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Abstract—High power operation in extreme fast charging
significantly increases the risk of internal faults in Electric
Vehicle batteries which can lead to accelerated battery failure.
Early detection of these faults is crucial for battery safety and
widespread deployment of fast charging. In this setting, we
propose a real-time detection framework for battery voltage
and thermal faults. A major challenge in battery fault detection
arises from the effect of uncertainties originating from sensor
inaccuracies, nominal aging, or unmodelled dynamics. Inspired
by physics-based learning, we explore a detection paradigm that
combines physics-based models, model-based detection observers,
and data-driven learning techniques to address this challenge.
Specifically, we construct the detection observers based on an
experimentally identified electrochemical-thermal model, and
subsequently design the observer tuning parameters following
Lyapunov’s stability theory. Furthermore, we utilize Gaussian
Process Regression technique to learn the model and measure-
ment uncertainties which in turn aid the detection observers in
distinguishing faults and uncertainties. Such uncertainty learning
essentially helps suppressing their effects, potentially enabling
early detection of faults. We perform simulation and experimental
case studies on the proposed fault detection scheme verifying the
potential of physics-based learning in early detection of battery
faults.

Index Terms—Batteries, Extreme Fast Charging, Fault Detec-
tion, Physics-based Learning.

I. INTRODUCTION

XTREME fast charging typically refers to charging a

battery to 80% of its capacity within 10 minutes [1].
In extreme fast charging, the goal is to recharge the electric
vehicle battery to provide additional 200 miles of range, with
high charging power of 350 kW or above [2], [3]. The high
power requirement for fast charging significantly increases
the risk of internal faults that affect voltage and temperature
dynamics. In this research, we address this particular issue of
battery safety under fast charging. Existing works on battery
fault diagnostics can be broadly classified into two categories:
model-based techniques and data-driven techniques. Examples
of such model-based techniques include [4]-[9]. On the other
hand, learning-based techniques with meaningful dataset [10]
can be useful in circumventing the need for accurate models.
For example, data-driven battery diagnostic approaches are

This work was supported by National Science Foundation under Grant
No. 1908560 and 2050315. The opinions, findings, and conclusions or
recommendations expressed are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

R. Firoozi is with the Department of Mechanical Engineering, University
of Berkeley, CA, USA. (e-mail: royafiroozi @berkeley.edu).

S. Dey and S. Sattarzadeh are with the Department of Mechanical En-
gineering, The Pennsylvania State University, PA 16802, USA. (e-mail:
skd5685 @psu.edu, sfs6216@psu.edu).

presented in [11]-[15]. A long short-term memory network
approach is proposed for parameter prediction [16].

However, there are certain limitations associated with these
aforementioned approaches: (i) model-based approaches rely
on accurate models identification of which can be a cum-
bersome process; (ii) most of the proposed model-based ap-
proaches utilize phenomenological type models which have
limited capabilities to capture physical failure modes; (iii)
data-driven approaches require significant amount of data en-
compassing probable fault scenarios, which may not be avail-
able in real-world settings; (iv) data-driven approaches might
exhibit limitations on diagnosing unforeseen faults which
were not present in training data; (v) finally, most of these
approaches do not present a systematic way to distinguish
fault from uncertainties, which is a fundamental challenge
in any fault diagnosis algorithm design. Specific to battery
fault detection, the main challenge arises from effect of other
(non-faulty) phenomena that cause voltage and temperature
deviation. In case of voltage, these phenomena include voltage
sensor noise, drift or bias, effect of unmodelled behavior such
as electrolyte dynamics (while using a model-based detection
approach), and effect of nominal aging which is generally a
slower process than faults. Inaccurate heat generation model,
temperature sensor noise, drift or bias, and thermal influence
of adjacent cells contribute to similar effects in case of
temperature. These phenomena, which can be combined as
uncertainties, prohibit early detection of smaller voltage and
thermal faults. Hence, it is imperative to distinguish the effect
of uncertainties from faults to enable early detection of smaller
faults.

In this work, departing from the existing model-only and
data-only diagnostic approaches, we explore a different diag-
nostics paradigm that combines physics-based models, model-
based detection observers, and data-driven learning tech-
niques. Although physics-model-based and data-driven tech-
niques have been explored separately in some existing works,
their meaningful integration to enable better diagnostics re-
mains unexplored. However, it has been shown that mean-
ingfully combining these techniques can potentially lead to
easier design and better performance compared to the separate
individual techniques [17], [18].

Accordingly, our approach is inspired by model-based learn-
ing framework [17], [18]. Our approach can be summarized
as follows: (i) we start with a coarsely identified uncertain
physics-based model circumventing the cumbersome process
of accurate model identification; (ii) we apply an online
data-driven learning technique, namely Gaussian Process Re-
gression [19], to learn the uncertainty functions in real-time



thereby compensating for the model and measurement uncer-
tainties; and (iii) based on the coarsely identified model and
aided by the learned uncertainty functions, we design detection
observers following Lyapunov’s stability theory to diagnose
battery faults.

The main advantages of the proposed approach are the
following: (i) it can help overcome the limitations of model-
based approaches (i.e. need for accurate model and presence of
model uncertainties); and (ii) as opposed to data-driven tech-
niques, it does not need for vast data encompassing all possible
fault scenarios. In this context, the main contribution of this
work lies in a battery diagnostics framework that meaningfully
integrates physical model-based detection observers and data-
driven learning. Such framework can potentially enable earlier
detection of smaller faults at their nascent stage. Specifically,
we utilize reduced order electrochemical-thermal model to
capture physical behavior and Gaussian Process Regression
to learn uncertainty, which collectively leads to a potentially
better battery diagnostics framework.

The rest of the paper is organized as follows. Section II
describes the phsyics-based battery models. Section III details
the proposed fault detection framework. Section IV presents
experimental and simulation results with discussion. Finally,
section V concludes the work.

II. BATTERY ELECTROCHEMICAL-THERMAL MODEL

In this section, we discuss the battery model adopted for this
work. Specifically, we focus on electrochemical and thermal
dynamics of batteries. We adopt the Single Particle Model
(SPM) framework to capture electrochemical dynamics and
focus on anode dynamics [20], [21]:
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where z is the radial coordinate of the particle in m, ¢ is the
time in s, ¢, is the Lithium concentration along the particle
radius in mol/m?, D is the anode diffusion coefficient in m?/s,
X is radius of the particle in m, [ is the applied current in
A with I > 0 indicating discharging, a, is the anode specific
surface area in m?/m3 which is computed as a, = 3¢,/X
where ¢, is the active material volume fraction, F' is the
Faraday’s constant in C/mol, A, is the anode current collector
area in m?, and L, is the anode thickness in m. In SPM
framework, electrodes are approximated as spherical particles.
Based on such approximation, (1) describes the solid-phase
diffusion of Lithium ions in the anode, governed by the
volume-averaged current acting on the on the boundary as
given in (2).
The battery terminal voltage can be expressed as [21]:
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where Viepm is the terminal voltage in V; U,(.) and U,(.) are
the open circuit potential maps of cathode and anode, respec-
tively; a1 = —(€,AqLa)/(€cAcLe) and g = my;/(ecAcLe)
with mp; being total moles of Lithium in the cell; R is
the universal gas constant in J/mol-K, T is the average cell
temperature in K, o, and «, are unitless charge transfer
coefficients of cathode and anode, respectively; a. in m%/m?,
A, in m?, and L. in m are the specific area, current collector
area, and thickness of the cathode, respectively; ig. and %o,
are the exchange current densities of cathode and anode in
A/m2, respectively; Rj is the internal resistance of the cell
in Q. In (3), the first two terms represent the thermodynamic
potential of the electrodes, the third term captures the effect
of internal Ohmic resistances, and the last two terms represent
the electric overpotential of the electrodes.

We adopt the following thermal model [22]:
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where t is the time in s, y is the radial coordinate of the cell
in m, Y is the cell radius in m, p is the cell density in kg/m3,
C) is the specific heat in J/kg-K, k is the thermal conductivity
in W/m-K, h is the convection coefficient in W/m?-K, T, is
the cooling/ambient temperature, V} is the cell volume in m?,
and Q is the heat generation term computed by [22]

Ot) I(t){Uc (alca(X) + a2) U, (ca(X)) - Vterm(t)}.

(6)

The model (4) is derived using energy balance principle and
captures the spatio-temporal temperature dynamics along the
cell radius in a cylindrical coordinate setting [22]. In (5),
the first boundary condition represents the zero temperature
gradient in the center whereas the second boundary condition
captures the convective heat transfer with the environment.
The heat generation model (6) captures the irreversible heat
due to electrode polarization [23]. In this work, we have
ignored the reversible heat generation effect in (6) to keep the
heat generation model simple enough for identification and
real-time computation purposes. Typically, the reversible heat
model requires additional parameter information (e.g. entropic
coefficients) which again leads to cumbersome parameter iden-
tification. The effect of such reversible heat is later captured
by the uncertainties in thermal model.

Both the nominal electrochemical and thermal models are
in Partial Differential Equation (PDE) form. We convert these
PDE:s to a set of Ordinary Differential Equations (ODEs), and
subsequently formulate a state-space model. First, considering
the electrochemical PDE model (1)-(2), we discretize the
particle radius into N + 1 nodes with each node’s Lithium
concentration defined as ¢; = ¢,(id,),7 = {0,1,2,..,N}

"where §, = X/N is the spatial difference between two
adjacent nodes. Next, we follow the method of lines approach



for PDE to ODE conversion leading to the following set of
ODE:s for each node:
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with ¢y = ¢; from the boundary condition, i € {2,..., N —1},
y1 = D/&2, and B; = —(1/aaFAuLu6:)(1 + 1/N). In a
similar manner, we can discretize the thermal PDE equation
(4)-(5) with the nodes T; = T(jd,),7 = {0,1,2,..., M}
where 6, = Y/M and arrive at the following set of ODEs:
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with Ty = T3 from the boundary condition, j € {2, ..., M —1},
Y2 = k/02, and By = =27y + 2(1 + 1/2M)(1 — 6,h/k).

Ty =

A. Failure Modes

A fault is defined as an unpermitted deviation of a character-
istic feature from its nominal behavior [24]. On the other hand,
failures and malfunctions are considered as interruptions in a
system’s functionality that are of permanent and intermittent
nature, respectively [24]. Faults can occur in sensors, actuators,
or within the internal system due to physical anomalies. In this
work, we focus on internal system faults.

In the extreme fast charging applications, the battery cell
goes through higher amount of stress than the normal operating
scenarios. Accordingly, the probability of the failure is higher
than the nominal operation. Some of the critical failure modes
are: active material and Lithium inventory loss, undesirable
side reactions, electrode fracture, electrolyte decomposition,
Lithium plating, internal and external short circuits, electrode
fracture, separator puncture, and abnormal heating. Further
details of failure modes can be found in [25]. Specific to
fast charging, some potential battery faults include Lithium
plating, thermal runaway, and mechanical degradation such
as stress-induced cathode cracking and separation of current
collector and electrode [1], [26]. In this work, we focus on
two types of faults that can potentially lead to permanent
failures: (i) voltage faults that mainly affect terminal voltage,
and (ii) abnormal heating faults that mainly affect thermal
dynamics. Broadly speaking, voltage faults can originate from
two potential sources: (i) electrochemical side reactions such
as Lithium plating, Solid Electrolyte Inter-phase (SEI) growth,
and electrolyte decomposition; and (ii) electrical anomalies
such as current leaks, external and internal short circuits. In
terms of temporal characteristics, voltage faults can show two
types of behavior: (i) incipient type faults that gradually show
up in a longer period, e.g. SEI growth, and (ii) abrupt type
faults that posses faster dynamics, e.g. Lithium plating. Some
potential sources of thermal faults are unwanted side reactions,

separator failure, overcharging, and external shock or puncture
[27], [28].

Although we focus on fast charging application in this work,
the proposed framework can be applicable to other scenarios
such as normal charging or discharging modes with minor
modifications. In such other scenarios, the model and the
detection observer frameworks will remain the same while the
Gaussian Process Regression based learning function should
be trained with scenario-specific data.

B. Uncertainties

As we will use the output measurements to design fault
indicator signals in our detection scheme, we mainly focus
on the uncertainties affecting the system outputs, namely,
terminal voltage and surface temperature. From a physical
viewpoint, the term wy captures the following: (i) effect of
internal resistive component due to variation in electrolytic
conductivity, (ii) effect of internal resistance rise due to power
fade type aging, (iii) effect of electrolytic concentration states
on voltage, (iv) change in the parameter my; due to loss of
active material and Lithium inventory, and (v) inaccuracies in
voltage sensor. Similarly, the term wr captures the following:
(1) the effect of non-uniform heat generation and non-uniform
thermal conductivity on the surface temperature prediction, (ii)
inaccurate knowledge of convection coefficient affecting sur-
face temperature prediction, (iii) thermal conductivity variation
due to aging, and (iv) inaccuracies in temperature sensor.

C. State-Space Model with Faults and Uncertainties

We define the state vectors z; = [ci,c2,...,cn]T and
2y = [Ty, Ty, ..., Tos)T, the inputs u; = I and uy = Tn,
and the outputs y; = Vier and yo = Thys. Applying
Euler’s discretization and linearization on (3), we formulate
the following discrete-time state space model from (7), (3),
(6), and (8):

21441 = A121; + Biuay, )
y1; = Crz1y + Diugy +wyy + Ay, (10)
2241 = A222t + fZ(Zhyl,Ul) + Boug; + ATn (11
Y2y = Cozgy + wry, (12)
where the subscript ¢ denotes the time index, 4; € RV*N,

B1 c RNXl, A2 c RMXM’ B2 c RMxl, 02 —
[0,0,.,0,1] € R>*M_ ¢ ¢ R™N, D, € R, and the
nonlinear function f5(.) is derived from (6). Furthermore, the
term wy captures the model and measurement uncertainties
as well as linearization error in electrochemical dynamics, wr
captures the thermal model and measurement uncertainties,
Ay captures the voltage fault, and Ar captures the thermal
fault.

III. FAULT DETECTION FRAMEWORK

The proposed fault detection scheme is shown in Fig. 1.
The scheme consists of following four subsystems that inter-
act with each other: (i) Electrochemical Detection Observer
receives the measured signals and in turn produces voltage



residual signal ry. (ii) Thermal Detection Observer receives
the measured signals and produces thermal residual signal
rp. (iii) Learning Algorithm receives the measured signals
and produces estimates of the uncertainties wr and wy . (iv)
Decision Maker receives the residual signals and makes a
decision whether a fault has occurred. Next, we will discuss
the details of these subsystems.

Faults  Uncertainties

Outputs
= Terminal Voltage

Input Current = Surface Temperature

[ —> Ty Vierm

H TM\LVterm¢1 TM\LVterm\LI TM\L Vterm\LI
Electroch'emical ®y | Learning Or Thermal
Detection Algorithm Detection
Observer Observer

v Voltage Residual Thermal Residual rr

Decision Maker

- -
Decision on Fault Occurrence‘y Fault or No Fault

Fig. 1. Fault detection scheme.

A. Gaussian Process Regression based Learning

From fault detection viewpoint, it is a crucial and chal-
lenging task to distinguish faults from uncertainties. In this
scheme, we utilize Gaussian Process Regression technique to
learn the uncertainties in real-time. Gaussian Process Regres-
sion technique is a non-parametric kernel-based probabilistic
model, which is a well-suited method for long term learning.
To update the physics-based models in real-time, we learn and
update the uncertainties wy and wp of the system (10) and
(12) using Gaussian Process Regression. Essentially, we follow
the Algorithm 1 to implement the learning. Next, we describe
the Gaussian Process Regression learning approach outlined
in the Algorithm 2.

As explained in the Algorithm 1, in order to use a cycle
data as the training set for Gaussian Process Regression,
the algorithm 1 first checks if no fault is detected in that
cycle, otherwise the cycle data is discarded. So we run the
learning algorithm 2 only for no-fault cycles where Ay,
is zero. Two separate Gaussian Process models are trained
to learn voltage wy and temperature wp uncertainties. To
train a Gaussian Process Regression model, the first step
is to create a training dataset. We use the previously ob-
served time-series data in the most recent (past) cycle D
as the training set. The dataset contains a matrix of inputs
X € RV*3 and a vector of outputs (labels) Y € RY, where
N denotes the cycle length and 3 denotes the three types
of measurement signals. The training dataset is defined as
D = {X = {Ila‘/teTm“TMl}yy = {wl}}l:LN, where Il is
the input current, Vierm, is the measured voltage, and wj is the
residual between the actual measurements and the predicted
values computed by the corresponding model for voltage (10)
or temperature (12).

Algorithm 1: Life-time Learning Algorithm

Input: Measured data I, Vierm, Tar
Output: Uncertainty functions @y, W
1 Initialize @y (.) =0, wp(.) = 0.
2 Based on I, Viepy, and Ty data from Cycle # 1, learn
the functions wy (.) and wr(.), using Algorithm 2.

3 if No fault detected in Cycle # M then
Use I, Vierm and Ty data from Cycle # M to

update the functions Wy (.) and @y (.), using

Algorithm 2;

else

Use I, Vierm and Ty data from the last Cycle
before Cycle # M where no fault is detected;

Update the functions @y (.) and @r(.) based on
that data, using Algorithm 2;

4 Repeat Step 3, till battery End of Life (EOL) is
reached.

Algorithm 2: Gaussian Process Learning Algorithm

Input: Training dataset D
Output: Learned uncertainty @pey With mean g and
covariance o2
1 Specify the hyperparameters (O’Z, L) in (13).
2 Compute the entries of matrix Q in (14) by evaluating
the kernel (13) for the specified hyperparameters.

3 Use (14) to compute (15) and (16).
Return the predicted uncertainty ey represented by
the mean y and covariance ¢ in (15) and (16),
respectively.

After creating the dataset, the next step is to train a Gaussian
Process Regression model on that data. The algorithm 2
outlines and summarises the steps for training a Gaussian
process model. Our goal is to learn a model for the nonlinear
function wy. Since no prior knowledge is available for w;, we
choose the prior mean as zero and the covariance between any
two data points w(v;) and w(v,) is defined as the squared-
exponential kernel [29]

1
k(v vg) = afjexp(—§(vl - Uq)T£72(Ul —vg)), (13)

where 012, is the signal variance and the matrix £ is a
diagonal matrix and its diagonal elements are length scales that
represent the function smoothness parameters. The squared-
exponential kernel is widely-used to define the covariance in
time-series data and is suitable for modeling smooth functions.
Therefore, it is appropriate for our application, since the
battery terminal voltage and surface temperature evolve in a
sufficiently smooth manner. The unknown hyper-parameters
(Jg, L) associated with the kernel (13), can either be specified
by the user or by maximizing log-likelihood estimation on the
training data or by cross-validation on the training data [29].
In this study, we consider the first option, in which the user
determines constant hyperparameters by tuning and without
performing optimization.



After specifying the hyperparameters, the prior distribution
is defined using (13). Then, the joint probability distribution of
the new point of interest (test point) and the past observation

: w :
data is computed as o ~ N (0, Q), where w is the vector
new

of observed data w = {w(v1),...,w(vn)} and Wyey is the
function value associated with the new point of interest vyey.
The vector 0 € RY*! is the mean and the covariance matrix
is given by [29]

2 : : 2 :N,new
o [ 1:N,1:N 1:N, , (14)

Enew,l:N Znew,new

where X;.n,1.n is defined by kernel (13) and has entries
(leN,lzN)lq = k’(’l)l,’()q) for laq € {]-7 "7N}’ ZJnew,l:N
is defined as [k(Unews¥1)s v, K(Vnew, Un)] and Zpewnew 1S
k(VUnew, Unew ). The predictive posterior distribution on our point
of interest is calculated as a multivariate Gaussian conditioned
on the past observations is Wnew|D ~ N (t(Wnew), 72 (Wnew))
[29] with mean p and covariance o2 defined as

M(Wnew) = (Znew,l:N)(ElzN,l:N)_lw (15)
02 (Wnew) = Enew,new
- (Znew,l:N)(El:N,lzN)il(ElzN,new)~ (16)

Note that the Gaussian Process described above is presented
in general form. However, to learn voltage and temperature
uncertainties we use slightly different Gaussian Processes.
To estimate the voltage uncertainty wy,, the training dataset
is Dy = {I;,Vierm,,wv;}i=1: N, Where wy,; is computed
as wy; = Vierm, — (C1z1; + Dyuqy) from (10). Also, to
estimate the temperature uncertainty, wr, the training dataset
is Dp = {I, Vvterml;TMlval}lZI: ~ in which Ty is the
measured surface temperature data and wp; is computed as
wr; = Ty — Cozo; from (12).

Remark 1. As mentioned in Algorithm 1, the uncertainty
models &y (.) and wr(.) are learned and periodically updated
online as the battery cycles. Moreover, these uncertainty
models capture a small subset of the physical modes as
compared to the entire battery model, as clarified in Section
IL.B. Hence, the uncertainty models require lesser amount
of data to be trained. Furthermore, there is no assumption
on the uncertainty model structure and operating scenarios.
Therefore, such learning framework can be applied to any
operating conditions and the algorithm will adapt to the same.
Compared to the other learning approaches, Gaussian Process
Regression is suitable for online learning in our application.
Since the battery uncertainty model can potentially exhibit
nonlinearities, linear regression approaches are not well-suited
for our application. On the other hand, the nonlinear regression
methods such as nonlinear least square technique require
solving a nonlinear optimization iteratively which leads to
slow convergence rates and therefore not applicable for online
learning. Compared to nonlinear least squares, Gaussian Pro-
cess does not require iterative optimization and the estimates
are simply computed based on (15). Additionally, compared to
the Extended Kalman Filtering (EKF), Gaussian process does
not need linearization step. Furthermore, another advantage of
Gaussian Process is that it gives a reliable estimate of its own

uncertainty presented in (16). This uncertainty can be used in
non-deterministic settings for observer design as well.

B. Design of Detection Observers

Based on the electrochemical and thermal models (9)-(10)
and (11)-(12), we choose the following structure for the
detection observers:

Z1t41 = A121¢ + Biuig + Ly (Y1, — G14)s )
U1t = C121¢ + Diugy + @y, (18)
TV = Y1p — Y1t (19)

Zop1 = AoZor + f2(21,y1,u1) + Bougy + L1 (Y2, — Yot),

(20)
U2t = CoZoy + W, 2D
T = You — Yot (22)

where k is the estimate of k, Ly € RVX1! and Ly € RMx1
are the observer gains to be designed, and @y and @wp are
the estimate of the uncertainties provided by the learning
algorithm. Subsequently, subtracting (17)-(18) from (9)-(10)
and (11)-(12) from (20)-(21), we can write the observers’ error
dynamics as:

Zig41 = (A1 — Ly Ch)Z1e — Ly (Av,, + €vy), (23)
rve =91t = C121¢ + Avy + €vy, (24)
Zotp1 = (A — LpCo)Zay + fo + Ary — Lyery,  (25)
rry = Yot = CoZay + €1y, (26)

where k = k — k is the estimation error, fo = fo(21,y1, u1) —
f2(21,y1,u1), €y and er represent the error in learned uncer-
tainties.

Next, we present the following proposition that illustrates
the convergence properties of the error dynamics and residual
signals as well as design conditions for the observer gains Ly
and L.

Proposition 1. Considering the estimation error dynamics
(23)-(26), the following are true:

1) in the presence of no fault and no learning error, i.e.
Ay = 0,Ar = 0,ey = 0,er = 0, the estimation
errors Z1 and Zs, and the residual signals rv and rr
will asymptotically converge to zero starting from any
non-zero initial condition;

2) in the presence of only learning error and no fault, i.e.
Ay =0,Ar = 0,ey # 0,er # 0, the estimation errors
Z1 and Zo, and the residual signals rv and r1 will remain
uniformly bounded;

3) in the presence of both learning error and fault, i.e.
Ay #0,Ar #0,ey # 0,er # 0, the estimation errors
Z1 and Zo, and the residual signals rv and r1 will remain
uniformly bounded;

if there exist symmetric positive definite matrices P, and P,
such that the following conditions are satisfied:

where T' and 9 are arbitrary positive numbers, ©1 =
||(A1 — chl)Tpl} , Lo = ||(A2 — LTCQ)TPQ y AQ and AZ




are the minimum eigen values of [P; — (A1 — Ly C1)T P (A; —
Ly Ch)] and [Po—(Ay—L1C3)T Py(As—L1Cy)), respectively.

Proof. See Appendix. O

C. Design of Decision Maker

The decision maker decides whether a fault has occurred
based on the following detection logic:

r; < 0; = no fault,r; > 0; = fault occurrence, (28)

where ¢ € {V,T} and ¢§; are the thresholds. Note that
even with learning algorithm there is always a possibility
that the residual signals will be non-zero even under no
fault conditions. The thresholds ¢; deal with this issue and
provide robustness to such errors. Next, the following steps
are performed for threshold selection.

Step 1: We run the learning-based detection observers
under different no-fault operating conditions. Typically, such
operating scenarios are generated using Monte-Carlo type of
simulation studies or experimental studies. As we focus on
fast charging scenarios in this work, we run the observers
under experimental fast charging cycles. Such runs produce
residual signal data r; under no-fault but uncertain conditions.
Referring to (9)-(12) and (17)-(26), these conditions mean
w; # 0 and A; = 0. Furthermore, considering (24) and (26),
the amplitudes of r; depend on the amplitudes of the learning
error ¢;, (i.e. 1;(€;)).

Step 2: Next, we find the maximum absolute amplitude
of the residual data r; collected in Step I and set that
value as the threshold d;, that is §; = max |r;|. Effectively,
such threshold is related to the maximum learning error in
the learning-based detection observers. In other words, the
threshold approximately equals to the upper bound of the
residuals under uncertain but no-fault conditions, assuming the
data r; comprehensively capture no-fault operating scenarios.

Remark 2. The robustness of the proposed approach is
enabled by following: (i) The use of uncertainty learning
function reduces the effect of model uncertainties; (ii) out-
put feedback-based diagnostic observers further suppress the
uncertainties arising from learning errors; and (iii) finally, the
use of thresholds allows us to suppress the combined effect of
uncertainties to certain extent.

IV. RESULTS AND DISCUSSION

In the following subsections, we discuss the results of
the proposed fault detection scheme. All experiments are
conducted on Arbin battery testing system. First, we identify
the nominal electrochemical-thermal model for a commercial
18650 Lithium-ion battery cell based on experimental current,
terminal voltage, and surface temperature data. The cell has the
following characteristics: Graphite anode and NMC cathode,
3 Ah nominal capacity, terminal voltage range 4.2-2.5 V,
and maximum fast charge current 4 A. Essentially, we have
solved the following optimization problem to identify the
cell parameters: mein rms{X. — X,n(6)} with subject to (3),
(7), (6), and (8) where X, and X,, denote experimental
and model voltage and temperature data, respectively, and

0 = {D,As Ac, Rp,mLi, €, €c, h, Cp, k} is the parameter
vector identified as D=1.022 x 107 m?/s, A4,=0.09 m?2,
A.=0.048 m?,¢,=0.8, €,=0.6516, R,=0.006 €, m;=0.1796
moles, h=16.78 W/(m? — K), C,=907 J/(kg — K), k=1.79
W/(m — K). We have used this identified model for the
subsequent case studies. The learning algorithm is also applied
to learn the uncertainty models. In this particular case, we
have used battery data from cycle # 1 through cycle # 40
under constant current constant voltage (CCCV) charging to
train the uncertainty models. A comparison of the model and
experimental data under CCCV charging is shown in Fig. 2.
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Fig. 2. Comparison of model output and experimental data under constant
current constant voltage (CCCV) charging scenario. For model only case, the
RMS errors are 27.4 mV and 0.3 °C' whereas model along with learning
have RMS errors of 0.56 mV and 0.012 °C.

A. Voltage Fault Detection

In this section, we test the performance of the proposed fault
diagnosis scheme under voltage fault. As mentioned before, a
voltage fault can be caused by different internal anomalies.
In this study, we mainly focus on abrupt type voltage fault
caused by Lithium plating which is a highly probably fault
mode under fast charging [1], [26]. However, the proposed
approach is applicable to other type of voltage faults as well.
To emulate the fault, we considered the fast charge current
scenario with 4 A charging current, as per the battery cell
datasheet. We have not chosen a charging current higher than
the prescribed fast charge conditions due to safety reasons in
our laboratory experiment setting. Although we have chosen
such fast charge conditions for this experiment, the proposed
approach is still valid for higher values of charging current. We
have modified the nominal terminal voltage by adding a faulty
voltage component mimicking the voltage data under Lithium
plating presented in [30]. As shown in [30], the voltage plateau
in lower State-of-Charge region exhibits a overshoot type
behavior under Lithium plating during high current charging,
which is not present in the absence of plating. Experimental
voltage data during high current charging and corresponding
prediction of Lithium plating is shown in Fig. 1 of [30]. We
incorporate similar overshoot type behavior in our voltage
fault injection. The faulty voltage component is modelled as:



aje” 5@~ 4 gy sin(xy) where 2y € [—7, 7], 22 € [£, 7]

where a1 and as represent the fault magnitude. Subsequently,
such faulty voltage data was fed to the electrochemical de-
tection observer to test its performance. The threshold has
been designed to be 4y = 0.01 V following the process
mentioned in Section III.C. We have tested four fault cases
that capture various magnitudes: Fault case 1: a; = 0.003 and
as = 0.0075, Fault case 2: a; = 0.0048 and as = 0.0120,
Fault case 3: a; = 0.009 and as = 0.0225. The responses of
the terminal voltage (V;) and voltage residual (ry-) under these
faults are shown in Fig. 3. It is observed that all the fault cases
are detected as the residuals crossed the threshold in 89, 70
and 49 seconds, respectively. However, Fault case 1 found to
be the minimum fault size that can be detected. This illustrates
the effectiveness of the proposed scheme in detecting voltage
faults.
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Fig. 3. Residual responses under voltage faults.

B. Thermal Fault Detection

Here we discuss an experimental case study under thermal
fault. To emulate the thermal fault scenario in experimental
setting, we have used an external heater to inject heat on
the surface of the battery cell. As it is difficult to induce an
internal thermal fault in a controlled and safe manner, we have
used such external heater to emulate the thermal fault scenario.
Although from a physical experiment viewpoint this fault is
emulated via external means, it effectively shows up in the
last state equation (last equation of (8)) as an additive fault.
Such fault model is also consistent with the A7 term in (11),
where the vector At has all zero elements except for the last
element in this particular case. Hence, from the fault model
point of view, the externally emulated fault is consistent with
the modelling assumption. We have also used similar fault
emulation approach in our previous work [4].

In response to such injected heat, battery temperature in-
creased until the external heat has been turned off. The surface
temperature response under this experiment is shown in the
top plot of Fig. 4. Until 311 s, the temperature was increasing

under natural conditions as the cell was being charged with
a constant current. At 311 s, a thermal fault was injected
via an external heater which was taken off around 331 s.
In response to this fault, the temperature started increasing
abnormally until 331 s and then started to come down.
This temperature data is fed to the proposed fault detection
algorithm in order to verify its performance. The threshold
has been designed to be dr = 0.5°C following the process
mentioned in Section III.C. The residual evolution is shown
in the bottom plot of Fig. 4. The residual signal rp started
from a non-zero initial condition due to initial condition error.
After a while, rr converged close to zero and stayed within
the threshold 7. Subsequently, in response to the injected
thermal fault, the residual signal r7 crossed the threshold
at 315 thereby detecting the fault within 4 seconds of its
occurrence. Furthermore, the residual converged back within
the threshold when the fault disappeared around 331 s.
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Fig. 4. Residual response under thermal fault.

C. Minimum Detectable Thermal Fault

Generally speaking, fault size needs to exceed a certain
magnitude for the diagnostics algorithms to be able to detect
it, owing to various practical limitations. This essentially
translates to a minimum detectable non-zero fault. In our
study, such limitation arises from the threshold value. In this
context, here we explore the minimum size of the thermal fault
detectable by the proposed scheme. We have simulated three
thermal faults of decreasing magnitudes. Case 1: magnitude
310 W, Case 2: magnitude 220 W, Case 3: magnitude 100 W.
The surface temperature response under these three faults are
shown in the top plot of Fig. 5. Similar to the previous case
study, the temperature was increasing under natural conditions
as the cell was being charged with a constant current until
311 s. Subsequently, faults were injected at 311 s leading to
abnormal increase in temperature. These data were fed to the
algorithm. The residual responses under these faults are shown
in the bottom plot of Fig. 5. The residual signal rr started
from a non-zero initial condition and subsequently converged
close to zero and stayed within the threshold dr. In response



to the thermal faults, 7 showed some deviation. However, r
crossed the threshold only for Cases 1 and 2 thereby detecting
these faults. Case 3 fault was not detected as r did not deviate
enough. Hence, we observed that: (i) the Case 1 and Case 2
faults were detected within 4 seconds, and (ii) the minimum
detectable fault size is around 200 W which is slightly less
than the fault in Case 2.
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Fig. 5. Thermal fault detection performance.

D. Performance Comparison of Model-only and Model-and-
Learning Approaches

In this section, we compare the performance of the scheme
with and without learning. In the first comparative study, we
consider two cases under voltage fault (Fault case 3 in Section
IV.A): (i) Case 1, where the learning algorithm is used in
conjunction with the detection observer, and (ii) Case 2, where
only the detection observer has been used without any learning
algorithm. The detection observer in Case 2 has been designed
following standard eigen-value placement based approach. For
both of these cases, there is a decision maker which uses the
same threshold based approach mentioned in Section IIL.C. It
should be noted that the threshold for Case 2 (0.075 V) is
higher than that of Case I (0.01 V). This is expected since
in Case 2 the residual signal is corrupted with significantly
more amount of uncertainties as there is no learning algorithm.
On the other hand, the residual signal in Case I is much
less affected by uncertainties due to learning. The residual
responses under no fault condition and faulty condition are
shown in Fig. 6. We can see that the residual crosses the
threshold after the terminal voltage started showing faulty
behavior for Case I. However, the residual signal does not
cross the threshold for Case 2. This shows that the use of
learning algorithm can potentially detect smaller faults which
would be undetected by without learning based approaches.
Note that the gain in performance comes at the cost of training
and implementation requirement of the learning algorithm.
Such implementation would require additional tuning of the
hyper-parameters and computational power to process the
learning.
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Fig. 6. Comparison of with and without learning based detection approaches
under Lithium plating fault.

E. Performance under Uncertainties

In this section, the robustness of proposed scheme is studied
under parametric uncertainties. Specifically, we illustrate how
parametric uncertainties can lead to false alarms. We study
two cases: (i) performance of the electrochemical observer
with uncertainty in the parameter a,; (ii) performance of
the temperature observer with uncertainty in the parameter
Ry. The results are shown in Fig. 7. We observed that the
performance degrades in terms of false alarm beyond 10%
uncertainty in a, and 20% uncertainty in Rj. The parameters
a, and Ry also capture battery aging as Ry, increases and a,
decreases with the cycling process. Hence, these results are
effectively run under different State-of-Health condition of the
battery cell. This illustrates that the proposed approach is also
adaptive to battery aging to a certain extent.
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Fig. 7. Voltage residuals under uncertainties in aq and Rjp.

In summary, this section presents a combination of sim-
ulation and experimental studies to illustrate the effective-
ness of the proposed approach. Section IV.A discusses the
performance of the proposed approach under voltage fault



by illustrating a case of Lithium plating faults. It has been
found that these fault cases were detected within 89 seconds.
A representative minimum detectable fault size is also pre-
sented under plating fault cases. Section IV.B discusses the
performance of the proposed approach under thermal faults
using experimental faulty data where the fault is detected in
4 seconds. Section IV.C presents a representative minimum
detectable thermal fault size of 200 W. Section IV.D illustrates
the advantages of combining model- and data-based methods
over model-only methods by showing that a representative
small fault detected by the proposed approach goes undetected
by a model-only method. This highlights the potential of
the proposed approach for better diagnostics. Finally, Section
IV.EE studies the robustness of the proposed approach under
parametric uncertainties where it is found that the performance
degrades beyond 10% uncertainty in a, and 20% uncertainty
in Rb.

V. CONCLUSION

In this paper, we have studied a battery fault detection
paradigm combining physics-based models with detection
observer technique and Gaussian Process regression to detect
voltage and thermal faults. Based on an experimentally iden-
tified electrochemical-thermal model, we have performed the
following case studies: simulation study on voltage fault detec-
tion and experimental study on thermal fault detection. These
case studies have shown the effectiveness of the proposed
detection approach for battery fault detection. We plan to study
future extensions including fault estimation, more comprehen-
sive physics-based models, and battery packs. Furthermore,
we also plan to improve threshold design approach utilizing
comprehensive battery data under faulty and non-faulty condi-
tions. Finally, rigorous testing of the proposed approach using
comprehensive real-world dataset (for example, the datasets in
[10] and [31]) will be considered as future extension of this
study.

APPENDIX
PROOF OF PROPOSITION 1

First, we consider the following Lyapunov function can-
didate to analyze electrochemical detection observer error
dynamics Wy; = éltTPlilt where P; is a positive definite
symmetric matrix. The first order difference in the Lyapunov
function is given by:

AW, =5 T1(A1 — Ly C)T Pi(Ay — Ly Cy) — Pz,

+25 (A — LyC)T Pumuy +mi Popy. (29)

where 11 = —Ly(Ay + ey). Next, we prove the three
statements of Proposition 1 separately.

Proof of Statement (1): In the presence of no fault and no
learning error, i.e. Ay = 0,ey = 0, we can write (29) as

AW, = 2] [(A; — LyC)T P (A; — Ly Cy) — Py,
= AW < =Aq |20l (30)

If first equation of (27) is satisfied, we have —AQ < 0 as
1 > 0 and I' > 0. Consequently, we have AW; < 0.

Hence, the estimation error z; and the residual signal ry will
asymptotically converge to zero starting from a non-zero initial
condition. This proves that the proposed diagnostic scheme is
robust to unknown initial conditions.

Proof of Statement (2): In the presence of learning error
and no fault, i.e. Ay =0, ey # 0, we can write (29) as

AWy =%] (A1 — LyC1)T Py (Ay — Ly Cy) — Pi)z1,

+25 7 (A — LyC) T Pug*, + "] P, (31)
where n* = —Ly ey . Considering Holder’s inequality and the
inequality 2ab < I'a® + £b? with a,b,I" > 0, we can further
re-write (31) as

~ < T "
AWy (=g + Try) [Zul” + (p + 1) 077, G2

where [' is an arbitrary positive number, z; =
(A1 = Ly Cy) T Py, Ap is the minimum eigen value
of [Pl — (Al — chl)T.Pl(Al — chl)], Xp is the
maximum eigen value of P;. If first equation of (27) is
satisfied, then we have —AQ + I'z1 < 0. Under this scenario,

we can only guarantee AW; < 0 under the condition
= 12 Ap+3L)
Z1ell” > _(—AQ-HEM)
the estimation error Z; and the residual signal 7y will be

uniformly bounded and converge within a ball of radius.
This proves that the proposed diagnostic scheme is robust to
uncertainties originating from learning errors.

Proof of Statement (3): In the presence of learning error
and fault, i.e. Ay # 0,ey # 0, we can use (29) as is,
and prove uniform stability under both fault and learning
errors following the steps in the proof of statement (2).
This proves that the proposed diagnostic scheme will produce
stable residuals under faults and uncertainties originating from
learning errors.

Following similar steps, we can prove the convergence for
the thermal detection observer.

[7*,]|>. Hence, we can conclude that
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