high AR, W; and #,; all metrics typically associated with
power reduction, efficient force production and lower
degrees of manoeuvrability. By contrast, silkmoths, a group
that does not feed as adults and is known for its bobbing
(erratic) flight behaviour, have evolved large wings of low
AR, W, and 7.

(b) Hawkmoth wing morphology likely reduces power

without sacrificing manoeuvrability
The high AR and 7, wings of hawkmoths might act to
reduce power and increase force production efficiency while
not sacrificing manoeuvrability in comparison to silkmoths
that are employing wings of lower AR and 7;. All else
being equal, high AR and 7, wings will reduce the induced
power (Pinq) requirements of flight [6,19,22] and increase

£1901L707 § 0S Y 20id  qdsi/jeuinol/bio buysijgndAianosiefos H



379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

(@)

combined
wing

s

'

(b)

AR

i

i

(©

s

i

|
N\)

S/mt

A.B. Saturniidae

|
A.B. Saturniidae

Figure 3. An adaptive shift is responsible for divergence in wing shape (a), aspect ratio (b) and wing loading (c) between hawkmoths and silkmoths.
Each branch colour indicates a separate regime (a set of branches evolving under a different set of model parameters). All branches sharing the same colour
also share the same evolutionary mode. Shifts to new regimes are indicated by dots. For univariate traits, red dots indicate shifts to a larger trait value
optima and blue dots indicate shifts to a smaller trait value. Black dots are used for shifts in multivariate traits, but do not indicate a direction. (Online version

in colour.)

force production efficiency [5,48,49], respectively. However,
both traits could come at the cost of reduced manoeuvrabi-
lity due to an increase in the moments of inertia of the wing
pair [3,5,6,21,23]. For a wing of constant area, uniform thick-
ness and density, a larger AR and 7; will necessarily make
the wing longer (increasing AR) while also concentrating
more area distally along the span of the wing (increasing 7,).
Both scenarios correspond to an increase in wing moments of
inertia, suggesting silkmoths should be more manoeuvrable
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than hawkmoths [5,24]. However, wing size will also have a
strong impact on wing moment of inertia, and silkmoths
have evolved larger wings (per body size) than hawkmoths
(figure 1f,g; electronic supplementary material, table S3).
Hawkmoths evolved high AR by reducing mean chord
length, ¢, rather than through an increase in wing span, R
(figure 1b; electronic supplementary material, table S4). There-
fore, while selection for economical flight (increased AR) might
often reduce manoeuvrability, the evolution of small, high AR
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wings in the hawkmoth clade (achieved through a reduction in
¢) could act to increase economy while not necessarily
sacrificing manoeuvrability.

The potential cost of small wing size is that proportionally
smaller wings could reduce wing stroke-averaged aerodynamic
force production, if wing movement remains constant. However,
in flapping or revolving wings, when all other things are equal,
the greater 7, and n (inferred through scaling relationships)
of hawkmoths would increase their magnitude of torque pro-
duction relative to silkmoths. The velocity of a wing section
increases with its distance from the axis of rotation, and aero-
dynamic force production is proportional to velocity squared.
Therefore, shifting more area distally (increasing #;) and
moving the wing at higher speeds (increasing 1) will increase
aerodynamic force production (e.g. [26,48,49]). Additionally,
increasing n allows for more frequent modification of force
vectors, which could enhance flight control and manoeuvr-
ability. Natural selection could thus act on wing shape, size
and frequency (tradeoffs through scaling relationships) to
modify the means of force production, power and flight control
across species.

(c) Lower wing loading (W) in silkmoths could
contribute to manoeuvrability and erratic flight

It is possible that inter-clade differences in W; contribute to
inter-clade differences in flight behaviour between families.
A lower W; increases both manoeuvrability [14-21] and
flight path unpredictability [50]. Silkmoths, which evolved
significantly lower W, in comparison to hawkmoths
(figure 1g; electronic supplementary material, table S3), are
well known for their erratic flight patterns [32,38] where the
vertical position is regularly changing throughout their
flight bout. An erratic, or unpredictable flight path, can
enhance predator avoidance [15,51], and therefore, survival
and fitness. In hummingbird flight, positional predictability
and W; are positively correlated where hummingbirds with
lower wing loading are less predictable [50]. If the relation-
ship between W; and predictability is true in other systems,
then the divergence in W, between hawkmoths and silk-
moths is precisely the expectation based on the divergence
in flight behaviour between the two clades. Therefore, it is
likely that the evolution of silkmoth wing morphology, par-
ticularly low Wi, is directly tied to the production of erratic
flight patterns and the ability to avoid predation.

(d) Body shape evolution might aid predator avoidance
in silkmoths

Next, we examined the implications of body size evolution
for flight performance. In comparison to hawkmoths, silk-
moths have a shorter I, and a longer thorax compared to
the abdomen, thereby decreasing I, and I, of the body
and likely increasing manoeuvrability. These patterns could
allow silkmoths greater angular accelerations during pitch
and yaw manoeuvres and might be complemented by a
reduction in the distance between the centre of mass and
wing hinge [52]. Indeed, species of neotropical butterflies
equipped with a shorter abdomen and larger thorax were
more successful at evading predators than species with
shorter thoraces and longer abdomens [52]. Therefore, in
addition to wing elaborations [32,38,46] and bobbing flight
behaviour [32,36-38], our data suggest that the evolution
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of a large thorax and short abdomen is an additional
mechanism contributing to predator avoidance in silkmoths.

(e) Adaptive shifts are responsible for the divergence
in wing morphology between hawkmoths and

silkmoths
An adaptive shift is found at the stem of hawkmoths for both
wing shape, AR, and W; (figure 3a—c), indicating that the
shape and relative size of hawkmoth wings are evolving
around an adaptive peak. Although disparity was established
early in the evolutionary history of the clade (figure 2), rather
than slow down in diversification rate, which would occur in
an early burst [8,9], the initial divergence in life history and
flight morphology gives rise to the accumulation of additional
disparity within each clade in recent time (figure 2). Indeed, the
recent accumulation of disparity within a subclade is asso-
ciated with evolution around an adaptive peak [53], and the
absence of evidence for an early burst in the diversification of
wing morphology is consistent with major inter-continental
radiations in other systems [7,10,11].

The discrete adaptive shift in hawkmoth wing mor-
phology parallels the evolution of the hover feeding
behaviour in hawkmoths and the loss of adult-stage feeding
in silkmoths. The adaptive shift in hawkmoth wing mor-
phology to small, slender wings of high AR that can be
moved at high frequencies might be directly related to the
evolution of hover feeding, which requires enhanced flight
control and high power output [35], as high AR wings are
known to reduce flight power requirements [6].

An adaptive shift at the stem of hawkmoths was not
found for all wing morphology traits, suggesting a potential
decoupling of the processes, and, therefore, selective press-
ures, driving the evolution of overall wing shape, size and
specific features. It should not be expected that all features
of wing morphology evolve under the same process. Wing
metrics, like 7, which is related to force production efficiency
[24], appear to be more conserved, and those related to
both wing and body size, like n and S/m;, might be under
particularly complex selective pressures.

Differently, an adaptive shift was never found for any trait
at the stem of the silkmoth clade, which could be expected
given the less drastic separation in wing morphology traits
between silkmoths and the other bombycoid families (figure 2).
By contrast, more recent adaptive shifts were detected and
associated with the evolution of hindwing tails in silkmoths
(figure 3a) and high n in diurnal hawkmoths (figure 3f).
While these recent shifts need to be supported through further
sampling within these specific groups, it is exciting that they
might be indicative of recent shifts in flight morphology
within these clades, providing a potential opportunity to ident-
ify specialized species or subclades for future functional
studies in live animals.

The overall combined wing morphology is derived from
two functionally linked and overlapping wing structures
(forewing and hindwing) that can each potentially evolve inde-
pendently in size and shape, unlocking additional complexities
unachievable by a single wing alone. While forewing and
hindwing morphology also diverge between groups, the absol-
ute values of these traits are different between the fore- and
hindwing (electronic supplementary material, figure S4).
Different components of the same functional system often
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evolve at different tempos and modes [54], raising questions of
whether or not certain aspects of wing morphology constitute
evolutionary modules. The integration of techniques from
developmental and evolutionary biology will be particularly
fruitful when investigating the modularity of insect wing units.

5. Conclusion

Silkmoths and hawkmoths evolved distinct flight mor-
phology through an adaptive shift in hawkmoth wing
morphology, which occurred in parallel to the evolution of
the hover feeding behaviour in hawkmoths. The sister-clade
divergence of wing morphology metrics, which are histori-
cally derived for fixed-winged aircrafts, is not totally
consistent with initial expectations of flight performance
based on the life history of species in each clade. However,
aerodynamic performance emerges from the interaction of
wing shape, size and movement [6,55], and it is likely that
hawkmoths achieve high levels of flight control through
high n and other kinematic adjustments. Our findings indi-
cate that aerodynamically important morphological traits
can experience drastic shifts in parallel to the divergence in
life history and flight behaviour. While the evolution of
flapping flight in insects is thought to be a key innovation
[1], diversification can be further potentiated by more
recent adaptive shifts, helping to shape the diversity of
wing morphology seen across extant aerial animals.
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