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Abstract—Asynchronous iterative computations (AIC) are common in machine learning and data mining systems. However, the lack of
synchronization barriers in asynchronous processing brings challenges for continuous processing while workers might fail. There is no
global synchronization point that all workers can roll back to. In this article, we propose a fault-tolerant framework for asynchronous
iterative computations (FAIC). Our framework takes a virtual snapshot of the AIC system without halting the computation of any worker.
We prove that the virtual snapshot capture by FAIC can recover the AIC system correctly. We evaluate our FAIC framework on two
existing AIC systems, Maiter and NOMAD. Our experiment result shows that the checkpoint overhead of FAIC is more than 50 percent
shorter than the synchronous checkpoint method. FAIC is around 10 percent faster than other asynchronous snapshot algorithms,
such as the Chandy-Lamport algorithm. Our experiments on a large cluster demonstrate that FAIC scales with the number of workers.
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1 INTRODUCTION

MANY machine learning and data mining algorithms
perform iterative computations through iterative

refinement. As the size of raw data gets larger and larger,
distributed computation frameworks such asMapReduce [1]
and Dryad [2] have been deployed to process the data. Tra-
ditionally, distributed iterative computations are imple-
mented in a synchronous manner. Many distributed
synchronous frameworks such as HaLoop [3], iMapRe-
duce [4] use the Bulk Synchronous Parallel (BSP) model [5].
While distributed synchronous frameworks are a natural
choice for iterative computations due to their simplicity, a
synchronization barrier between two consecutive iterations
is essential to synchronize the progress of all workers. That
is, each worker has to pause and wait until all the workers
reach the synchronization point.

Recently, myriad asynchronous computation models
have been proposed to accelerate iterative computations.
One common theme of these proposed asynchronous com-
putation models is the removal of the synchronization bar-
riers. As a result of this, each worker is able to perform
iterative updates without waiting for other workers to com-
plete the iteration. Therefore, asynchronous computations

can accelerate iterative computations. On the other hand,
the lack of synchronization barriers brings challenges for
continuous processing in the event of server failures. The
synchronization barriers provide a global synchronization
point where all workers can safely roll back to in the case of
server failures. The asynchronous iterative computation,
however, does not naturally contain such rollback points.

In addition to providing on-demand servers, many cloud
service providers offer transient resources such as spare
servers at a fraction of the cost of on-demand servers. These
transient resources may be revoked and tasks can be pre-
empted at any time [6]. Iterative machine learning jobs on
large-scale datasets typically require a large amount of
resources and usually are not urgent tasks. So they are ide-
ally suited to run on such transient resources. Since the com-
putation resources may be revoked at any time, it is better to
checkpoint more frequently. Most popular distributed
frameworks, such as Hadoop [7], Spark [8], and Maiter [9]
are designed to work on on-demand servers where the
mean time between errors is in the order of hours or even
days. They might suffer huge cost of re-computations in
case of frequent revocations on transient resources.

However, it is hard to perform recovery from failures or
revocations on asynchronous iterative systems. A distrib-
uted system supports fault tolerance by setting checkpoints
and recovering to them after a failure happens. Different
from synchronous iterative systems, states of servers are
usually not sufficient to describe the state of an asynchro-
nous iterative computation system. Inflight messages are
not part of the local state but contains necessary information
about how to update the state of a worker.

In this paper, we propose a Fault-tolerant framework for
Asynchronous Iterative Computations (FAIC framework).
We capture the messages by leading the asynchronous itera-
tive computation system into a state where inflight mes-
sages are absorbed by workers. And workers keep on
computing during that period. Instead of forcing all
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workers to reach such a state at a certain moment, we design
a method that captures the messages and local state on each
worker independently. We make a checkpoint of the system
by constructing these local states captured at different
moment into a virtual snapshot. Therefore, FAIC brings only
small checkpoint overhead because it does not halt the com-
putation of any worker during checkpointing. We prove
that a virtual snapshot can recover the system correctly in
Section 4. Meanwhile, FAIC can be more efficient than asyn-
chronous snapshot methods such as the Chandy-Lamport
snapshot algorithm [10]. While the Chandy-Lamport algo-
rithm has to capture messages one-by-one, FAIC can aggre-
gate messages before archiving them. As a result, FAIC
archives less amount of data and takes less time in check-
pointing than the Chandy-Lamport algorithm does.

We evaluate our FAIC framework on two existing asyn-
chronous iterative frameworks, Maiter and NOMAD. Our
evaluation shows that the checkpoint overhead of FAIC is
around half of that in the synchronous checkpoint method
on a homogeneous cluster and about 1/3 of that on a hetero-
geneous cluster. FAIC is about 10 percent faster than the
Chandy-Lamport algorithm, because it archives less mes-
sages. Even on NOMAD where messages are not accumula-
tive, FAIC has the same running time as the Chandy-
Lamport algorithm. Our experiments on a large cluster also
demonstrate that FAIC scales well with the cluster size.

2 ASYNCHRONOUS ITERATIVE COMPUTATION

In this section, starting with two existing frameworks, we intro-
duce the asynchronous iterative computationmodel for distrib-
uted computation. Then, we formulate a distributed framework
supporting asynchronous iterative computationmodels.

2.1 Asynchronous Iterative Computation Model
Many distributed frameworks that use asynchronous iterative
computation model. We first show two example frameworks:
Maiter and NOMAD. Then, we introduce the mathematical
model of asynchronous iterative computations.

2.1.1 Maiter

Maiter [9] is an asynchronous distributed framework for
graph processing. We use PageRank as an example to show
how the Maiter framework can be used for a large class of
graph processing algorithms. PageRank iteratively updates
the PageRank score vi of each node i as follows:

vi ¼
1# d

N
þ

X

j2INðiÞ

d ' vj
jONðjÞj

;

where N is the total number of nodes, INðiÞ and ONðiÞ is
the in-neighbor and out-neighbor set of node i respectively,
and d is a damping factor. Note that the PageRank score of
node i depends on the PageRank score of its in-neighbor
nodes. If each node’s PageRank score is initialized with

v0i ¼
1# d

N
;

and Maiter maintains a change variable for each node iwith
Dvi, then node j, an in-neighbor of node i, will contribute to
the change to node iwith

d ' Dvj
jONðjÞj :

As a result, each node i needs to perform the following
operations

Dvi ¼
X

j2INðiÞ

d ' Dvj
jONðjÞj

vi  vi þ Dvi:

Note that computation
d'Dvj
jONðjÞj can be done at node j. The

result is sent to all out-neighbors of node j and a node i
accumulates the result into Dvi upon receiving such a result.
As a result, Pagerank can be performed asynchronously at
each node where node i will perform the following
operations:

! For each message m, accumulate the message to Dvi.
That is, Dvi ¼ Dvi þm

! vi  vi þ Dvi.
! Compute d'Dvi

jONðiÞj and send the result to all out-
neighbors.

2.1.2 NOMAD

NOMAD [11] is an asynchronous distributed framework for
big matrix completion problems. Let M 2 Rn(m be a matrix
where only some of its entries is observed, denoted with
V ) f1; . . . ;mg( f1; . . . ; ng, the matrix completion problem
is to predict the values of unobserved entries. A popular
model is to find two small matrix H 2 Rn(m and W 2 Rn(h

where h * minfn;mg such that M + HW . H and W can be
viewed as a set of row blocks and column blocks respec-
tively. That is, H ¼ ½H1; H2; . . . ; Hn-T and W ¼
½W1;W2; . . . ;Wm-. The goal is to minimize the loss function

JðH;W ;MÞ ¼ 1

2
jjM #HW jj22

¼ 1

2

X

ði;jÞ2V
ðMi;j #HiWjÞ2

¼
X

ði;jÞ2V
JðHi;Wj;Mi;jÞ:

It can be solved by iteratively updating H and W using gra-
dient descent as follows where h is a positive learning rate

Hi  Hi # h
X

j

@JðHi;Wj;Mi;jÞ
@Hi

¼ Hi # h
X

j

WT
j ðHiWj #Mi;jÞ

Wj  Wj # h
X

i

@JðHi;Wj;Mi;jÞ
@Wj

¼ Wj # h
X

i

HT
i ðHiWj #Mi;jÞ:

To perform the computation asynchronously, NOMAD
guarantees that there is only one copy of each Hi and Wi.
Thus, we can independently perform the computation
WT

j ðHiWj #Mi;jÞ and HT
i ðHiWj #Mi;jÞ for each ði; jÞ pair 2

V. We assign each Hi to a computation node i and let Wj

blocks traverse all nodes through messages. When the mes-
sage of Wj reaches node i, node i performs the following
operations.
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! Hi  Hi # h
P

j W
T
j ðHiWj #Mi;jÞ.

! Wj  Wj # h
P

i H
T
i ðHiWj #Mi;jÞ.

! Send newWj to node iþ 1.

2.1.3 Other Distributed Frameworks

Many other distributed frameworks can be described with
this asynchronous iterative computation model. For exam-
ple, the GraphLab [12] is a distributed framework designed
for graph processing tasks, especially for iterative graph
algorithms. It models a graph with state data on each node
and edge. A node or edge updates its state value according
to its neighbors’ current state values. GraphLab supports
both the synchronous execution and asynchronous execu-
tion. In the asynchronous execution, when a node updates
its states, that change is pushed by its neighbors via data
messages. When the message is received by another node,
the corresponding change becomes visible to the receiving
node. Each node updates its own state asynchronously.
When it is going to update its own state, it uses the neighbor
states which is currently visible to it. In this model, the
receiving thread keeps on receiving messages and make
them visible to local nodes. The computing thread updates
local state using the locally visible data and generates mes-
sages about the new state. The sending thread sends out
these messages to workers holding their neighbor nodes.

2.1.4 AIC Model

We summarize the asynchronous iterative computation
(AIC) model in this section. There are two types of data in
the model, the static data and mutable variables. The static
data is usually the input of the problem which is not
changed during the computation process, like the graph
topology for the PageRank algorithm. While the mutable
variables describe the current state of all units, like the Pag-
eRank scores. We describe a basic operation unit in an itera-
tive computation model as a computation node. Each node
holds a part of the static data and the corresponding part of
the mutable data.

Each node iteratively updates its mutable variable as
Equation (1). In general, a node i accumulates the mutable
variables vj of all other nodes and use them to update its
own mutable variable vi

vi ¼
M

j

fðvj; vi;Dj;DiÞ: (1)

The term fj;iðvj; vi;Dj;DiÞ in the equation quantifies the
impact of node j’s mutable variable to node i’s mutable var-
iable. Note that the update function f involves both the
mutable variables and static data of node i and j. Here, we
use an abstract accumulating operator . instead of a typical
addition operator þ to cover a larger variety of algorithms.
For example, in the shortest path algorithm, the accumulat-
ing operator . should be min so that the node with the
shortest distance vj is selected. Mathematically, we require
the accumulating operator to be . commutative i.e.,
a. b ¼ b. a.

To make the iterative computation asynchronous, the
computation should be able to be transformed into a form
with independent sub-computations. The key idea is to
decompose the f into two parts, and each part only involves

the data of one node. So that each can be done indepen-
dently on different workers. We can decompose it with g
and h as shown in Equation (2)

fðvj; vi;Dj;DiÞ ¼ gðhðvj; i;DjÞ; vi;DiÞ: (2)

The h function is invoked on source nodes. The result of
hðvj; i;DjÞ is a message from node j to node i. And the g
function works on node i. gðm; vi;DiÞ transforms the mes-
sage m ¼ hðvj; i;DjÞ to the form ready for accumulation
using the data of node i. Thus, we can perform hðvj; i;DjÞ
for different j independently on different nodes. Since the
accumulating operator is commutative, we can asynchro-
nously accumulate them on node i. So in an AIC system,
when the message mj;i reaches node i, node i performs the
following operations.

! Update mutable variable vi by vi  vi . gðmj;iÞ
! Compute messagemi;k ¼ hðvi;DiÞ
! Send messagemi;k to node k ifmi;k 6¼ 0

Note that 0 is the identity element of ., which is 0 for addi-
tion and þ1 for minimization.

We can use this model to express the Maiter and
NOMAD framework as follows. We use the PageRank algo-
rithm as an example for Maiter. For PageRank, each graph
vertex is a computation node. The mutable data of a node i
is two variables pi and ui where pi is the PageRank score
and ui is the delta term of the PageRank score. The static
data of a node i contains its out-neighbor list ONðiÞ. There-
fore, we have the following h and g functions.

! hðhpi; uii; k;DiÞ ¼
dui
jONðiÞj ; k 2 ONðiÞ

0; otherwise

!

! gðm; vi;DiÞ ¼ m
! a. a0 ¼ aþ a0

The h function sends
duj
jONðjÞj to the out-neighbors of node j.

While the g does no modification to the received message.
And the messages are accumulated with addition. For the
matrix completion example of NOMAD, the mutable data
of a node i consists of two parts, Hi and a dummy W/. The
dummy W/ part is used to forward the Wj block from
the input message to the output message. Correspondingly,
theW/ part is not accumulated. It is replaced with a newWj

each time a new Wj is received. And the static data Di is the
ith row of the matrixM.

! hðhHi;W/i; k;DiÞ ¼
W/; k ¼ iþ 1
0; otherwise

!

! gðWj; hHi;W/i;DiÞ ¼
h#hWT

j ðHiWj #Mi;jÞ;W/ # hHT
i ðHiWj #Mi;jÞi

! hh; wi. hh0; w0i ¼ hhþ h0; w0i
Here, the message generation function h just forward the
updatedW/. Upon the receiving of a message, the g function
calculates the gradient of the local Hi variable and the
messageWj.

2.2 AIC Distributed Frameworks
In this subsection, we show the framework supporting the
AIC model in distributed environments. This distributed
framework consists of a set of workers and a coordinator.
Workers hold computation nodes and perform the computa-
tion task. The coordinator has an overviewofworker progress
and determineswhen to terminate the computation.
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2.2.1 Coordinator

A coordinator has a global view of the system and handles
tasks like statemonitoring, progress tracking, and termination
control. A worker can hardly handle these tasks since they
require information for all workers. Before a computation
task starts, the coordinator checks whether all workers are
available. The coordinator then broadcasts a starting signal to
let all workers start the computation. Themost important task
of the coordinator is to keep track of the availability and prog-
ress of all workers. The coordinator periodically gathers infor-
mation from all workers. Meanwhile, it also estimates the
global progress of the whole computation. If the computation
finishes, the coordinator needs to gather the result and termi-
nateworkers.

2.2.2 Worker

A worker is an entity used to hold the data of nodes and
perform their corresponding computation. Nodes together
with their static and mutable data are partitioned among
workers. A typical partition method is to use a hash func-
tion on the node index. A more sophisticated method to par-
tition is to assign nodes with tight connections to the same
worker. So as to make most messages get transmitted within
each worker.

Fig. 1 illustrates the basic structure of a worker. Nodes
assigned to a worker are organized in a table. In addition to
the static data and mutable data of a node, the table also
buffers the messages sent to each node, referred to as update
buffer, and the message generated by each node, referred to
as out-message buffer. Each out-message buffer can be orga-
nized as a FIFO message queue. Together with them, the
table also contains some supporting data to fulfill the sys-
tem execution, like priority values, state flags, and some
data caches for computation if necessary.

In a worker, three threads cooperate via the node table to
perform the distributed asynchronous iterative computa-
tion as follows. A receiving thread receives messages from
the network and put them into the update buffer of their
corresponding nodes. Note that the messages are not proc-
essed yet. A computing thread keeps on picking nodes from
the table and then updates their mutable data using the
messages in their update buffers. When the mutable data is

updated, the computing thread generates corresponding
messages and puts them input the out-message buffer of
that node. We will introduce the computing thread in detail
later. A sending thread keeps on checking the out-message
buffers and sends found messages to their destination
worker via the network.

The computing thread consists of a scheduler and an
update operator. The scheduler selects nodes to be updated.
The scheduling algorithm can be a round-robin selection or
a prioritized scheduling with a given priority generation
method. For example, Maiter uses the absolute value of Dvi
as the priority value of node i, so as to perform larger
changes earlier. The update operator of the computing
thread consists of two parts, update the mutable data and
generate new messages, shown with the orange cycles in
Fig. 1. For a selected node, the updating step invokes the g
function to preprocess the buffered messages and use them
to update the mutable data via the . operator. Then the
computing thread invokes the h function to generate new
messages. When a message is generated, the computing
thread checks which worker contains the destination node
of that message, using the partition hash function. If the des-
tination worker is the current worker, the computing thread
directly puts the new message into the destination node’s
update buffer. If the destination is another worker, the com-
puting thread pushes the newmessage into the out-message
buffer of the source node.

In many algorithms, messages in the update buffer and
the out-message buffer can be aggregated. For example,
messages in the Pagerank algorithm are delta values of the
Pagerank scores. Adding two delta values consecutively
onto a Pagerank score results in the same score as adding
the summation of the two delta values on the original score.
So the receiving thread can just maintain one copy of
received delta value for each node in the update buffer
instead of keeping everyone. And once it receives a new
message, it accumulates the message with the one in the
update buffer using þ operation. Similarly, the computing
thread can also accumulate out-going messages in the out-
message buffer before the sending thread sends them out.

The three threads within a worker also work asynchro-
nously. The receiving thread puts received messages into
update buffers. The computing thread is not triggered by
the receiving thread. It asynchronously picks and updates
nodes with non-empty update buffers. Similarly, the com-
puting thread and the sending thread work asynchronously
via the out-message buffer.

3 FAULT-TOLERANT FRAMEWORK

FOR AIC (FAIC)

In this section, we introduce our fault-tolerance mechanism
for a distributed asynchronous iterative computation sys-
tems. We provide an overview of the system first. Then, we
elaborate on how it works in a distributed AIC framework
and how it recovers a system when a failure happens.

3.1 Overview
The key idea of our mechanism is to lead the AIC system
into a state where there is no inflight message. Then, we can
take a snapshot of that state as a checkpoint. Fig. 2a shows

Fig. 1. Worker model of an AIC system.
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the snapshot of an AIC system, which is the state of the
whole system at some time point. There are usually some
messages being transmitted in the network. We want to
flush the network so that there is no inflight message across
workers in the system as Fig. 2b. Then, workers capture
their local states asynchronously among different workers.
We call the local states captured from all workers collec-
tively as a flushed snapshot of the system.

We can capture the local state of each worker in a flushed
snapshot asynchronously. In a distributed system, the time
pointswhen eachworker gets all messages flushed to it can be
quite different. So we capture the local state of a worker at the
time when the worker receives the last inflight messages sent
to it. Assuming workers of Fig. 2b receive their last messages
in the order of Worker-1, Worker-2, Worker-3, Worker-4, we
capture the local state of each worker as Fig. 3. We denote the
time points when workers receive their last inflight messages
as T1, T2, T3, and T4.

Since the computations on workers keep change their
local state, we denote the local state of a worker i at time
point T as SiðT Þ. Obviously, S1ðT1Þ 6¼ S1ðT2Þ. So what we
capture is hS1ðT1Þ; S2ðT2Þ; S3ðT3Þ; S4ðT4Þi. The captured
data seems to be a snapshot but it does not exist at any time
point, so we call this “snapshot” as a virtual snapshot.

During the process of taking a virtual snapshot, the comput-
ing thread of each worker continues. Computing threads can
continue processing as long as there are data messages in the
update buffer. There are two sources to the update buffer. First,
the receiving thread buffers some inflight data messages in the
local update buffers. Second, as mentioned in Section 2.2.2,
when the destination node of a locally-generated message is
local, themessage is directly put into the corresponding update
buffer. Note that, it is not guaranteed that the computing
always continues. If the buffered data messages are used up
and destination nodes of all newly generated messages are
held by otherworkers, the computing thread of aworker stops.
But that scenario does not happen usually.

A virtual snapshot can be used to recover an AIC system.
We give a formal proof in later sections. The general idea is
to show that by controlling the working pace of each thread,
it is possible to construct a snapshot which is identical to
the virtual snapshot. Intuitively, halting a thread in an AIC
system can be viewed as a special case of asynchronous exe-
cution where zero working time is scheduled to that thread.
Therefore, we can construct a snapshot by halting the com-
puting thread of a worker at the moment when the local
state is captured. As a result, the local state of that worker
remains unchanged since that moment. When the comput-
ing threads of all workers get halted, the current snapshot is
exactly the virtual snapshot we captured.

3.2 Interactions Among Coordinator and Workers
Fig. 4 shows the interaction among workers and the coor-
dinator for taking a virtual snapshot. Our method can be
viewed as three steps. The first step is a flushing step. It
starts when the coordinator broadcasts a flush message to
all workers, as illustrated with “1-flush” in the figure.
When a worker receives the flush message, it pauses its
further sending operation to flush its out-going inflight
data messages. Once the flushing is done, a worker notifies
others by broadcasting a clear message to every worker
including itself as denoted with “2-clear”. This step is per-
formed by each worker individually because channels
between workers are independent. The second step is to
archive the local states of workers. A worker is not going
to receive any more messages once all inflight messages to
it are flushed out. Then, the worker archives its local state
including the mutable data, update buffer, and out-mes-
sage buffer of all its local nodes. The last step is to resume
the whole system back to the normal computation mode.
After archiving local states, a worker notifies the coordi-
nator about its progress via a finish message, as shown
with “3-finish” from a worker to the coordination in the
figure. After all workers finish their archiving operations,

Fig. 2. Snapshot example.

Fig. 3. Virtual snapshot example hS1ðT1Þ; S2ðT2Þ; S3ðT3Þ; S4ðT4Þi.

Fig. 4. Interactions among coordinator and workers.

2066 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 21,2021 at 13:32:00 UTC from IEEE Xplore.  Restrictions apply. 



the coordinator broadcasts a resume message, shown with
“4-resume” in the figure, to all workers to make them
resume the network communication.

3.3 Interactions Among Threads Within a Worker
Each worker experiences three phases corresponding to the
three steps while taking a virtual snapshot. Now we intro-
duce how does the receiving thread, computing thread and
sending thread of a worker interact.

3.3.1 Flushing Phase

When a worker receives the flush message from the coordi-
nator, it moves into the flushing phase. The worker broad-
casts a clear message to every worker, including itself, and
halts its sending thread. More precisely, the receiving
thread sends an internal halting signal to the sending thread,
as shown with the dashed line denoted with “1-halt” in
Fig. 5. When the sending thread receives this internal halt-
ing signal, it stops its normal sending task and immediately
broadcasts the clear message. Therefore, the clear message
is the last message that another worker is able to receive
from this worker. Meanwhile, the receiving thread keeps
receiving messages and the computing thread keeps updat-
ing local nodes. The generated messages are temporarily
buffered in the out-message buffers.

A worker finishes its flushing phase as follows. The
flushing phase of a worker finishes when the worker
receives clear messages from all workers. When a worker
receives a clear message from another worker, there is no
inflight message between these two workers. Because a
worker only sends one clear message to another worker, the
flushing to a worker finishes when it receives n clear mes-
sages where n is the number of total workers. So we set up a
counter for the number of received clear messages. The
counter starts with 0. Note that, due to the network delay,
a worker may receive a clear message before it receives
the flush message. So the initializing and resetting of the
counter is performed at the resuming phase instead of the
beginning of the flushing phase. Whenever the receiving
thread receives a clear message from another worker, it
increases the counter. When the value of the counter reaches
n, the worker finishes its flushing phase and moves to the
archiving phase.

3.3.2 Archiving Phase

In the archiving phase, a worker archives its local state and
notifies the coordinator. When the counter reaches n, the

receiving thread sends an internal archiving signal to the
computing thread, as shown with the dashed line denoted
with “2-archive” in Fig. 5. We use the computing thread to
handle the archive task to prevent the update operations
from changing values during archiving them. When the
computing thread receives the archiving signal, it inserts an
archive operation after the current update operation. The
archive operation archive states of all local nodes including
the mutable data, update buffer and out-message buffer.

After the archiving operation is done, the computing
thread sends an internal finish signal to the sending thread,
as shown with the dashed line denoted with “3-finish” in
Fig. 5. When the sending thread receives that internal signal,
it sends a finish message to the coordinator to notify the coor-
dinator about this local finish. Thus, a worker finishes its
archiving phase and moves to the resuming phase.

Note that some messages are aggregated before gets
archived in AIC systems, like Maiter, whose messages are
accumulative. The computing thread archives messages after
all inflight messages sent to this worker are received. During
this period, messages keep being accumulated in the update
buffer and out-message buffer. Ourmethod archives the accu-
mulated messages. In AIC systems whose messages are accu-
mulative, severalmessages are aggregated into one.

3.3.3 Resuming Phase

After all workers finish their own archive tasks, the system
goes back to the normal working mode by resuming all send-
ing threads. The coordinatormonitors the checkpointing prog-
ress by counting the received finish messages. When the
coordinator receives n finish messages, it broadcasts a resume
message to all workers. As illustrated in Fig. 5, when a worker
receives the resume message, the receiving thread resets the
counter about clear messages and sends an internal resume
message to the sending thread. When the sending thread gets
that internal signal, it resumes its normal sending functionality
of the datamessages. Then a checkpoint procedure finishes.

3.4 Recovery From a Checkpoint
When a failure happens, the system is restored back to the
latest checkpoint. The restoring task is done by just loading
the archived local state of each worker. Each worker loads
its own part of the archived local state from the checkpoint
including the mutable data, update buffers, and out-mes-
sage buffer into its node table. Then, the worker starts its
three threads.

4 CORRECTNESS PROOF OF FAIC

In this section, we prove that the virtual snapshot captured
by FAIC can be used to correctly recover an AIC system.
First, we formally describe how an AIC system works and
the relationship between actions and snapshots. Then, we
describe the actions while taking a snapshot. After that, we
show that we can always construct an action sequence to
reach a snapshot that contains identical data to the virtual
snapshot captured by FAIC.

4.1 Formal Model for AIC
We can use a sequence of actions to represent how a worker
executes its computation. To simplify the discussion, we

Fig. 5. Interaction among receiving, computing, and sending thread of a
worker.
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can treat time as a sequence of small time slots and a
worker only takes one action in one time slot. An action
may take several time slots. We assume that an action
changes the state of the system at the moment when it fin-
ishes. In addition to the receiving, computing and sending
action introduced in previous sections, a worker may do
nothing during one time slot. We use a halting action to
represent such a case. So that the execution of a worker
can be expressed with an action sequence consists of such
4 types of actions. It can be understood as how computing
resources are assigned to the receiving, computing, and
sending thread. If a worker takes a receiving action while
there is nothing on the wire, this action has no effect on
the state of the worker. Similarly, the computing action
and sending action do nothing if there is no message to be
processed or sent. We refer to there actions that do nothing
including halting actions as invalid actions and the rests are
valid actions.

We can use the action sequences of all workers to express
the execution of the AIC system. We refer to these action
sequences as an action sequence group. One concrete execu-
tion of the AIC system maps to one specific action sequence
group. Note that given an initial snapshot and an action
sequences group, we can get a sequence of snapshots of the
AIC system at the end of each time slot.

The state of an AIC system at a certain time point is
expressed as a snapshot and actions update the snapshot. A
snapshot consists of the local state Ii; Vi; Oi of each worker
Wi, and the inflight message set M, where Ii; Vi; Oi are the
update buffer, the mutable date and the out-message buffer
of worker Wi respectively. The inflight message set M con-
sists of messages sent to each worker Mi. Therefore, a snap-
shot can be expressed with a list of augmented local states
hSiin ¼ hIi; Vi; Oi;Miin. A receiving action on worker Wi

updates Mi and Ii by picking one message from Mi and put
it into Ii. A computing action on worker Wi changes Ii; Vi,
and Oi. It picks a message from Ii and uses it to update Vi

using the f function meanwhile it may also generate some
new messages into Oi. A sending action on worker Wi picks
a message from Oi and put it intoMk where k is the destina-
tion worker of the message. Except for the halting action,
each action moves a snapshot S to another snapshot S0.
Since an action changes the state of the system when it fin-
ishes, a snapshot in the middle of an action is the same as
the one when this action starts.

Start from an initial snapshot, an action sequence group
moves the system to another snapshot. A potential snapshot
is a snapshot that can be derived by an action sequence
group from the initial snapshot.

We define a recoverable state of an AIC system as a state
starting from which the AIC system can continue comput-
ing. Apparently, a snapshot is a recoverable state because it
contains all data of an AIC system. Because a potential snap-
shot is a snapshot, we have Lemma 1.

Lemma 1. A potential snapshot is a recoverable state for the AIC
system.

4.2 Correctness of FAIC
We first review the procedure of taking a virtual snapshot
using the action sequence concept. Fig. 6a shows the

procedure using a three-worker example. We use bars to
represent valid actions of each worker. When a worker
receives the flush message from the coordinator, denoted
with a black bar, it broadcasts a clear message to other
workers and halts the sending thread. There is no valid
sending action on a worker after the black bar. Note that, as
discussed in Section 3.3.1, the action of the black bar can
either be the receiving action of the flush message from the
coordinator or the receiving action of the first clear message
received from a worker. On the receiving action of the last
clear messages, denoted with a dashed bar, a worker Wi

archives its current local state Si and continues to perform
computing actions. Note that, the receiving of the last clear
messages means there is no more inflight message sent to
this worker. From the perspective of the action sequence,
there is no more valid receiving action after a gray bar of a
worker. After all workers finish the archiving, they resume
the sending threads. From then on, there are valid sending
and receiving actions again.

We are going to prove that a virtual snapshot captured
by FAIC is a potential snapshot. FAIC captures the local
state of each worker at different time points and constructs
them as a virtual snapshot which does not show up at any
time slot of the execution. In Lemma 2, we are going to
show that there is a potential snapshot that captures the
same local states as the virtual snapshot. The general idea of
proving this lemma is to construct an action sequence group
which leads the AIC system to such a potential snapshot.

Lemma 2. A virtual snapshot captures in FAIC is a potential
snapshot of the AIC system.

Proof. The statement is true as long as for any virtual snap-
shot we can find an action sequence group that leads the
system to a potential snapshot and the content of this
potential snapshot is identical to the virtual snapshot. We
prove it by giving a method of constructing such an
action sequence group for any virtual snapshot.

We construct the action sequence group for the poten-
tial snapshot by modifying the action sequence group in
the execution of taking the virtual snapshot. We cut the
action sequence of a worker Wi into two parts at the
receiving action of the last clear message, i.e., the gray
bars in Fig. 6a, as Aia and Aib. We denote the moment
when the last worker takes its local snapshot at T1. For
each worker, we construct its new action sequence in

Fig. 6. Constructing an equivalent snapshot from a virtual snapshot.
(Black bars are the actions that start local checkpointing procedures.
There is no valid sending action after a black bar of a worker. Dashed
bars denote the receiving actions of each worker’s last clear messages.
There is no further valid receiving action after it on a worker).
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two steps. First, we copy the Aia sequence i.e., the actions
until the receiving last clear message, to the constructed
action sequence. Second, we pad an action sequence Aih

which only contains halting actions to each worker to
make the action sequence of every worker reaches time
T1. Then, at time T1, we get a snapshot hS01; S02; S03i from
the constructed action sequence group.

Now, we are going to prove that the potential snap-
shot hS01; S02; S03i of constructed action sequences group is
identical to the virtual snapshot hS1; S2; S3i. We prove it
in two steps. We will show that the state S0i at T1 is the
same as the state S00i at the gray bar for each worker in the
constructed execution. Then, we will prove that for each
worker the state S00i at the gray bar of the constructed exe-
cution is the same as the state Si at the gray bar of the
original execution.

First, we will prove that in the constructed execution
the augmented local state S0i at T1 is the same as the one
at the gray bar S00i . Since no worker sends messages to
worker Wi after black bars, there is no valid sending
actions on any worker after the gray bar of worker Wi. In
addition, all inflight messages to worker Wi are received
at the gray bar. Therefore, the inflight message part Mi of
S00i keeps empty during the period of Aih. And Aih only
contains halting actions that do not change anything. So
that, for each worker the state S00i at the gray bar keeps
the same until the state S0i at T1.

Second, we will prove the augmented local state S00i at
the gray bar of the constructed execution is the same as the
augmented local state Si archived in the virtual snapshot.
Apparently, for the first worker that archives its local state
S00i ¼ Si, which is the W2 in Fig. 6. Since the halting
sequence A2h does not send anything to any worker, the
inflight message part of the second worker archiving its
local state, which is W3 in the example, is updated by the
same action sequences as the original execution used to
take the virtual snapshot. In addition, the constructed
action sequence until the gray bar ofW3 is the same as that
in the original action sequence group. So does the action
sequence of other workers until that moment, which isW1

in the example, especially the sending actions toW3. There-
fore, all actions which may update the local state of W3 in
the constructed action sequence group is the same as those
in the original action sequence group. As a result, the aug-
mented local state S003 in the constructed snapshot equals
the state S3 archived in the virtual snapshot. Similarly, the
actionswhichupdate the augmented local state of aworker
in the constructed action sequence group are exactly the
same as those in the original action sequence group. There-
fore, for all workers, we haveS00i ¼ Si. tu

Theorem 3. The virtual snapshot captured in FAIC is able to
recover the AIC system correctly.

Proof. By putting Lemmas 1 and 2 together, we know that
the virtual snapshot captured in FAIC is a recoverable
state. Therefore, we get Theorem 3. tu

5 EVALUATION

In this section, we evaluate the empirical performance of
our fault-tolerant framework with two adoptions of existing

iterative asynchronous computation frameworks. First, we
introduce the setup of our experiments in Section 5.1. Then,
we evaluate the overhead of making checkpoints and com-
pare it with some typical methods in Section 5.3. In Sec-
tion 5.4, we test the overall running time of our FAIC
framework when there are some failures. At the end, we
test the scalability of FAIC in Section 5.5.

5.1 Experimental Setup
We implement our FAIC framework for two existing AIC
frameworks, Maiter [9] and NOMAD [11]. We add the
fault-tolerance related code on top of their implementation
and make our code public accessible on github.1,2

We use Maiter to test how FAIC performs when message
aggregation before archiving is available. Maiter is a delta-
base accumulative iterative computation model. Its mes-
sages are accumulative. We run the PageRank algorithm on
top of power-law graphs. We synthesized test graphs by set-
ting the distribution parameter a ¼ 2:3, to simulate the
topology of an online social network. The size of the graphs
ranges from 100 thousand nodes to 5 million nodes. We
apply graphs with 1 million nodes by default.

We use NOMAD to test how FAIC performs when mes-
sages are not accumulative. We run matrix completion algo-
rithm using synthesized matrices of size 10,000 ( 200 by
default. To make NOMAD works with FAIC, we make the
following changes to it. First, we add a virtual computing
thread for each worker. The NOMAD model employs mul-
tiple computing threads in each worker while they share
the same receiving and sending thread. The virtual comput-
ing thread holds all original computing threads and takes
over their interaction with the receiving and sending thread.
Second, we add a error-based termination mechanism to
measure the time of reaching identical precision level. The
coordinator keeps checking whether the training error
becomes smaller than a predefined threshold and termi-
nates workers if it happens. Since computing the error is a
part of the training procedure, this additional checking does
not bring noticeable performance impact.

By default, we perform our experiments using 6workers of
a local cluster equippedwith Xeon(R) E5-2620 CPU and 32GB
memory. In the experiments of a heterogeneous cluster, we
replace 2 workers with Xeon E5607 CPU, which is about
40 percent slower than the other workers. For the scalability
experiments, we set up a cluster utilizing Amazon Web Serv-
ices (AWS) EC2 platform. We set up a cluster with 100 t3a.
small instances, which has 2 vCPUand 2GBmemory.

By default, we set up the checkpoint interval as 30 sec-
onds. We choose this value to emulate the frequent server
preemption in transient resources offered in clouds. To
reduce the progress-loss after a worker-loss, it is necessary
to make checkpoints frequently. We evaluate how check-
point intervals affects the total running time in Section 5.4.

5.2 Checkpoint Methods to Compare With
We compare our virtual-snapshot-based FAIC checkpoint
method with two checkpoint methods, a synchronous

1. Maiter: https://github.com/yxtj/maiter/tree/checkpoint2
2. NOMAD: https://github.com/yxtj/nomad
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method and an asynchronous method. The synchronous
checkpoint method, referred to as Sync, pauses the compu-
tation and communication of all workers to flush inflight
messages. When a worker receives a starting message from
the coordinator, it pauses its computing and sending
threads. After the receiving thread finds that there is no
more inflight message sent to that worker, it notifies the
coordinator. When the coordinator is notified by all work-
ers, it broadcasts another special message to make all work-
ers to take a snapshot and then resume the computing and
sending threads.

We also compare our FAIC framework with an asynchro-
nous checkpoint method, referred to as Async. Async adopts
the idea of the Chandy-Lamport snapshot algorithm [10] to
capture states of workers and messages between workers.
Instead of taking a snapshot, Async makes a checkpoint
with a process, during which the inflight messages are cap-
tured one by one. Meanwhile, neither the computing or the
sending and receiving are halted. Async starts when the
coordinator broadcasts a starting message to all workers.
When a worker receives the starting messages, it immedi-
ately archives its local mutable data and broadcasts a special
token to other workers. Meanwhile, the worker starts
archiving messages. This token can be views as the flush
message. It means all messages received before this token
are part of the snapshot. A worker archives every data mes-
sage from worker Wi until before it receives the token from
worker Wi. Async finishes when all workers receive all
tokens from other workers. In comparison, FAIC archives
the local mutable data and message buffers together. And
FAIC archives data at the end of the checkpointing proce-
dure on each worker instead of the beginning.

5.3 Checkpoint Overheads
We measure the overhead caused by making checkpoints to
demonstrate the impact of our fault-tolerant framework
onto the normal computation. The overhead of a checkpoint
cannot be directly measured by simply summing the archiv-
ing time and flushing time. For example, in FAIC, the com-
munication is halted during the checkpointing, which may
slow down the global computation. Therefore, we measure
the overhead as the running time difference as follows. By
setting identical data set, termination condition and check-
point interval, we measure the running time of Sync, FAIC,
Async and also the case without checkpoints. Thus, we get
the total overhead of a checkpoint method. Since there are
multiple checkpoints in each run, we compute the overhead
of each checkpoint by dividing the total overhead with the
number of checkpoints in that experiment.

We compare the overhead of Sync, FAIC and Async on
both Maiter and NOMAD. In order to demonstrate the aver-
age performance, we run each method multiple times. We
also set up different checkpoint intervals for each run. So
that the system captures snapshots at different progress lev-
els in each run. We show the averaged overhead of a check-
point in Figs. 7 and 8. The standard derivation of the
overhead is shown with an error bar. To show the influence
of the message aggregation technique, we also include a
FAIC variation without aggregation denoted with “FAIC-
D” in the figures. Fig. 7 shows the overhead comparison
under a homogeneous cluster. On both Maiter and
NOMAD, FAIC reduces about half of the overhead of Sync
and performs roughly the same as Async. For specifically,
Fig. 7a shows that the overhead of FAIC on Maiter is about
51 percent of Sync and 90 percent of Async. And Fig. 7b
shows the overhead of FAIC on NOMAD is about 54 per-
cent of Sync and 103 percent of Async.

We also compare the overhead in a heterogeneous envi-
ronment. Two workers in the heterogeneous cluster is about
40 percent slower than others. Shown in Fig. 8, overhead of
FAIC is only about 31 percent of Sync. It because that Sync
pauses the computation until every worker finishes its local
tasks while FAIC and Async keeps running the computa-
tion. The overhead of Sync is about 40 percent longer than
that in the homogeneous cluster while FAIC and Async
only slow down about 8-15 percent than the homogeneous
case. This ratio is consistent with the global slow-down ratio
which is 2=6( 40% + 13:3%.

Figs. 7a and 8a show that the overhead of FAIC is obvi-
ously smaller than Async on Maiter. FAIC pauses the cross
worker communication during making a checkpoint, while
Async does not pause any computation or communication.
So intuitively the overhead of FAIC should not be smaller
than Async. But FAIC still performs local computation and
usually a checkpointing period is not long enough to make
a worker finish all local computation tasks. In addition, a
local computation task may also generate messages to local
data nodes and trigger new local computation.

FAIC outperforms Async on Maiter because FAIC
archives less amount of messages. As introduced in Sec-
tion 2.2.2, on systems like Maiter, multiple messages tar-
geted at the same data node can be aggregated into one. In
comparison, Async must capture each received message
individually. It is because that Async archives the local
state, including the mutable data and update buffers, at the
beginning of a checkpoint procedure. If we archive aggre-
gated messages later, the beginning state of update buffer is
actually captured twice. But FAIC archives aggregated local
states after all inflight messages got flushed. This state

Fig. 7. Comparing checkpoint overhead (homogeneous cluster). Fig. 8. Comparing checkpoint overhead (heterogeneous cluster).
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contains the beginning state and all inflight messages. So
FAIC does not capture anything twice. Because of the mes-
sage aggregation, there is usually less amount of message
to be archived in FAIC than Async. To verify it, we disable
the aggregation function of FAIC and measure its average
message volume in each checkpoint. Fig. 9 compares the
average message volume of Sync, FAIC with aggregation,
FAIC without aggregation (denoted with FAIC-D), and
Async. We can see that the average message volume of
Sync, Async and FAIC-D are roughly the same while FAIC
is about 12 percent smaller than others on Maiter. On sys-
tems like NOMAD where messages cannot be accumulated,
as shown in Fig. 9b, FAIC captures the same amount of mes-
sages as others. Therefore, the overhead of FAIC and Async
are roughly the same.

5.4 Running Time With Failures
We demonstrate the efficiency of FAIC’s failure recovery in
Fig. 10. We artificially insert a failure at a certain moment
and recover the system. We measure the total running time
of FAIC and compare it with a baseline method, denoted
with Restart. The baseline method does not make check-
points during computation and restarts the computation
from stretch after a failure. Fig. 10 compares the total run-
ning time of FAIC and Restart with a failure at some differ-
ent computation progress points. We can see that the total
running time of FAIC is roughly the same no matter when
the failure happens. But the restart suffers a linear increase
in the time. When a failure happens at 20 percent of prog-
ress, FAIC is about 12 percent faster than Restart. When a
failure happens at 80 percent of progress, FAIC saves about
70 percent of computation time.

FAIC and the other two checkpoint-based methods lose
the progress between the failure and the last checkpoint.
Making checkpoints takes about 8 percent of the computa-
tion time. Therefore, ideally, when failure happens at 80
percent of progress, FAIC should be 72 percent faster than
Restart. FAIC loses an additional 2 percent of running time,

i.e., about 22 seconds, because the progress between the lat-
est checkpoint and the failure loses. It also explains why
FAIC is not always better than Async on Maiter. So making
checkpoints more frequently is more likely to recover more
computation progress after a failure happens. But since tak-
ing checkpoint cost some time itself, we should not make
checkpoints too frequently. We need to find the best trade-
off between the checkpointing cost and the recovery effi-
ciency depending on the failure frequency.

We also compare the total running time of FAIC with
other checkpoint-based methods. Figs. 11 and 12 show the
running of Sync, FAIC and Async with a failure at 30 per-
cent of the progress. Fig. 11 shows the running time under a
homogeneous cluster and Fig. 12 shows that under a hetero-
geneous cluster. In both experiments, Sync is the slowest.
FAIC outperforms Async about 2 percent in Maiter and per-
forms roughly the same as Async on NOMAD. The total
time depends on the checkpoint frequency. As shown in
Fig. 11, in a homogeneous cluster, the total running time of
FAIC is about 2 and 0.4 percent shorter than Sync and
Async respectively on Maiter with the checkpoint frequency
of 10 seconds. In a heterogeneous cluster where the over-
head of each checkpoint is larger, as shown with Fig. 12,
FAIC outperforms Sync and Async about 8 and 0.4 percent
respectively under the same condition. When larger check-
point intervals are adopted, fewer checkpoints are taken
and the difference between different methods decreases.

5.5 Scalability
In this subsection, we test the scalability of FAIC. We use a
power-law graph containing 5 million nodes and roughly
20 million edges for Maiter and a 50,000 ( 200 matrix for
NOMAD. We compare the running time of reaching the
identical error level. Shown in Fig. 13, the running time
decreases with the increase in the number of workers. We
use the running time of the 4-worker case as a reference
point and compute the ideal scaling curve with it. They are

Fig. 9. Comparing volume of archived message for each checkpoint.

Fig. 10. Running time with one failure.

Fig. 11. Running time of checkpoint-based methods with one failure
(homogeneous cluster).

Fig. 12. Running time of checkpoint-based methods with one failure
(heterogeneous cluster).
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shown with dash lines. As we can see, up to 100 workers,
the running time of FAIC sticks to the ideal case.

6 RELATED WORK

Many people use synchronous barriers to make checkpoints
in distributed iterative computations. Some models [3], [4],
[8], [13], [14], [15] use the Bulk Synchronous Parallel
(BSP) [5] model where the synchronous barriers naturally
exist. Some other asynchronous systems [9], [16] set up
additional barriers to force the whole system to reach a
global consistent point.

Zaharia et al. proposed a linkage based recovery mecha-
nism for the synchronous distributed model called Resilient
Distributed Dataset (RDD) [17]. Each piece of data main-
tains a sequence of its previous modifications. If a worker is
down, the data on it is re-acquired by redoing several latest
modifications since the last reliable point. But RDD requires
the data modifications to be synchronous, so that there is a
global consistent point at some moment. In addition, when
a modification involves some cross-worker cooperation, the
RDD model downgrades to a global rollback-redo model.

There are also some prior works providing asynchronous
checkpoint to specific AIC systems. GraphLab [12] and
PowerGraph [18] are asynchronous iterative computation
models focusing on graph processing. They implemented a
node-wise checkpointing method based on the typical
Chandy-Lamport algorithm [10]. Instead of working on a
fine-grained graph node level, our framework works on the
level of workers which can handle various tasks in various
granularity. FAIC provides fault-tolerance for any asyn-
chronous iterative framework which can be expressed with
the message-passing model. In addition, our mechanism of
signal-and-handler provides additional flexibility to design-
ers who want to customize the checkpointing behaviors like
adopting a customized message compressing function or
adding a statistics function.

Chandy-Lamport snapshot algorithm [10] is a classical idea
of finding a global consistent snapshot. It employs a delicate
protocol to capture the states of communication channels
which are the inflight messages in AIC systems. In our FAIC
framework,we try to find a snapshotwhere there is no inflight
message. In addition,we propose amethod to compose such a
snapshot inAIC systemswithout forcing it to appear.

Different from checkpoint based recovery, some works
aim to provide algorithm-based recovery. By using correct
algorithmic compensations, some works [19], [20], can reach
a consistent state even after failures. However, defining
the compensation function is non-trivial and such functions
only exist for specific algorithms. Recently, some researchers

proposed Zorro [21] which exploits vertex replication to
quickly rebuild the state of failed servers for graph process-
ing. It reduces the overhead during failure-free execution to
zero but sacrifices the accuracy of the result. Similarly, some
other works [22], [23] reduce the overhead during failure-
free executions for iterative solvers. For certain iterative
approximating algorithms like PageRank, some researchers
proposed a fault-tolerant algorithm without a checkpoint or
a compensation function [24].

In the high performance computing community, some
researchers proposed “partial snapshots” for complex tasks.
These works [25], [26] identify the independent task branches
int the data flow graph of a complex task. Then, they can take
partial snapshots on each branch independently. In our work,
we focus on AIC systems whose data flow is usually a set of
contact cycles. Each cycle is the data flow of one data point.
Anddifferent cycles run at different speeds.

7 CONCLUSION

We propose a distributed fault-tolerant framework for asyn-
chronous iterative computations. In an AIC system, mes-
sages across workers are hard to capture and are crucial for
the computation and recovery. Our key idea is to archive a
state of the AIC system where there is no inflight message.
We propose a FAIC framework which leads each worker
into such a state without halting the computation of any
worker. These local states are captured on each worker at
different time and they form a virtual snapshot. We prove
that the virtual snapshot can recover the system correctly.
After that we evaluate the FAIC framework with two
existing AIC system, Maiter and NOMAD. Our evaluation
results shows the overhead of FAIC is about 50 percent
smaller than the synchronous snapshot method, like BSP,
and roughly the same as the asynchronous snapshot
method, like the Chandy-Lamport snapshot algorithm. For
AIC systems like Maiter whose messages are accumulative,
FAIC is about 10 percent faster than the Chandy-Lamport
snapshot algorithm. Our experiments on large cluster also
shows that FAIC scales with the number of workers.
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