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A B S T R A C T   

In-situ X-ray tomography is an effective means for the acquisition of time-resolved 3D images of fiber reinforced 
composites during mechanical loading and deformation. However, the manual comparison of corresponding in- 
situ X-ray images at successive loading instances to detect damage and its propagation is a time-consuming 
process. To improve the detection of damage using in-situ X-ray tomography, digital volume correlation 
(DVC), a full field 3D-strain technique that determines relative deformation between consecutive image volumes, 
was used. Specifically, regions of high strain were isolated from the heterogeneous strain computed from DVC 
within the microstructure and compared to manually detected damage. In this study, 59 out of 63 manually 
detected damage events, which included fiber breakage, micro-void nucleation, and fiber debonding, were 
within the search spaces of high strains beyond the 60th percentile threshold computed by DVC. Results of this 
study demonstrate the use of DVC as a tool to confine volumes of potential damage sites within the in-situ X-ray 
tomograms of composites to improve the efficiency of incipient damage detection.   

1. Introduction 

X-ray micro-computed tomography (μ-CT) is a qualitative and 
quantitative characterization technique, capable of determining a ma
terial’s microstructure and defect structure [1]. The technique has been 
used to investigate multiple in-situ failure modes within symmetric cross 
ply laminated composites in monotonic [2] and cyclic [3] loading con
figurations. Hanhan et al. used in-situ tomography experiments coupled 
with a finite element simulation to show that regions of high hydrostatic 
stress correlated with incipient damage formation [4]. Typically, 
manual inspection of time lapse μ-CT images is used to detect micro
structural and sub-volume damage evolution, but the process can be 
time consuming. Digital volume correlation (DVC) is a methodology to 
identify the displacement (and therefore strain) fields for a material 
across temporal states [5]. For instance, strain fields computed by DVC 
were used to quantify delamination [6] and transverse shear effects [7] 
in laminate composites. Yet, the precision of DVC in assisting micro
structural damage detection in discontinuous fiber composites remains 
unclear. In this work, DVC was used to indicate regions of high strain 
during in-situ uni-axial tensile loading, and a methodology is presented 
to use the DVC results to identify regions of damage, thus providing a 
more efficient means for microstructural damage detection in 

comparison to the time-consuming traditional methods relying on 
manual inspection. 

2. Methods 

For this study, an injection molded, discontinuous glass-fiber rein
forced polypropylene composite was machined into a dog-bone shaped 
sample with a grip diameter of 6.35 mm, a gauge section diameter of 2.4 
mm, and a gauge height of 3.6 mm. X-ray μ-CT characterization was 
performed on the specimen at Sector 2-BM of the Advanced Photon 
Source, Argonne National Laboratory. The synchrotron-based X-ray 
source provided quick data acquisition for in-situ loading, as well as the 
necessary phase contrast for detecting the fibers, matrix, and voids. An 
X-ray energy of 25 keV was used, and the specimen was rotated ±180◦ at 
a velocity of 0.5◦/s, with a sample-to-detector distance of 75 mm [8]. 
The tensile specimen was incrementally loaded in the Z direction via a 
screw-driven motor, and during interruptions in loading, X-ray μ-CT 
images of the full gauge cross-section were captured with a height of 1.8 
mm. The sample was characterized 58 times until failure occurred 
within a region of the sample determined to be the ductile fracture zone; 
the engineering strain at failure, εf , 0.0042 (4.2%), was computed by 
comparing speckle pattern images on the specimen’s gauge length (3.6 
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mm in length) in VIC-2D. 
X-ray projections were reconstructed to create serial sections of 1.3 

μm pixel size grayscale images using Tomopy [9]. Afterwards, the glass 
fiber structure was reconstructed via a supervised iterative fiber 
reconstruction framework [10] (Fig. 1a) and the porosity was identified 
using Weka Segmentation [11] (Fig. 1b–d). ModLayer [12] was used to 
detect microstructural damage in the region of interest (referred to as 
the ductile fracture zone). For the purposes of this study, three epochs of 
the ductile fracture zone are shown (Fig. 1b–d, respectively) corre
sponding to pre-load (0εf ), at 30% of the macroscopic failure strain 
(0.3εf ), and at 99% of the macroscopic failure strain (0.99εf ). Damage 
was defined within the μ-CT volumes based on the appearance of 
well-defined dark intensity boundaries following the methodologies 
described in Ref. [13,14]. Sixty-three locations of incipient damage were 
manually detected at 0.3εf (Fig. 1c) and were observed to coalesce 
resulting in catastrophic damage observed at 0.99εf in Fig. 1d. Through 
manual inspection, the incipient damage locations at 0.3εf were classi
fied as either fiber breakage, micro-void nucleation, or fiber debonding. 

A fast-Fourier transform based DVC algorithm [15] was used to 
calculate the corresponding strains from the greyscale μ-CT 
sub-volumes, using a finite difference based calculation of the 
displacement field. In order to verify the choice of parameters and 
spatial resolution of the DVC results, a series of analyses were conducted 
on synthetic data. First, the fiber placement in a synthetic dataset was 
perturbed by a known amount or the entire volume was synthetically 
stretched, afterwards a parametric study was completed on the subset 
size and subset spacing. From this analysis, a subset size of 64 and subset 
spacing of 4 were determined suitable for this investigation, resulting in 

a 1% difference between the DVC computed strain and the expected 
strain values in an approximate runtime of 6 h, using a desktop com
puter with an i7-4930 K CPU and 64 GB RAM. For the DVC analysis, the 
glass fibers within the microstructure are the fundamental features 
whose relative displacement, in general, results in the underlying strain 
distribution. Thus, spatial strain distribution inside a fiber cannot be 
measured, which is an inherent limitation of the DVC analysis. Next, a 
sensitivity analysis to the noise present in the μ-CT data was conducted. 
Gaussian noise [16] was applied to the μ-CT data at 0εf and the subse
quent DVC strains were computed to establish the expected error, εzz =

1*10−5, of the analysis. For the remainder of this manuscript, the 3D 
strain map results refer to a DVC analysis conducted on the greyscale 
μ-CT volume at 0.3εf . A threshold was applied to the DVC results to 
display the highest 97th percentile of strain (aligned to the loading di
rection) in the ductile fracture zone of the specimen (Fig. 1e). To define 
the DVC damage search spaces, a threshold value needs to be applied to 
the DVC strain results, which is critical to the precision and efficiency of 
the DVC-informed damage detection methodology, as explained in the 
next section. 

3. Results 

Traditional, manual damage detection between two load states 
typically involves the following procedure: (1) inspection of the 2D 
slices of the tomographic volume (211 images in this case) comparing 
the reference state and the deformed state, (2) the confirmation of 
microstructural damage in each orthogonal plane, and (3) the marking 
(via point and click) of the boundaries of damage, using ModLayer [12], 
on each image. This process is very manually intensive and time 

Fig. 1. (a) Visualization of the full field fiber reconstruction, including the ductile fracture zone (inset green); visualization of the voids within the ductile fracture 
zone at (b) 0εf , (c) 0.3εf (incipient damage overlaid in red), and (d) 0.99εf , such that εf is the macroscopic failure strain of the specimen; (e) visualization of the DVC 
strain above the 97th percentile of εzz strains at the loading state corresponding to 0.3εf . (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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consuming. The results are shown in Fig. 2 illustrating a 3D represen
tation of the microstructural damage at two locations within the ductile 
failure zone, at 0εf and 0.3εf . At both locations (Fig. 2a and d), 
pre-existing pores (colored blue), with average volumes of 227 μm3, and 
fiber features, with average diameters of 10 μm, (colored according to 
their A33 orientation, such that the orientation of the fibers are repre
sented relative to the loading direction, please see Ref. [17] for more 
details) were present. After deformation at 0.3εf , the damage evolved 
(colored in yellow) and was categorized as either fiber breakage 
(Fig. 2b) or microvoid nucleation (Fig. 2e). Sites of detected fiber 
breakage events had a mean diameter of 9.4 μm and the mean distance 
between broken fiber fragments was 6.3 μm. On the other hand, the 
mean volume of the detected sites of microvoid nucleation events was 
428 μm3 (equivalent to a sphere with diameter 9.4 μm). Both locations 
of manually detected damage overlapped with regions of high strains 
(97th percentile of strains corresponding to the red regions in Fig. 2c and 
f), hence a methodology is explored and discussed to use the regions of 
high strain determined by DVC as a means to reduce the search space for 
the identification of damage. 

Fig. 3a shows a 2D slice of interest within the 3D ductile fracture 
zone, which has been tracked between 0εf , 0.3εf , and 0.5εf (Fig. 3c–e). 
The 3D strain map evaluated by DVC at 0.3εf (Fig. 3b), where strain 
values above the 97th percentile of strains (εzz > 0.0269), were retained 
as the search spaces for damage determination and outlined in red 
(Fig. 3f). At location 1 in Fig. 3f, the observed experimental damage 
(matrix cracking and fiber breakage denoted with black marks) fall 
within the DVC search space. The same observation was made for 
another instance of fiber breakage (location 2) and micro-void nucle
ation (location 3). These observations demonstrate that the down- 
selected search spaces, based on regions of high strain informed by the 
DVC analysis, can be used to aid visual inspection for damage detection. 
Buljac et al. introduced a method using the grey-level residual field to 
detect damage based off discontinuities between the DVC displacement 
field and the original greyscale image [18]. As shown in Fig. 3g, the 
grey-level residual field is displayed relative to the damage sites. Given 

the complexity of the microstructural features, the grey-level residual 
field could not distinguish extreme values with sites of observed damage 
in the present sample. The correlation coefficient between the thresh
olded DVC search space (in Fig. 3b) and the observed sites of damage is 
0.1081, which is significantly higher than the correlation coefficient of 
0.007 between the grey-level residual field (in Fig. 3g) and the observed 
sites of damage. 

Lastly, the precision and efficiency of this approach is contingent 
upon the appropriate choice of the threshold value of strain relative to 
the distribution of strains computed by the DVC analysis. To evaluate the 
detection of damage as a function of the localized strain threshold, 
search spaces confined within the 60th to the 99.9th percentile of the 
strain distribution in increments of 0.1 were assessed. The accuracy of 
the DVC informed method to detect damage was defined when the lo
cations of manually detected damage were within the DVC search 
spaces. As shown in Fig. 4a, at the 60th percentile, a 93% success rate in 
damage detection (equivalent to 59 out of 63 damage locations) was 
observed, yet at increasing percentile thresholds, the DVC informed 
method of damage identification was less successful and captured fewer 
damage sites. This is due to the fact that at increasing percentile 
thresholds, search spaces became smaller in volume, with damage 
events increasingly occurring next to, but outside, the boundary DVC 
informed search spaces. 

Additionally, the precision of the DVC informed method of damage 
detection was quantified by identifying the damage volume relative to 
its corresponding DVC search space. Fig. 4b shows that higher percentile 
strain thresholds resulted in smaller search spaces, thereby expediting 
the manual inspection of damage sites via an exponentially increasing 
trend (albeit at the expense of overall accuracy, as previously shown in 
Fig. 4a). The DVC search space that did not necessarily correspond to the 
observed damage sites were usually of negligible volume overall. To 
illustrate this, at the 60th percentile, 11 search spaces were computed. 
One of the search spaces (of volume 0.0120 mm3) contained all of the 
detected damage sites, while the other ten search spaces (which all had 
volumes less than 0.0001 mm3) did not contain any damage sites. The 

Fig. 2. Damage detection at two separate locations in the microstructure (indicated as sites A and B in Fig. 1e): 3D visualization of the microstructural fibers (fibers 
are shaded relative to their orientation with respect to the loading axis, A33) and manufacturing pores (blue) at the unloaded state (a and d). At 0.3εf , the location of 
damage events, fiber breakage and microvoid nucleation, are shown in yellow (b and e, respectively). At 0.3εf , the DVC analysis depicts regions of high strain (97th 
percentile of εzz), as shown in red (c and f). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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trends shown in Fig. 4 indicate that when using DVC search spaces to 
confine the images for manual damage detection, a higher strain 
threshold will result in more precise search spaces, however, it will also 
lead to a lower number of total detected damage sites. Hence depending 
on the resolution of the DVC analysis, the damage mechanisms present, 
and the material’s microstructure, a balance must be defined between 
efficiency and accuracy of the DVC informed damage identification 
procedure introduced in this work. 

4. Conclusion 

In this work, locations of incipient damage identified via X-ray 

tomography (of a short fiber composite microstructure) corresponded 
with regions of high strains determined through DVC analysis. Specif
ically, this work quantified the correlation between sites of experimental 
incipient damage and high strains as computed by DVC, as well as the 
ability to successfully detect damage based on the selected threshold 
value of strain from the distribution computed via DVC. The analysis 
investigated strain thresholds ranging from the 60th to the 99.9th 
percentile, which showed success rates as high as 93% (compared to the 
expected damage sites from experimental observations of damage). A 
methodology is proposed to use the resulting DVC results, in order to 
streamline the traditional time-consuming manual process of incipient 
damage detection in fiber-reinforced composites. 

Fig. 3. (a) 3D view of a region of interest within then ductile fracture zone, denoting pores present after manufacturing, as well as pores formed from incipient 
damage. A 2D grayscale slice is shown within this 3D region for further investigation. (b) DVC computed strain at 0.3εf . A 2D view of the greyscale slice of the 
microstructure at (c) 0εf , (d) 0.3εf with the regions above the 97th percentile threshold of strains outlined in red and damage sites indicated in black, and (e) 0.5εf 

with damage sites indicated in black. (f) Search spaces confined to regions denoted by the 97th percentile of strains, which enclosed the following damage events: (1) 
fiber breakage and matrix cracking, (2) fiber breakage, and (3) microvoid nucleation. (g) Grey-level residual fields with circle insets indicating locations of observed 
incipient damage and arrows indicating locations of non-damage identified as discontinuities due to the local fluctuation in intensities. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. (a) Probability of success (ratio of successfully 
detected damage sites within the DVC informed 
search space to the total number of experimentally 
detected damage sites) versus the selected percentile 
threshold of the DVC strain distribution. (b) Proba
bility of appropriate search space (ratio of the volume 
of the experimentally detected damage site to the 
enclosed volume defined by the region of strains 
higher than the denoted DVC threshold value) versus 
the selected percentile threshold of the DVC strain 
distribution.   
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1. Conduct a sensitivity analysis to select the optimum subset size and 
spacing for the DVC analysis on synthetically deformed tomography 
images, which will also quantify the uncertainty values in the 
analysis.  

2. For the time-lapse tomography dataset, apply a DVC analysis to 
compute the 3D strain field in the full microstructure.  

3. On a small sub-volume, use a segmentation tool for visualizing and 
classifying 3D data, such as ModLayer [12], to threshold and 
manually segment detected damage sites.  

4. Conduct, on the small sub-volume, a strain threshold sensitivity 
analysis to determine an appropriate strain threshold that balances 
the success rate and precision (as described in Fig. 4).  

5. Apply the appropriate strain threshold (based on the small sub- 
volume) to the full microstructure, thereby reducing the search 
spaces for the identification of damage.  

6. Use ModLayer, to visually inspect the confined search spaces for the 
identification of damage events that occurred in the tomography 
images. 

The DVC-informed damage detection methodology presented in this 
paper is applicable to a general class of composite materials, while the 
specific analysis is dependent on (i) the resolution of the DVC strain 
fields produced and (ii) the damage mechanisms within the material. 
First, DVC tracks the secondary phases (fibers in the present case) to 
identify the displacement field evolution. For the necessary high- 
resolution DVC field, the tomograms should contain a dense configu
ration of features to track, which requires a sufficient volume fraction of 
secondary phases, distinct phase contrast between phases, and high 
spatial resolution in the tomograms. Second, identifying a suitable strain 
threshold to denote the potential damage sites requires the procedure 
outlined in this paper to be repeated based on the configuration of in
terest. The outcome will depend on the resolution and heterogeneity of 
the DVC field, which are dependent on the active damage mechanisms, 
prevalence of damage (in terms of uniformity or sparseness), and the 
interaction of damage mechanisms, each of which are dependent on the 
loading configuration on the material. Overall, employing such a DVC- 
informed methodology, compared to visual inspection of the full to
mography volume, can save engineers time and computational resources 
in their efforts to detect 3D damage events in large time-lapse tomog
raphy volumes. 
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