
AI on the Edge: Characterizing AI-based IoT
Applications Using Specialized Edge Architectures

Qianlin Liang
University of Massachusetts, Amherst

Amherst, U.S.A

qliang@cs.umass.edu

Prashant Shenoy
University of Massachusetts, Amherst

Amherst, U.S.A

shenoy@cs.umass.edu

David Irwin
University of Massachusetts, Amherst

Amherst, U.S.A

irwin@ecs.umass.edu

Abstract—Edge computing has emerged as a popular paradigm
for supporting mobile and IoT applications with low latency or
high bandwidth needs. The attractiveness of edge computing
has been further enhanced due to the recent availability of
special-purpose hardware to accelerate specific compute tasks,
such as deep learning inference, on edge nodes. In this paper,
we experimentally compare the benefits and limitations of using
specialized edge systems, built using edge accelerators, to more
traditional forms of edge and cloud computing. Our experimental
study using edge-based AI workloads shows that today’s edge
accelerators can provide comparable, and in many cases better,
performance, when normalized for power or cost, than traditional
edge and cloud servers. They also provide latency and bandwidth
benefits for split processing, across and within tiers, when using
model compression or model splitting, but require dynamic
methods to determine the optimal split across tiers. We find
that edge accelerators can support varying degrees of concur-
rency for multi-tenant inference applications, but lack isolation
mechanisms necessary for edge cloud multi-tenant hosting.

I. INTRODUCTION

Edge computing has recently emerged as a complement

to cloud computing for running online applications with low

latency or high bandwidth needs [33]. Internet of Things (IoT)

and mobile applications are particularly well-suited for the

edge computing paradigm, since they often produce streaming

data that requires real-time analysis and control, which can be

optimally performed at the edge. Conventional edge computing

comes in two different flavors. Cloudlets [34] represent one

popular paradigm of edge computing that entails deploying

server clusters at the end-points of the network; by deploying

traditional servers at the edge, cloudlets enable “server-class”

applications to be deployed at the edge rather than the cloud.

Edge gateways represent a different flavor of edge com-

puting that involves deploying embedded nodes, individually

or in groups, to serve as the hub for applications such as

smart homes. Such edge gateways provide more limited com-

pute capabilities at the edge, but nevertheless provide useful

functionality, such as data aggregations and local on-node

processing for certain low-latency tasks. These two flavors of

edge computing provide very different tradeoffs. The latter

paradigm utilizes small form-factor hardware (e.g., Raspberry

Pi-class nodes), has low cost, low power consumption and also

constrained compute capabilities, which increases reliance on

the cloud. Cloudlet-style edge computing, on the other hand,

provides much greater compute capabilities at the edge, but

incurs higher hardware costs, larger form factor servers, and

higher power consumption; there is also less reliance on the

cloud for many applications.

Recently a third flavor of edge computing has emerged

that combines the key advantages of both the cloudlet and

edge gateway paradigms. This paradigm, which we refer to

as specialized edge architectures, has become possible with

the advent of special-purpose hardware designed to accelerate

specific compute- or I/O-intensive operations. In particular,

a number of edge hardware accelerators, such as Intel’s

Movidius Vision Processing Unit (VPU) [21], Google’s Edge

Tensor processing Unit (TPU) [17], Nvdia’s Jetson Nano and

TX2 edge GPUs [28], [29], and Apple’s Neural Engine have

emerged with the specific goal of supporting edge-based AI

applications, including computer vision, visual and speech

analytics, and deep learning inference.

By customizing silicon to a single, or a small, class of

applications, these hardware accelerators claim to provide

major performance improvements at much lower cost and

energy points when compared to traditional general-purpose

hardware. As a result, it is now possible to embed “wimpy”

edge nodes with these accelerators and approach the compute

capabilities of general-purpose servers (e.g., cloudlets) for

specific applications.1 Figure 1 depicts a 10 node cluster of

low-end Pi-class nodes equipped with Jetson Nano GPUs;

this entire embedded GPU cluster costs about $1,500 (or

approximately the cost of a single traditional server), consumes

only 90w at full GPU load, and measures 13x8x8 inches, an

order of magnitude smaller footprint than a server rack. As

a result, it opens up new possibilities for edge deployments

in power-constrained or space-constrained settings that are not

feasible with conventional flavors of edge computing.

In this paper, we address the question of how to rethink the

design of edge-based AI applications in light of specialized

edge architectures. Using an empirical approach, we seek

to quantitatively understand the benefits and limitations of

these architectures when compared to more traditional edge

and cloud-based systems. In particular, we seek to answer

three sets of research questions: (1) What are the price,

performance, and energy tradeoffs offered by emerging edge

1Of course, cloudlets can also be equipped with hardware accelerators,
further enhancing their capabilities.

Device Power (W) Memory Cost Accelerated Workloads
Intel NCS2 VPU 1 - 2 512 MB $99 vision, imaging
Google EdgeTPU 0.5 - 2 8MB $75 8-bit quantized TensorFlow lite model
Nvidia Nano 5 - 10 4 GB $99 any GPU workload; AI
Nvidia TX2 7.5 - 15 8 GB $399 any GPU workload; AI

TABLE I
CHARACTERISTICS OF EDGE ACCELERATORS

Cloud

IoT devices

Cloud

IoT devices

Edge node

Cloud

+ GPU/FPGA

IoT devices

with accelerator

Edge node +

accelerator

IoT devices

with accelerator

Edge node +

accelerator

(a) Two tier (b) Three tier (c) Specialized three-tier (d) Specialized two-tier

Fig. 2. Tiered architectures for IoT applications that use the device, edge, and cloud.

budget of only 2W. From a performance standpoint, all of these

hardware accelerators promise large performance improve-

ments for low-end edge nodes and, in some cases, server-like

performance, even when running on low-end Raspberry PI-

class nodes. Specialized hardware is also becoming available

for end-devices, which allows the processing to be done on

the device itself, when appropriate, rather than sending data

to edge or cloud servers. Examples include the Sparkfun

Tensorflow-lite hardware board for micro-controller-based IoT

devices [15] and the GAP8 IoT processor [35]
In general, specialized architectures use various forms of

distributed processing, with application processing split within

and across tiers. Processing may be split across device, edge

and cloud tiers by leveraging specialized hardware at each

tier, yielding vertical splitting. Processing at each tier can be

further split across nodes within that tier to leverage multiple

hardware accelerators, yielding horizontal splitting. Model

compression [36] and model splitting [23] are examples of

distributed ML inference that use such split processing.

III. EXPERIMENTAL SETUP AND METHODOLOGY

Problem statement: The goal of our work is to empiri-

cally study the feasibility of using a hardware-accelerated

specialized edge tier to achieve “server-class” performance of

cloudlet-style edge servers at the cost, power, and form-factor

of Pi-class edge nodes, with a specific emphasis on edge-based

AI workloads. To do so, our study addresses the following

questions: (1) What are the price, performance, and energy

benefits, if any, offered by edge hardware accelerators when

compared to general-purpose edge and cloud computing? How

do specialized edge nodes compare to traditional edge nodes

with respect to raw performance and normalized performance-

per-watt and performance-per-dollar? How do these benefits

vary with different workloads, such as image/video and audio

processing, and different deep learning models? (2) How

should IoT application exploit distributed and split processing

capabilities offered at various tiers? How are the benefits and

overheads of splitting application processing over centralized

processing at a single tier? Are there scenarios where per-

forming data processing at a single tier is better than splitting

application processing across tiers? (3) How capable are these

edge accelerators for supporting concurrent model execution

to provide multi-tenancy in edge clusters?

Experimental setup: Our experimental setup comprises a

small cluster of single-board computing (“Pi-class”) nodes

that are equipped with four edge accelerator platforms: Intel

Movidius NCS2 VPU, Google Edge TPU, Nvdia Jetson Nano

GPU, and Nvidia TX2 GPU. To compare with more traditional

edge architectures, we also consider a Raspberry Pi3 node as

an example of a resource-constrained edge device, and an x86

server with a 3.0GHz Xeon Skylake CPU as an example of a

cloudlet-style edge server. We also consider a NVIDIA Tesla

V100 GPU on Amazon EC2 p3.2xlarge cloud instance to

mimic a specialized edge server or specialized cloud server.

Workloads: Our workload consists of three common vision-

based image processing and speech-based audio-processing

tasks that arise in many edge-based AI applications:

• Image classification: The goal of image classification is to

assign a text label (i.e., “classify”) to an image based on

its contents. For example, a label such as “apple”, “dog”

or “car” may be assigned by the classifier based on the

image. Typically model inference yields multiple labels

with probabilities on the likely contents of the image.

• Object detection: Object detection is a harder task than

classification since it involves determining all objects of

interest that are present in the image, by computing a

bounding box around each such object, and then assign-

ing a probabilistic label to each object.

• Keyword spotting: Keyword spotting involves processing

an audio stream to detect and recognize the occurrence of

a set of keywords (e.g., ”Hey Siri” function on iPhone).

All three workloads use deep learning models, and there

has been a wealth of research on these problems over the

Workload Model Input size Model Params # Float operations Depth
name size (MB) (M) per inference (M) multiplier

Image Classification
MobileNet V2 224× 224× 3 14 3.54 602.29 1.0
Inception V4 299× 299× 3 163 42.74 24553.87 -

Object Detection
SSD MobileNet V1 300× 300× 3 28 6.86 2475.24 1.0
SSD MobileNet V2 300× 300× 3 66 16.89 3751.52 1.0

Keyword Spotting cnn-trad-fpool3 99× 40 3.6 0.94 410.89 -
TABLE II

CHARACTERISTICS OF THE DEEP LEARNING MODELS USED IN OUR STUDY.

past decade [16]. Pre-trained deep learning models are now

available for these tasks from multiple sources and these

models are designed to run on a variety of hardware and

software platforms. We use these pre-trained models for our

micro-bechmarking study since it allows us to run the same

standard model on all hardware devices, and also enables

others to repeat our experiments. Our experiments use the

following 5 models: MobileNet V2 and Inception V4 for

image classification, SSD MobileNet V1 and SSD MobileNet

V2 for object detection, and cnn-trad-fpool3 in [32] for

keyword spotting. Table II lists the key characteristics of the

models along with the default model configurations used in

our experiments.

IV. PERFORMANCE AND ENERGY MICROBENCHMARKS

Our first experiment involves comparing raw and normal-

ized performance and power of specialized edge nodes to

more traditional edge architectures comprising (i) resource-

constrained edge nodes (Pi3), (ii) x86 server-based edge nodes

(“cloudlet server”), and (iii) GPU-equipped x86 servers. We

microbenchmark various edge nodes under our three work-

loads (classification, object detection and keyword spotting)

and the corresponding models shown in Table II and measure

throughput and power consumption under these workloads.

Methodology: To ensure a fair comparison across hardware

platforms, we run the same model on all platforms and subject

it to the same inference workload. For image classification

and object detection, we use the CAVIAR test case Scenarios

dataset [31] as our inference workload. For keyword spotting,

we use the Speech Commands dataset [7] as our inference

workload. Although the model and the inference workload

used to drive the model are identical on all platforms, it should

be noted that the deep learning (DL) software platform used

to execute this model varies by device. This is because there is

no single DL software platform that runs well on all hardware

accelerators. While TensorFlow runs on many of our devices,

we found that it almost always had worse performance than

the native vendor-designed tool for running DL inference.

Thus, we choose the native vendor-recommended software

DL platform for each device since it yields the maximum

throughput and best results. Specifically, we use Intel Open-

vino [10] for the Intel VPU, the specialized edgetpu soft-

ware module for Google’s Edge TPU, and TensorRT [11]

for Nvidia’s Jetson Nano, TX2 and cloud GPUs. Finally,

we use TensorFlow to execute our models on all CPUs,

namely Raspberry Pi3 and Intel Xeon CPU. Our through-

put microbenchmark, written in Python, iteratively involves

making inferences using the above inference workloads and

computes throughput in term of inferences per second. In

addition to measuring sequential inference throughout, we

also measure the impact of batching inference requests on

the throughput—since batching is often used in production

settings to enhance the throughput of deep learning model

inference. Our power microbenchmarks measure the mean

power consumption as well as the total energy consumed

during an individual inference request.

We use a combination of hardware and software tools for

our power microbenchmarks. For USB devices such as Intel

VPU and Google EdgeTPU, we use a USB power meter

with data logging capabilities to measure the energy used

and instantaneous power consumption during inference. For

NVidia GPUs, we use nvidia-smi software profiling tool

that provides power statistics for NVidia GPUs [12]. For the

cloud-based Intel Xeon CPU and Raspberry Pi CPU, we use

the Turbostat Linux profiling tools [8] to measure the CPU

power usage; Turbostat also works in virtualized environments

such as cloud servers for power profiling.

Performance results: We begin with microbenchmarking our

hardware accelerators using the image classification workload.

Figure 3 shows the throughput and power usage results for our

two image classification models: Mobilenet V2 and Inception

V4. As shown in Table II, Inception is a more complex model

that is around 7× larger in size and parameters than Mobilenet.

Figure 3(a) depicts the mean inference throughput in terms

of frames/s for various hardware accelerators running these

models; note the log scale on the y-axis depicting throughput.

The figure yields the following observation: (1) All four

edge accelerators provide a significant increase in performance

when compared to a vanilla Pi3 edge node, yielding between

6× to 28× throughput increase for Mobilenet and 3.4×

to 70× throughput increase for Inception. (2) Interestingly,

some of the edge accelerators even outperform a modern x86

server processor, which satisfies their claims of “server-class”

performance using low cost hardware. Both Nvidia GPUs

outperform the x86 CPU by 1.7× to 3.5× for MobileNet and

have comparable to 2× higher throughput for Inception. The

VPU is the slowest of the four and yields about half the CPU

throughput, while the TPU is 5× slower for Inception but

1.9× faster for Mobilenet. (3) Not surprisingly, the cloud GPU

still holds a significant performance advantage over all edge

accelerators with 5× to 8× higher throughput than the fastest

edge accelerator (TX2).

While the throughput microbenchmarks above assume se-

quential inference requests, we next measure throughput us-

raw performance or power. Figure 4(a) plots the throughput

per watt for various devices. When normalized for power

consumption, all edge accelerators outperform the x86 CPU

by 10-100× and become comparable or outperform the cloud

GPU. Due to their low power consumption, the TPU and

VPU offer the highest performance per watt across all devices.

Overall, the performance per watt is 25.5 to 77% higher for the

various edge accelerators when compared to the cloud GPU

for the Inception workload. For Mobilenet, the TPU and VPU

yield a 16× and 1.3× better performance per watt than the

cloud GPU, respectively. Figure 4(b) plots the throughput per

dollar cost for all devices. Once again, we see that all edge

accelerators provide a higher throughput per dollar cost than

the cloud GPU and x86 CPU due to their low cost. Even the

TX2 GPU, which has a relatively high list price of $399, yields

a 1.3× better performance per dollar cost than the cloud GPU.

Next, we repeat the above experiments for the object detec-

tion and keyword spotting workloads. Table III summarizes the

inference throughput obtained for various hardware devices

under various deep learning models and workloads. While

there are some variations in throughput across audio and image

workload and different models, the broad results from Figure

3 hold for these results. All edge accelerators provide very

significant throughput improvements over low-end edge nodes,

such as the Raspberry Pi, and many outperform even a x86

server processor. Broadly, the TX2 edge GPU provides the

highest throughput across the four edge devices; performance

can be roughly ordered as VPU, TPU, Jetson Nano, and TX2

for various workloads. The cloud GPU continues to provide

the greater raw performance across all devices, but becomes

comparable or slightly worse than the accelerators on a a

normalized performance per watt and performance per dollar

basis (not shown here to due to space constraints)—similar to

the trends shown in Figure 4.

Key takeaways: On a raw performance basis, we see a

rough performance order across edge accelerators for inference

workloads, namely VPU < TPU < Nano < TX2. Edge

accelerators provide performance that is within one-half to

3.5× that of x86 server processors. When normalized for

power and cost, edge accelerators easily outperform traditional

server processors by 10-100× and become comparable to or

better than even server GPUs. All edge accelerators exhibit

very low power consumption, ranging from 0.6W to 8W,

which is more than an order of magnitude lower than the server

CPU and GPU. These results indicate that specialized edge

architectures are very attractive for edge applications in power

or space-constrained settings. Further, they have the potential

to replace traditional (“cloudlet-like”) x86 edge servers for

deep learning inference workloads.

V. SPLIT PROCESSING ACROSS APPLICATION TIERS

Next, we evaluate the benefits of hardware accelerators for

distributed or split processing of edge-based AI workloads. We

consider both model splitting and model compression, which

are the two types of split processing that have been proposed.

A. Model Splitting

Our first method, model splitting, allows a deep learning

model to be split across multiple nodes within or across tiers.

In sequential splitting [23], the first k layers of the n layer

model run on the first node accelerator and the remaining n−k

layers run on the next node or tier. In this case, the inference

request is initially sent to the first node and the intermediate

output of the kth layer is then sent over the network to the

(k + 1)st layer running on the second node for subsequent

processing. Model splitting can also be done in parallel, where

a portion of each of the n layers is deployed on the first node,

with the remaining portions of each layer deployed on the

other node [46]. In this case, both nodes process the input

data in parallel by feeding it through the layers of the model.

Model splitting offers two possible benefits. First, in case

of sequential splitting, if the output of an intermediate layer

is smaller than the input, splitting the model at this layer

consumes less network bandwidth than sending the original

input to the higher tier for inference. Second, model splitting

is also useful when the full model does not fit into the memory

of a hardware accelerator; in such cases, the model can be

split—sequentially or in parallel—across two or more edge

nodes within a tier, enabling all processing to be performed at

the edge tier even though no single accelerator can host and

run the entire model.

Our first experiment evaluates the benefits of model splitting

using sequential splitting for image classification (using our

Inception V4 and MobileNet V2 models). Our experiments

were performed by splitting the model between an Edge TPU

and a cloud GPU. For each model, we systematically vary k,

the layer after which the model is split between the two nodes,

and measure the size of the intermediate output transmitted

between layers k and k + 1. Note that the inference result

will always be the same regardless of the chosen k, and only

the data transmitted between the split models varies with k.

We compare this overhead to the non-split model inference

where the entire model runs on a single node, and the input

image data is sent over the network to that node using (i)

uncompressed RGB format, (ii) lossless PNG compression and

(iii) lossy JPEG compression.

Figure 5(a) shows the result obtained by splitting the

Inception V4 model for image classification. As shown, the

intermediate output produced by each layer varies from layer

to layer. Interestingly, we find that all layers produce an

intermediate output that exceeds the size of the input data

when using using lossless or lossy compression to transmit

the input. Only transmitting the input data in uncompressed

RGB format incurs more network overhead. Thus, splitting at

any layer will consume more bandwidth than sending JPEG

or PNG compressed images to a non-split model. This result

shows that, for Inception V4, there is no benefit from splitting

the model between the edge and the cloud tiers, and it is better

to either deploy the full model entirely on the edge tier and

avoid all data transmissions to the cloud, or deploy the model

entirely in the cloud by sending compressed inputs to the non-

inference requests are handled by the compressed model, data

need not be sent to the next tier, yielding bandwidth savings,

and inference can be handled locally at lower latencies. The

threshold parameter allows for a tradeoff between accuracy,

bandwidth, and latency.

We now evaluate the efficacy of model compression-based

split processing using hardware accelerators. We consider

two scenarios, a device-edge case where a very small foot-

print model (6.4 MB) runs on the device tier accelerator

(emulated using a VPU, which is the slowest of our ac-

celerators) along with a larger (13MB) model running on

the TX2 edge GPU. We also consider an edge-cloud case

where we run a medium footprint (13MB) model on the

TX2 edge GPU and a larger 23 MB model on the cloud

GPU. We construct these models of varying size using Mo-

bileNet V2, yielding the mobilenet_v2_0.35_96 de-

vice model, mobilenet_v2_1.0_224 edge model and

mobilenet_v2_1.4_224 cloud model.

Figure 6(a) shows the accuracy of the three models on

the ImageNet validation dataset (obtained by comparing the

inference results with the ground truth in the dataset). As

can be seen, the smaller the compressed model, the lower

its accuracy. Figure 6(b) shows the network bandwidth usage

for the device-edge and edge-cloud scenarios under varying

thresholds; recall that the threshold determines the confidence

level under which the input image is transmitted to the next tier

for inference by the larger model. A lower threshold implies

we are willing to accept predictions with lower confidence

from the smaller model. As can be seen, as the threshold

increases, a larger percentage of inference requests fail to meet

the desired confidence using the compressed model and require

a second inference from the larger model, which increases the

network bandwidth usage. At a threshold of 0.5, the device-

edge case yields a 18% network savings when compared to

the non-split scenario; the savings for the edge-cloud are

higher at 41% since the larger edge model is able to handle

more inference requests locally than the smaller device model

of the device-edge case. The savings fall to 0.1% and 11%

for a higher threshold of 0.8 for the device-edge and edge-

cloud, respectively, and diminish asymptotically to zero as the

confidence threshold approaches 1.

Figure 6(c) shows the total latency of split processing for

different thresholds. The total latency includes the inference

latency of the compressed model, the network latency to

send data to the larger model if necessary, and the latency

of the second inference if the larger model is invoked. For

the non-split case, all requests incur network latency to send

data to larger model and also include the inference latency

of the larger model. In our experiment, the mean edge-

device network latency was around 4ms and the edge-cloud

latency to the EC2 cloud server was 47.76ms. In contrast, the

inference latency is highest at the device VPU and lowest at the

cloud GPU. The figure shows that for lower thresholds, split

processing offers lower overall latency since the compressed

model is able to produce results of “adequate” quality (i.e.,

above the threshold), which avoids a network hop and a second

inference by the larger model. As the threshold increases,

more results need to be sent to the larger model since the

compressed model is unable to produce results that meet this

higher confidence. This causes the overall latency of split

processing to rise due to more requests incurring a network

hop and a second inference.

The figure also shows a cross-over point beyond which

split processing incurs higher overall latency than non-split

processing—since the overhead of two inferences is higher

than performing a single inference. We find that the cross-

over point occurs at a relatively low threshold of 0.26 for

device-edge and 0.45 for edge-cloud scenarios. This implies

that when subjected to a random set of inputs (from the

Imagenet validation dataset), model compression in not able

to outperform non-split inference when high confidence output

is desired from the smaller model; model compression yields

lower latencies only when we are willing to accept lower

quality results from the compressed model.

We next consider a scenario where the inputs are not random

but skewed towards the common case. In this scenario, we

assume that the compressed model is well-trained for a small

number of frequently occurring inputs. The larger model is

invoked only for less common inputs for which the compressed

model yields less confident and less accurate results. This is a

likely deployment scenario for model compression where the

compressed model is designed to perform well for common

case inputs that are frequent, acting as a “filter” for such

inputs; less common inputs are sent to the larger model, which

is capable of handling a much greater range of inputs, for

further processing. To evaluate such a scenario, we construct

a skewed input dataset using the Imagenet validation dataset

where common-case inputs (e.g., “car”) occur very frequently

and all other inputs (e.g., all other vehicles) occur infrequently.

Figure 7 depicts the latency of the device-edge and edge-cloud

scenario for such inputs. As shown, model compression yields

much lower latency (3× for device-edge and 4× for edge-

cloud) than non-split inference for a wide range of threshold

values—since it performs inference well for the common case,

and avoids a second inference for the majority of the inputs.

The bandwidth savings (not shown here) are similarly higher

than the non-split case for a broad range of threshold values.

Finally, we evaluate the impact of the network latency on

these benefits. While the previous experiment used actual

network latency to the EC2 cloud server, we evaluate the

benefits of cloud latencies under different emulated cloud

latencies. We vary the cloud latency from 20ms to 200ms and

mesure the latency of using model compression relative to the

non-split case. As can be seen in Figure 8, the higher the

latency to the cloud server, the greater the benefits of using

the compressed model to perform a single local inference. For

a theshold of 0.8, 60ms cloud latency yields around 70.39%

latency reduction and 100ms cloud latency yields a 79.83%

lower latency. The figure also shows that higher thresholds

yield lower benefits, since it causes more inputs to be sent to

the larger model. Finally, for very high thresholds such as 0.99,

split processing is always worse than non-split inference, since

IX. CONCLUSIONS

In this paper, we conducted an experimental study to

evaluate the benefits and tradeoffs of using specialized edge ar-

chitectures when compared to traditional edge architectures for

running edge-based AI applications. Our experimental study

showed that today’s edge accelerators can provide comparable,

and in many cases better, performance, when normalized

for power or cost, than edge servers. We found that split

processing workloads can yield good bandwidth or latency

benefits, but these benefits were highly dependent on how the

splitting was done from a model and tier perspective. We found

that edge accelerators could support varying degrees of con-

currency for deep learning inference, depending on hardware

and software constraints, but lacked isolation mechanisms

necessary for cloud-like multi-tenant hosting. Overall, our

study found that many open issues still need to be addressed

to fully realize the benefits of edge accelerators.
Acknowledgements: We thank the anonymous reviewers for

their comments. This research was supported in part by Army

Research Labs Contract W911NF-17-2-0196 and NSF grants

1763834, 1836752, and 1908536.

REFERENCES

[1] Machine learning on aws. https://aws.amazon.com/machine-learning/.
[2] Machine learning service: Microsoft azure. https://azure.microsoft.com/

en-us/services/machine-learning-service/.
[3] Ml engine : Cloud machine learning engine (cloud ml engine). https:

//cloud.google.com/ml-engine/.
[4] Ganesh Ananthanarayanan, Victor Bahl, Peter Bodk, Krishna Chintala-

pudi, Matthai Philipose, Lenin Ravindranath Sivalingam, and Sudipta
Sinha. Real-time video analytics the killer app for edge computing.
IEEE Computer, October 2017.

[5] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex Crown,
Shadi Noghabi, and Yuanchao Shu. Demo: Video analytics - killer app
for edge computing. In ACM MobiSys, June 2019. ACM MobiSys Best
Demo Runner-up Award, 2019.

[6] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing. In
2013 Proceedings IEEE INFOCOM, pages 1285–1293, April 2013.

[7] Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. Bench-
marking keyword spotting efficiency on neuromorphic hardware. CoRR,
abs/1812.01739, 2018.

[8] Len Brown. turbostat - Report processor frequency and idle statistics.
https://manpages.debian.org/testing/linux-cpupower/turbostat.8.en.html.

[9] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos,
Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai,
Roberta Klatzky, Daniel Siewiorek, and Mahadev Satyanarayanan. An
empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance. In Proceedings of the

Second ACM/IEEE Symposium on Edge Computing, SEC ’17, pages
14:1–14:14, New York, NY, USA, 2017. ACM.

[10] Intel Corporation. Intel Distribution of OpenVINO Toolkit. https://
software.intel.com/en-us/openvino-toolkit.

[11] Nvidia Corporation. Nvidia tensorrt - programmable inference acceler-
ator. https://developer.nvidia.com/tensorrt.

[12] Nvidia Corporation. NVIDIA System Management Interface. https://
developer.nvidia.com/nvidia-system-management-interface.

[13] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: Making
smartphones last longer with code offload. In Proceedings of the 8th

International Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, pages 49–62, New York, NY, USA, 2010. ACM.

[14] Zheng Dong, Yuchuan Liu, Husheng Zhou, Xusheng Xiao, Yu Gu, Ling-
ming Zhang, and Cong Liu. An energy-efficient offloading framework
with predictable temporal correctness. In Proceedings of the Second

ACM/IEEE Symposium on Edge Computing, SEC ’17, pages 19:1–19:12,
New York, NY, USA, 2017. ACM.

[15] SparkFun Electronics. Sparkfun electronics. https://www.sparkfun.com/.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[17] Google. Edge tpu - run inference at edge. https://cloud.google.com/
edge-tpu/.

[18] Giulio Grassi, Victor Bahl, Giovanni Pau, and Kyle Jamieson. Parkmas-
ter: An invehicle, edgebased video analytics service for detecting open
parking spaces in urban environments. In SEC ’17, August 2017.

[19] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodk, Leana Gol-
ubchik, Minlan Yu, Victor Bahl, and Matthai Philipose. Videoedge:
Processing camera streams using hierarchical clusters. In ACM/IEEE

Symposium on Edge Computing (SEC), October 2018.

[20] SmartThings Inc. Smartthings - smartthings hub. https://www.
smartthings.com/products/smartthings-hub.

[21] Intel. Intel movidius myriad x vpu. https://www.movidius.com/myriadx.

[22] Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook
Moon. Ionn: Incremental offloading of neural network computations
from mobile devices to edge servers. In Proceedings of the ACM

Symposium on Cloud Computing, SoCC ’18, pages 401–411, New York,
NY, USA, 2018. ACM.

[23] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In Proceedings of

ACM ASPLOS, Xian, China, 2017.

[24] Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai, and Ramesh
Govindan. Real-time traffic estimation at vehicular edge nodes. In
Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
SEC ’17, pages 3:1–3:13, New York, NY, USA, 2017. ACM.

[25] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks
for efficient inference: A whitepaper, 2018.

[26] Google LLC. Google nest learning thermostat. https://store.google.com/
us/product/nest learning thermostat 3rd gen.

[27] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes,
Caleb Phillips, and Eyal de Lara. Cloudpath: A multi-tier cloud com-
puting framework. In Proceedings of the Second ACM/IEEE Symposium

on Edge Computing, SEC ’17, pages 20:1–20:13, New York, NY, USA,
2017. ACM.

[28] NVIDIA. Jetson nano - bringing the power of modern ai to mil-
lions of devices. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-nano/.

[29] NVIDIA. Jetson tx2 high performance ai at the edge. https://www.
nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/.

[30] Dexmont Peña, Andrew Forembski, Xiaofan Xu, and David Moloney.
Benchmarking of cnns for low-cost , low-power robotics applications.
2010.

[31] CAVIAR project/IST 2001 37540. Caviar test case scenarios.

[32] Tara Sainath and Carolina Parada. Convolutional neural networks for
small-footprint keyword spotting. In Interspeech, 2015.

[33] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, Jan 2017.

[34] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, Oct 2009.

[35] GreenWaves Technologies. Ultra-low power processor for machine
learning at very edge. https://greenwaves-technologies.com/.

[36] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Distributed
deep neural networks over the cloud, the edge and end devices. 2017

IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), pages 328–339, 2017.

[37] Jeremy Hsu. How youtube paved the way for google’s stadia cloud
gaming service. https://spectrum.ieee.org/tech-talk/telecom/internet/
how-the-youtube-era-made-cloud-gaming-possible.

[38] Wink, Labs Inc. Wink — Wink Hub. https://www.wink.com/products/
wink-hub/.

[39] Srikumar Venugopal, Michele Gazzetti, Yiannis Gkoufas, and Kostas
Katrinis. Shadow puppets: Cloud-level accurate AI inference at the speed
and economy of edge. In USENIX Workshop on Hot Topics in Edge

Computing (HotEdge 18), Boston, MA, 2018. USENIX Association.

[40] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and
M. Satyanarayanan. Bandwidth-efficient live video analytics for drones
via edge computing. In 2018 IEEE/ACM Symposium on Edge Computing

(SEC), pages 159–173, Oct 2018.

[41] Shuochao Yao, Yiran Zhao, Huajie Shao, Shengzhong Liu, Dongxin
Liu, Lu Su, and Tarek Abdelzaher. Fastdeepiot: Towards understanding
and optimizing neural network execution time on mobile and embedded
devices. In Proc. 16th ACM Conference on Embedded Networked Sensor

Systems (SenSys), Shenzhen, China, November 2018.
[42] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. Lavea: Latency-

aware video analytics on edge computing platform. In 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS),
pages 2573–2574, June 2017.

[43] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Ray-
chaudhuri. Towards efficient edge cloud augmentation for virtual reality
mmogs. In Proceedings of the Second ACM/IEEE Symposium on Edge

Computing, SEC ’17, pages 8:1–8:14, New York, NY, USA, 2017. ACM.
[44] Xingzhou Zhang, Yifan Wang, and Weisong Shi. pcamp: Performance

comparison of machine learning packages on the edges. In USENIX

Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston,
MA, 2018. USENIX Association.

[45] Z. Zhao, K. M. Barijough, and A. Gerstlauer. Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 37(11):2348–2359, Nov 2018.
[46] Li Zhou, Hao Wen, Radu Teodorescu, and David H.C. Du. Distributing

deep neural networks with containerized partitions at the edge. In 2nd

USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19),
Renton, WA, 2019. USENIX Association.

